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ABSTRACT. In this paper we obtain @analogue of J. Sandor’s theorerms [6], on employing the
g-analogue of Stirling’s formula established by D. S. Madak [5].
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1. INTRODUCTION
F. H. Jackson defined@analogue of the gamma function which extendsgiactorial
)y =101+q)1+q+¢*) - 1+qg+..+¢" "), cf. [3,4],

which becomes the ordinary factorial as— 1. He defined the-analogue of the gamma

function as
(4 9) -
T (2) = —22(1—-¢)'"%,  0<q<l1,
o) (qxﬂ])oo( )
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and .
(450 oo s (%)
[,(z) = ——2(qg—1)"7¢\2), > 1,
where
(a;9)o = [ (1 — ag™).
n=0

It is well-known thatl’,(x) — I'(x) asq — 1, wherel'(z) is the ordinary gamma function. In
[2], R. Askey obtained a-analogue of many of the classical facts about the gamma function.
In his interesting paper [6], J. Sandor defined the functi®asdsS, by
S(x) =min{m € N : z < ml!}, z € (1,00),
and
Si(xz) = max{m € N : m! <z}, x € [1,00).

He has studied many important propertiesSpfand proved the following theorems:

Theorem 1.1. |
ogx
S, ~ :
(x) log log (x - OO)
Theorem 1.2. The series
> 1
g;M&mﬁ“

is convergent fory > 1 and divergent fory < 1.

In [1], C. Adiga and T. Kim have obtained a generalization of Theofenjs 1.l ahd 1.2.
We now define thg-analogues of and.S, as follows:

Sg(x) =min{m € N : 2 <T,(m+ 1)}, z € (1,00),

and
Sy(r) =max{m € N :Ty(m+1) <z}, z € [1,00),

where0 < ¢ < 1.

Clearly Sy(x) — S(x) andS;(z) — S.(z) asq — 17,

In Sectiorﬂz of this paper we study some propertie§,&ndsS;, which are similar to those of
S andS., studied by Sandor [6]. In Sectipfn 3 we prove two theorems which arg émalogues
of Theorem$ 1]1 ar{d 1.2 of Sandor [6].

To prove our main theorems we make use of the followjranalogue of Stirling’s formula
established by D.S. Moakl[5]:

1 ¢ —1 1 [7Fle" e gy
1.1) logl ~ — =1
( ) o8 Q(Z) (Z 2) Og(q_1> +logQ/—logq et —1

0o ng logq 2k—1
+Cq+z (Zk)! ( ) q P2k71<qz)a
k=1

¢ —1
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whereC, is a constant depending upgnandP,(z) is a polynomial of degree satisfying,

Pu(2) = (z = 22)P,_,(2) + (nz+1)P,_1(2), Po=1, n>1
2. SOME PROPERTIES OF S, AND S,

From the definitions of, andSy, it is clear that

(2.1) Sy(z) =m if x € ([y(m),Ty(m +1)], form > 2,
and
(2.2) Sy(x)=m if € [Ly(m+1),Ly(m+2)), form > 1.

(2.1) and[(2.R) imply

Se(x)+1, if xe (Ly(k+1),Ty(k+2)),
Sq@) = {

Sa(), if v =Ty(k+2).
Thus
Sy(x) < Sy(w) < S;(x) + 1.
Hence it suffices to study the functidfj. The following are the simple properties §f.
(1) S; is surjective and monotonically increasing.
(2) S; is continuous for allr € [1,00)\A, whereA = {[',(k + 1) : k > 2}. Since

lim  Si@)=k and  lim  Si(x)=(k—1), (k>2),

a—Ty(k+1)+ 7 a—T g (k+1)~

Sy is continuous from the right at = T',(k + 1), k£ > 2, but it is not continuous from

the left.
(3) S; is differentiable on(1, c0)\ A and since
. Sq(x) = 55 (Ty(k +1))
lim =
a—Ty(k+1)+ x—T,(k+1)
for k > 1, it has a right derivative il U {1}.
(4) S; is Riemann integrable ofa, b], wherel',(k +1) <a < b,k > 1.
(i) If [a,0] C [Ty(k+1),Ty(k+2)],k > 1,then

/ab S*(x)dz = /ab kdz = k(b — a).

(i) Forn > k, we have

Iy (n+1) (n=k) Dy (k+m+1)
/F Sy (r)dx = Z/ S, (r)dx

(k+1) —1 JTq(k+m)

Z k+m—1)[C,(k+m+1)—Ty(k+m)]

,_.

n—k

A
=

(k+m—1)Cy(k+m)[g+q*+--- i,

m=1
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(iii) If a € [Iy(k+1),Ty(k+2))andb e [[,(n),[,(n+1))then
b Tq(k+2) Lq(n) b
/ Sy(w)dr = / Sy (w)dx —i—/F Sy (w)dx +/ Sy (w)dx

q(k+2) Lg(n)
n—k—2
=k[Ty(k+2)—al+ Y (k+m)Ty(k+m+1)
m=1

X (q+ ¢+ ...+ ¢ + (n = 1)[b — Ty(n)],
by (ii).

3. MAIN THEOREMS

We now prove our main theorems.

Theorem 3.1.1f 0 < ¢ < 1, then
log

log (ﬁ—q)

St(w) ~

Proof. If I'y(n + 1) <z < T'y(n + 2), then

(3.1) logl'y(n+1) <logz <logl'y(n+2).
By (1.1) we have

1
(3.2) logTy(n+1) ~ (n + 5)

| qn+1 -1 1 1

og 1 nlog { — <)
Dividing ) throughout by: log (fq) we obtain
logTy(n+1) log x logI'y(n + 2)

< < :
1 * 1 1

nlog <1Tq) Sx(r) log (1—_q) nlog <1Tq>
Using (3.2) in[(3.B) we deduce

(3.3)

) log x
lim - =1.
S;‘(x) log <ﬂ>
This completes the proof.
Theorem 3.2. The series
> 1
(3.4) —_—
; n(Sg(n))*

is convergent forv > 1 and divergent fory < 1.
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Proof. Since
. log x
Sq (z) ~ 7\
we have | |
A0 5t (n) < B—2"

log (ﬁ) log (ﬁ])
foralln > N > 1, A, B > 0. Therefore to examine the convergence or divergence of the series
(3.4) it suffices to study the series

e

n=1
By the integral testy m converges fory > 1 and diverges fob < o < 1. If o < 0, then
1 1 1 R H
o > n forn > 3. Hence) | TTog )T diverges by the comparison test. O
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