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Abstract

Suppose X is a real Banach space and F, K : X — X are accretive maps.
Under different continuity assumptions on F and K such that the inclusion 0 =
v+ KFu has a solution, iterative methods are constructed which converge
strongly to such a solution. No invertibility assumption is imposed on K and the
operators K and F need not be defined on compact subsets of X. Our method
of proof is of independent interest.
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Let X be a real normed linear space with dual. Forl < ¢ < oo, we denote
by J, the generalized duality mapping from to 2% defined by

Jo(@) = {f € X" (a, f*) = lllllfI 1F[) = M=)},

where(-, -) denotes the generalized duality pairing.¢l&= 2, J, = J, and is
denoted by/. If X* is strictly convex, ther, is single-valued (see e.g2]).

A map A with domainD(A) C X is said to beaccretive if for every z,y €
D(A) there existg(z — y) € J(xz —y) such that

(Av — Ay, j(x —y)) 2 0.

A is said to ben—accretiveif it is accretive andR (I + AA) (range of (I +
AA)) = X, for all A > 0, wherel! is the identity mappingA is said to be)—
strongly accretivéf for everyz,y € D(A) there existj(z —y) € J(z — y) and
a strictly increasing function : [0, co) — [0, 00), ¢(0) = 0 such that

(Ar — Ay, j(z —y)) = o(||lz — ylDllz = yl],

and it isstrongly accretivef for eachz,y € D(A), there existj(z — y) €
J(z —y) and a constanit € (0, 1) such that

(Azv — Ay, j(z —y)) = kllz — yl|.

Clearly, every strongly accretive mapjsstrongly accretive and evegystrongly

accretive map is accretive. Closely related to the class of accretive mappings is
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the class of pseudocontractive mappings. A mapfiingX — X is said to

be pseudocontractive and only if A := [ — T is accretive. One can easily
show that the fixed point of pseudocontractive mapgihg the zero of ac-
cretive mappingd := I — T'. If X is a Hilbert space, accretive operators are
also calledmonotone.The accretive mappings were introduced independently
in 1967 by Browder ] and Kato (). Interest in such mappings stems mainly
from their firm connection with equations of evolution. It is known (see e.g.,
[2€]) that many physically significant problems can be modelled by initial-value

problems of the form Iterative Solution of Nonlinear
Equations of Hammerstein Type

(1.2) Z'(t) + Az(t) =0, x(0) = xo,

H. Zegeye

where A is an accretive operator in an appropriate Banach space. Typical ex-
amples where such evolution equations occur can be found in the heat, wave or Title Page
Schrédinger equations. One of the fundamental results in the theory of accre-

tive operators, due to Browde#][ states that ifA is locally Lipschitzian and contents
accretive themd is m—accretive which immediately implies that the equation 4 dd
x + Ax = h has a solution:* € D(A) for anyh € X. This result was subse- < >
guently generalized by Martir’] to the continuous accretive operators. If in
(1.1), z(t) is independent of, then (L.1) reduces to Go Back
Close
1.2) Au = 0,
Quit
whose solutions correspond to the equilibrium points of the systeth Con- Page 4 of 27

sequently, considerable research efforts have been devoted, especially within
the past 20 years or so, to methods of finding approximate solutions (When they ; Toeroe o ao vt 4 At o2, 2003
exist) of equationX.2). One important generalization of equatidnd) is the http://jipam.vu.edu.au
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so-calledequation of Hammerstein tygsee e.g.,1¢]), where a nonlinear inte-
gral equation of Hammerstein type is one of the form:

(1.3) ulz) + /Q K (2, 9)f (g, u())dy = h(z),

wheredy is a o-finite measure on the measure spéxehe real kernelk is
defined onQ2 x Q, f is a real-valued function defined da x R and is, in
general, nonlinear andis a given function o). If we now define an operator

Iterative Solulti f Nonli
K by 2 RS Ty
Ko(w)i= [ Kag)oly)dy: « € 2 e
Q
and the so-calleduperpositioror Nemytskiioperator byFu(y) := f(y, u(y))
then, the integral equation (3) can be putin operator theoretic form as follows: Title Page
Contents
(1.4) u+ KFu=0, < >
< 4

where, without loss of generality, we have taker= 0. We note that ifK is
an arbitrary accretive map (not necessarily the identity), thea= I + KF Go Back
need not be accretive. Interest in equatiard) stems mainly from the fact

S ) . : - Cl
that several problems that arise in differential equations, for instance, elliptic ose
boundary value problems whose linear parts possess Greens functions can, as a Quit
rule, be transformed into the form.¢) (see e.g.,43, Chapter 1V]). Equations Page 5 of 27

of Hammerstein type play a crucial role in the theory of optimal control systems
(see e.g.,17]). Several existence and uniqueness theorems have been proved, T roe me o vam 46 A o2, 2002
for equations of the Hammerstein type (see e 5|6, 8, 19]). http://jipam.vu.edu.au
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For the iterative approximation of solutionsexjuation (..2), theaccretivity/
monotonicityof A is crucial. The Mann iteration scheme (see el])[and the
Ishikawa iteration scheme (see e.dS]) have successfully been employed (see
e.g., [/,10,11, 12,13, 14,16,19,21, 24, 27]). Attempts to apply these schemes
to equation {.4) have not provided satisfactory results. In particular, the recur-
sion formulas obtained involvel —! and this is not convenient in applications.
Part of the difficulty is, as has already been noted, the fact that the composition
of two accretive operators need not be accretive. In the special case in which the

operators are defined on subsBtef X which are compact (or more generally, Iterative Solution of Nonlinear
angle-boundedsee e.g., 1)), Brézis and Browder ] have proved the strong Equations of Hammerstein Type
convergence of a suitably defined Galerkin approximation to a solutidn4)f ( H. Zegeye

It is our purpose in this paper to use the method introduced ihwhich
contains an auxiliary operator, defined in terms/ofand F' in an arbitrary

: . " : : Title P
real Banach space which, under certain conditions, is accretive wheRever edagts
and F' are, and whose zeros are solutions of equatiod).( Moreover, the Contents
operatorgs andF' need not be defined on a compact or angle-bounded subset of <« b
X. Furthermore, our method which does not involie! provides an explicit
algorithm for the computation of solutions of equatidrj. < >
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Let X be areal normed linear space of dimensiof. Themodulus of smooth-
nessof X is defined by:

lz+yll+llz—yll

px(T) = SUP{ 5

It is well known thatpx (7) < 7 V7 > 0 (see e.g.,40)). If px(7) >0 V7 >0,
thenX is said to besmooth If there exist a constant > 0 and a real number
1 < g < o0, such thapy(7) < cr?, thenX is said to beg-uniformly smooth
A Banach spacg is calleduniformly smoothf lim, . ”XT(T) =0.If Fisareal
uniformly smooth Banach space, then

1:||xu=1,||y||=f}; r>0

. C
@.1) N+l < [Jol? + 2y @) + Dmax {[[z]] + llgl, 5 } px(IlylD:

foreveryx,y € X, whereD andc are positive constants (see e.@f]). Typical
examples of such uniformly smooth spaces are the LebeSguee sequence
¢, and the SoboleW" spaces foil < p < co. Moreover, we have

}DT”, if 1<2<p;
2.2) (1) = pre(7) = pwp(7) <

1%17'2, if p>2,

V7T > 0 (see e.g.,49]).
In the sequel we shall need the following results.

Theorem 2.1.[25]. Let ¢ > 1 and X be a real smooth Banach space. Then the

following are equivalent.
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1. Xis uniformly smooth.

2. There exists a continuous, strictly increasing and convex fungtidRt —
R*, such that for every, y € B, for somer > 0 we get

(2.3) [z +yl|* < l|” + ¢ (y, Jo(2)) + g([lyl])-

Lemma 2.2. (see, e.g.,[J]). Let X be a normed linear space anflbe the
normalized duality map os. Then for any given:,y € X, the following
inequality holds:

[l +yll* < ll2ll* + 2y, j(z +y)), Vilz+y) € J(+y).

Theorem 2.3.[9]. Let X be a real Banach spacel : X — X be a Lipschitz
and strongly accretive map with Lipschitz constant 0 and strong accretivity
constantA € (0,1). Assume thatdlz = 0 has a solutionz* € X. Define

Ac: X — X byA.x := 2 — eAx for 2 € X wheree := 3 {W’M} For
arbitrary x, € X, define the Picard sequende,, } in X byz, .1 = Acz,,n >
0. Then{x,} converges strongly to* with ||z, — 2*|| < §"||z; — x*|| where
§ := (1 —1)Xe) € (0,1). Moreover,z* is unique.

Theorem 2.4.[17] Let X be a real normed linear space. Ldt: X — X be
uniformly continuous)— strongly accretive mapping. Assurle= Az has a
solutionz* € X. Then, there exists a real numbegy > 0 such that if the real
sequencda,, } C [0, 7] satisfies the following conditions:

(i) lima, = 0;
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(i) 3, = oo,
then for arbitraryz, € X the sequencéz, }, defined by
Tpil = Tp — Az, n >0,
converges strongly to*, the unique solution df = Ax.

We note that Theore 4is Theorem 3.6 of [3] with A ¢-strongly accretive
mapping.
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Lemma 3.1. For ¢ > 1, let X be a real uniformly smooth Banach space. Let
E := X x X with norm

1
l2ll = (lull + 1oll%)

for arbitrary z = [u,v] € E. Let E* := X* x X* denote the dual space &f.
For arbitrary = = [z, 5] € E define the map?f . F — E* by

: : . , Iterative Solution of Nonli
Jg (@) = gy ley, @] = 57 (1), 53 (22)], o e
so that for arbitraryz; = [uy, v1], 20 = [ug, v9] in E the duality pairing(-, -) is H. Zegeye
given by
-E . X . X
21, z = (Uuq, U + (vq, V2)) .
< 1 jq( 2)> < 1, Jq ( 2)> < 1, Jq ( 2)> Title Page
Then
) . Contents
(a) F is uniformly smooth;
(b) jf is a single-valued duality mapping dn « dd
Proof. (a) Letz = [z1, 23], y = [y1, Y] be arbitrary elements df. It suffices ¢ >
to show thatr andy satisfy condition (2) of Theorer.1. We compute as Go Back
follows: Close
|z + Yl = ey + y1, 22 + o]l Quit

= |[v1 +will% + llze + 2ll%
< a1k + Nz2ll% + g(lall) + 9([ly2l])

raf (o7 0) + (3 02) } T

Page 10 of 27
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whereg is continuous, strictly increasing and a convex function (using (2)
of Theorem?2.1, sinceX is uniformly smooth). It follows that

|z +yll% < ll2ll% + a v, 7 () + g (llyl]),
wheregd'(||y|]) := g(|ly1]1)+9(||y=2|]). So, the result follows from Theorem
2.1
(b) For arbitraryz = [z1,2,] € E, let jZ(z) = jllzi, 2] = ¢, Then
by = 4 (1), j; (w2)] in E*. Observe that fop > 1 such that; + ; = 1,

1

o= (I @0, 5 @)

1

[un

()5 + [la(22)]

=
(llaall e
(

(AN

p )5
X*

1
P llaall§)

q—1

q

-1
= |[=]l%

Hence)|[¢,||z- = ||z]|% . Furthermore,

(m,g) = ([x1, 2], [ (21), 4o (w2)])
= <l’1,jéx(9€1)> + <$2,j5(($2)>

= [lzllx + [lz2]l%
q—1
1 9=
= (ol + ll2all%)7 (ol + llaall ) *
= [lzlle -
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Hence,jf is a single-valued (sinc# is uniformly smooth) duality map-

ping onk.
O

Lemma 3.2. SupposeX is a real normed linear space. Lét K : X — X be
maps such that the following conditions hold:

(i) For eachuy,uy € X there existj(u; — uz) € J(u; — ug) and a strictly
increasing functiorny, : [0, 00) — [0, 00), ¢1(0) = 0 such that

(Fuy — Fug, j(uy — u2)) 2 ¢1([fun — ua|])[[ur — valf;

(i) For eachu;,us € X there existj(u; — u2) € J(u; — uz) and a strictly
increasing functiony, : [0,00) — [0, 00), ¢2(0) = 0 such that

(Kuy = Kug, j(ur = u2)) = ¢o([[ur = ua|[)][ur — ualf;

(iii) ¢i(t) > (2+r;)tforall t € (0,00) and for some; > 0,7 =1,2.

Let F := X x X with norm||z||% = |Ju||% + ||[v||% for z = (u,v) € E and
defineama@ : £ — EbyTz := T(u,v) = (Fu — v,u + Kv). Then for
eachzy, 2o € E there existj®(z; — 20) € J¥(2; — 20) and a strictly increasing
function¢ : [0, 00) — [0, 00) with ¢(0) = 0 such that

(Tz1 = Tz, 7%(21 — z2)) = d(I]21 — 22|21 — 22].
= min{r,ro}t for eacht €

Proof. Define ¢ : [0,00) — [0,00) by ¢(t) :=
[0, 00). Clearly, ¢ is a strictly increasing function with(0) = 0. Furthermore,
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observe that foe; = (uq,v1) andzs = (us, vo) arbitrary elements ik we have
(z1,7(22)) = (u1, j(u2)) + (v1, j(v2)) . Thus we have the following estimates:

<Tz1 — T2y, (21 — 22)>
= (Fuy — Fug — (v — v2), j(ug — usg))
+ (Kv; — Kvg + (ug — ug), j(v1 — 1))
= (Fuy — Fug, j(u1 — u2)) — (v1 — va, j(u1 — ug))
+ (Kvy — Kvg, j(v1 — v9)) + (ug — ug, j(v1 — 1))
= ¢1(([ur — wa|])|Jur — wa|| + G2([[v1 — val|)[[v1 — 2]
(3.1) — (U1 — w2, j (w1 — u2)) + (w1 — ua, j(v1 — v2))..

SinceX is an arbitrary real normed linear space, for each € X andj(x +

y) € J(x +y) (by Lemma2.2) we have that
2+ yII? < llal 1+ 2y, 3@ + ) — (@) + 2 {y, ()
< llal 2 + 20yl + ) = j@)ll +2 4y, ()
< llal 2+ 2llyll (12 + 1] + el ) +2 {y, ()
< ol +2 (||y2||2 CES T ng) + 2y i)
= 2l[al|? + 2llyl[* + ||z + 9lI* + 2 (9. §(a)) .

Thus we gety, j(z)) > —|[z|]* — [[yl[*
Replacingy by —y we obtain— (y, j(z)) > —||z||> — ||y||*>. Therefore,

— (01 — w2, ji(ur — u2)) = —||ug — usl|* = |Jv1 — vof|* and

(ug — ug, j(v1 —v2)) > —||v1 — U2||2 — |Jug — U2||2-
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Thus @.1) and the above estimates give that
(Tz1 = T2, 7" (21 — 22))

> o1 ([Jur — ug||)|[ur — ual| + @2([Jvr — val|)|Jv1 — v2|

— 2Juy — us|* = 2|Jvy — val|?
> <¢1(||U1 - UzH) - 2HU1 - U2||>HU1 - U2||

+ <¢2(||Ul —va|]) = 2[|v1 — Uz||>|’”1 — |
> 1 |Jur — us|[? + ooy — va|?
> min{ry, ra}{|fur = wal® + |y = vall?}
= min{ry, o }||z1 — 2|
= ¢(|lz1 — 2|])|[z1 — 2],
completing the proof of Lemma.2 O

Lemma 3.3. SupposeX is a real uniformly smooth Banach space. It :
X — X be maps such that the following conditions hold:

(i) Foreachu;,uy € X there exists a strictly increasing function : [0, c0) —
[0,00), ¢1(0) = 0 such that

(Fuy = Fug, j(ur — u2)) 2 ¢1(]|ur — ual)[ur — ual;

(i) Foreachu;,uy € X there exists a strictly increasing functign : [0, cc) —
[0,00), ¢2(0) = 0 such that

(Kuy — Kug, j(ur —u2)) = ¢o(l[ur — ua|[)][ur — uelf;
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(iii)y ¢i(t) > (D +ry)t + L7, px(t) < at?forall t € (0,00) and for some
qg>1,a>0andr; > 0,7 = 1,2, wherec and D are the constants
appearing in inequality4.1).

Let £ and T be defined as in Lemnta2. Then for each:, 2o € E there
exists a strictly increasing functiop : [0,00) — [0, 00) with ¢(0) = 0 such
that

(To1 = T2, j%(21 — 22)) 2 6(|]21 — 2a])||21 — 22|

Proof. Define¢ : [0,00) — [0,00) by ¢(t) := min{ry,r}t for eacht €
[0,00). Thus as in the proof of Lemn1a2we have that is a strictly increas-
ing function with¢(0) = 0 and forz; = (uy,v;) andzy = (ug,ve) arbitrary
elements inF we have the following estimate:

(32) <T21 — TZQ7jE(Zl — ZQ)>
= ¢1([|ur — ual])|Jur — wa|| + a([|vr — va||)]|vr — V2]

— (vl — Ug,j(ul - Uz)) + <U1 - U2>j("01 - U2)> .

SinceX is uniformly smooth for each, y € X by (2.1) we have that

e+ w1 < 11212 +2 {y, (@)} + Dmaxc{|lal] + Ilyll, 5 | ex(lyl)
< llal [ + 2 4y, () + D { Il + Il + 5 } ox(llyl])
< llal® + 2y, (@) + D (llallllyl| + llyll* + 5ex (1))

(since px (I|yll) < llyll)

Iterative Solution of Nonlinear
Equations of Hammerstein Type

H. Zegeye

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 15 of 27

J. Ineq. Pure and Appl. Math. 4(5) Art. 92, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:habz@ictp.trieste.it
http://jipam.vu.edu.au/

. e LIyl ac
< lolf + 2 ) + D (15 + 195 i+ S

(since px(|ly|]) < ally||? by assumption fog > 1 anda > 0)
D 3D acD ,
< (1) P+ 221 + 52l + 2 00

and hence

, 1 1 D 3D acD
) 2 e+ ol = 5 ((1+ 5 ) ol + 201 + 2520l

Replacingy by —y we obtain

1 1 D 3D acD
@) > =yl == (12 ) ]+ 2l ] )
() 2 gllo =l = 5 ((1+ ) NelP + S0l + 252 )
Thus @.2) and the above estimates give that

(T2 — Tz, j%(21 — 22))

> O1(|Jur — ual])|[ur — ual| + d2([|lvr — val|)|[v1 — va|

1 D
(o == o= )P = (145 ) o = P

3D acD
S LR PR
1 D
5 (o= vt o=l = (14 ) o = vel?
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> O1(|Jur — ual)|[ur — ual| + d2([|lvr — val|)|[v1 — va|

1
+ 5 ([lur = ua = (01 = v2)|]? + [fur — u +v1 — s )

2
1 acD
~ 5 (0+ 2Dl = walP 4 2P s~ )
1 acD
33) ~ 5 (2Dl = el + 2P ).

Since for allz,y € X,z # y,

2

T +y 1 9 9
< —

. H < 5 (1l + Iyl

we have that

[|(ur —uz) = (01 =v2) [P 4[| (1 = uz) + (01 = v2) [|* > [Jur —wa|[* +[[v1 —vs| >
Then 3.3) becomes

(Tz1 — T, j7 (21 — 22)) > ¢1(||ur — ual])||ur — wo|| — <D||U1 — us|[?

acD
+ THul - U2Hq> + d2([|vr — o)1 — va|

acD
- (Dl = sl + Pl = i
> 1 |Jur — ua|[* + ooy — va|?

Z min{rl,m} {Hu1 — U2|2 + HUl — U2||2}

= min{ry, r2}|z1 — 22/]* = &(|]21 — 22|])||z1 — 22]],
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completing the proof of Lemma.3. O

Remark 3.1. If K and F’ are Lipschitz single-valued maps with Lipschitz con-
stantsL and Ly respectively, thefl" is a Lipschitz map with constarit :=

<d max{L% +1,L% + 1}) * for some constant > 0. Indeed, ifz; = (ug,v1),

R2 = (uQv UQ) in E'then we have that Iterative Solution of Nonlinear

Equations of Hammerstein Type

T2 — Tz H.Z
9 9 . Zegeye
= ||(FU1 — FUQ) — (’Ul — UQ)H + Hu1 — U2 +KU1 — K’U2||
2 2
< (Lpllus = wall + 1o = vall) =+ (1w = wall + Licllen = v ) Tile Page
< d( L3l = wall® + llon = val 2+ [[un = | + Lclor — vall?) Contents
for somed > 0 « dd
< dmax{L} +1, L + 1} (llur — sl 2 + [lon = sl 2) e >
= dmax{L% +1,L% + 1}||z1 — 2% Go Back
Close
Thus||Tz; —Tz|| < L||z1—22||. Consequently, we have the following theorem. Quit
Theorem 3.4.Let X be real Banach space. Lét K : X — X be Lipschitzian Page 18 of 27

maps with Lipschitz constanfs; and L, respectively such that the following
conditions hold:
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(i) For eachu;,us € X there existj(u; — UQ) € J(u; — ug) and a strictly
increasing functionp; : [0, 00) — [0,00), ¢1(0) = 0 such that

(Fup — Fug, j(up —ug)) > ¢1(|Jur — ual|)||ur — usl|;

(i) For eachu;,us € X there existj(u; — ’LLQ) € J(u; — up) and a strictly
increasing functionp, : [0, 00) — [0,00), ¢2(0) = 0 such that

(Kup — Kug, j(ur — u2)) > ¢o(|[ur — ual|)||ur — uzll;

(iii) ¢i(t) > (2+r;)tforall t € (0,00) and for some; > 0,7 = 1,2 and let
v :=min{ry, re}.

Assume that + K F'u = 0 has a solution.* in X and letF := X x X and
l|ul|% + ||v]|% for z = (u,v) € FE and define the map : £ — E by

(Fu—v,Kv+u). Let L denote the Lipschitz constant &f
ande := 1 ( .

5 m) Definethe mapl. : £ — EbyA.z := 2 — T2
for eachz € E. For arbitrary z, € E, define the Picard sequenge,,} in £
by z,+1 := A.z,,n > 0. Then{z,} converges strongly te* = [u*,v*] the
unique solution of the equatidfz = 0 with ||z, 1 — 2*|| < 0"||z; — 2*||, where
= (1—1ve) €(0,1).

Proof. Observe that* is a solution ofu + K F'u = 0 if and only if z* = [u*, v*|
is a solution of/’z = 0. HenceT 'z = 0 has a solution* = [u*, v*] in E. Since
T is Lipschitz and by Lemma.Z2it is strongly accretive with constant(which,
without loss of generality, we may assume ig@n1)), the conclusion follows
from Theoren?.3. O]

12115 =
Tz :=T(u,v) =
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Following the method of the proof of Theoreintand making use of Lemma
3.3instead of Lemm&.2 we obtain the following theorem.

Theorem 3.5. Let X be a real uniformly smooth Banach space. etk
X — X be Lipschitzian maps with Lipschitz constahtisand L, respectively
such that conditions (i)-(iii) of Lemmn&3are satisfied and let := min{r;, 5 }.
Assume that + K F'u = 0 has the solution.* and sett’ and7" as in Theorem
3.4 LetL,e, A., and{z,} be defined as in Theoref4. Then the conclusion
of TheorenB.4 holds.

Theorem 3.6. Let X be a real normed linear space. Lé&t K : X — X be
uniformly continuous maps such that the following conditions hold:

(i) For eachu;,us € X there existj(u; — uz) € J(u; — uz) and a strictly
increasing functiony, : [0,00) — [0, 00), ¢1(0) = 0 such that

(Fuy = Fug, j(ur — u2)) 2 ¢1(]|ur — ual)[ur — ual;

(i) For eachu;,us € X there existj(u; — ug) € J(u; — uz) and a strictly
increasing functiony, : [0,00) — [0, 00), ¢2(0) = 0 such that

(Kuy — Kug, j(u1 — ug)) > do(||ur — ugl])|Jur — uall;

(iii) ¢i(t) > (2+r;)tforall t € (0,00) and for some; > 0,7 = 1,2.
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Assume thab = v + K Fu has a solutiorw* in X. LetE := X x X and
1211% = ||u]% + ||v]|% for z = (u,v) € E and define the map : £ — F by
Tz :=T(u,v) = (Fu—v,u+ Kv). Then there exists a real numbey > 0
such that if the real sequendev,, } C [0, | satisfies the following conditions

(@) lim,,_ v, = 0;

(b) >-an = oo,

then for arbitraryz, € F the sequencéz, }, defined by

Iterative Solution of Nonlinear

Equations of Hammerstein Type
Zng1 = 2 — apTzp, m >0, d P

converges strongly te* = [u*,v*], wherew* is the unique solution of = eoee
u+ K Fu.
Title Page

Proof. Since K and F' are uniformly continuous maps we have tiais a uni-
formly continuous map. Observe also thats the solution of) = v+ K Fuin CaliEis
X ifand only if z* = [u*, v*] is a solution of) = T’z in E. Thus we obtain that <« >
N(T) ( null space of T # 0. Also by Lemma3.2, T' is ¢—strongly accretive. % 5
Therefore the conclusion follows from Theorém. O

Following the method of proof of Theoref6 and making use of Lemma Go Back
3.3instead of Lemm&.2we obtain the following theorem. Close
Theorem 3.7.Let X be a real uniformly smooth Banach space. etk Quit
X — X be uniformly continuous maps such that conditions (i)-(iii) of Theorem Page 21 of 27

3.5are satisfied. Assume that= v + K Fu has a solution:* in X. LetE, T
and{z,} be defined as in Theorem6. Then, the conclusion of Theoreirt B ——————
holds. http://jipam.vu.edu.au
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Remark 3.2. We note that for the special case in which the real Banach space
X is g—uniformly smooth using the above method, the author and Chidume

[17] proved the following theorem.

Theorem 3.8.[17]. Let X be a realqg-uniformly smooth Banach space. Let
F K : X — X be Lipschitzian maps with positive constants and Ly re-
spectively with the following conditions:

(i) There existex > 0 such that

Iterative Solution of Nonlinear
Equations of Hammerstein Type

(Fuy — Fug, j,(u1 — u2)) > al|ug — usl|?, Y uyr,ug € D(F);

H. Zegeye
(i) There existg > 0 such that
(Kuy — Kug, jg(ur —ug)) > Blluy — us]|?, ¥V uy, us € D(K); Title Page
Contents
(i) a,8>d:=q '(1+d,—c 297" andy := min{a — d, 8 — d} whered, «“ o
andc are as in (3.2) and (2.1) ofl[”], respectively.
< 4
Assume that + K F'u = 0 has solutioru* and set’ and7" as in Theorem
3.4. Let L be a Lipschitz constant of and e, A, and z, be defined as in Go Back
TheorenB.4. Then{z,} converges strongly te* = [u*, v*] the unique solution Close
of the equatioril’z = 0 with ||z, — 2*|| < "||z1 — 2*||, whereu* is the Quit

solution of the equation + K Fu =0 andé := (1 — 1ve) € (0,1).
Page 22 of 27

The cases for Hilbert spaces ahglspaces1 < p < oo) are easily deduced
from Theorem3.8. The theorems proved in this paper are analogues of the | T roe o ae v 4 A o2, 2003
theoremsn [17] for the more general re@anach spaces considered here http://jipam.vu.edu.au
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The method of our proofs provides the following explicit algorithms for com-
puting the solution of the inclusioh= « + K F'u in the spaceX.

(a) For Lipschitz operators (Theoreg¥ and Theoren3.5) with initial values
ug, vg € X, define the sequencé¢s,, } and{v, } in X as follows:

- . Iterative Solution of Nonlinear
Uny1 = Up — & (Fu" - U")’ Equations of Hammerstein Type
Un+1 = Up — €(K1Jn + un> . H. Zegeye
Thenu,, — u* in X, the unique solutiom* of 0 = v + K F'u, wheree is :
) ] Title Page
as defined in Theore®.4.
Contents
(b) For uniformly continuous operators (Theoré&n® and Theoren3.7) with
initial valuesugy, vy € X, define the sequencds.,} and{v,} in X as « dd
follows: < 3
Up4+1 = Up — an(Fun - Un); GoBack
Una1 = Vp — (Ko, + uy). Close
. . . . it
Thenu,, — «* in X, the unique solution* of 0 = u 4+ K F'u, whereq,, is Qu
as defined in Theore®.6. Page 23 of 27
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