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ABSTRACT. SupposeX is a real Banach space andF,K : X → X are accretive maps. Under
different continuity assumptions onF andK such that the inclusion0 = u+KFu has a solution,
iterative methods are constructed which converge strongly to such a solution. No invertibility
assumption is imposed onK and the operatorsK andF need not be defined on compact subsets
of X. Our method of proof is of independent interest.
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1. I NTRODUCTION

Let X be a real normed linear space with dualX∗. For 1 < q < ∞, we denote byJq the
generalized duality mapping fromX to 2X∗

defined by

Jq(x) := {f ∗ ∈ X∗ : 〈x, f ∗〉 = ||x||||f ∗||, ||f ∗|| = ||x||q−1},
where〈·, ·〉 denotes the generalized duality pairing. Ifq = 2, Jq = J2 and is denoted byJ . If
X∗ is strictly convex, thenJq is single-valued (see e.g., [25]).

A mapA with domainD(A) ⊆ X is said to beaccretive if for every x, y ∈ D(A) there
existsj(x− y) ∈ J(x− y) such that

〈Ax− Ay, j(x− y)〉 ≥ 0.

A is said to bem−accretiveif it is accretive andR(I + λA) (range of (I + λA)) = X, for all
λ > 0, whereI is the identity mapping.A is said to beφ− strongly accretiveif for everyx, y ∈
D(A) there existj(x − y) ∈ J(x − y) and a strictly increasing functionφ : [0,∞) → [0,∞),
φ(0) = 0 such that

〈Ax− Ay, j(x− y)〉 ≥ φ(||x− y||)||x− y||,
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2 H. ZEGEYE

and it isstrongly accretiveif for eachx, y ∈ D(A), there existj(x − y) ∈ J(x − y) and a
constantk ∈ (0, 1) such that

〈Ax− Ay, j(x− y)〉 ≥ k||x− y||2.
Clearly, every strongly accretive map isφ-strongly accretive and everyφ-strongly accretive map
is accretive. Closely related to the class of accretive mappings is the class of pseudocontractive
mappings. A mappingT : X → X is said to bepseudocontractiveif and only if A := I − T
is accretive. One can easily show that the fixed point of pseudocontractive mappingT is the
zero of accretive mappingA := I − T . If X is a Hilbert space, accretive operators are also
calledmonotone.The accretive mappings were introduced independently in 1967 by Browder
[3] and Kato [20]. Interest in such mappings stems mainly from their firm connection with
equations of evolution. It is known (see e.g., [28]) that many physically significant problems
can be modelled by initial-value problems of the form

(1.1) x′(t) + Ax(t) = 0, x(0) = x0,

whereA is an accretive operator in an appropriate Banach space. Typical examples where such
evolution equations occur can be found in the heat, wave or Schrödinger equations. One of the
fundamental results in the theory of accretive operators, due to Browder [4], states that ifA is
locally Lipschitzian and accretive thenA is m−accretive which immediately implies that the
equationx + Ax = h has a solutionx∗ ∈ D(A) for anyh ∈ X. This result was subsequently
generalized by Martin [22] to the continuous accretive operators. If in (1.1),x(t) is independent
of t, then (1.1) reduces to

(1.2) Au = 0,

whose solutions correspond to the equilibrium points of the system (1.1). Consequently, consid-
erable research efforts have been devoted, especially within the past 20 years or so, to methods
of finding approximate solutions (when they exist) of equation (1.2). One important general-
ization of equation (1.2) is the so-calledequation of Hammerstein type(see e.g., [18]), where a
nonlinear integral equation of Hammerstein type is one of the form:

(1.3) u(x) +

∫
Ω

K(x, y)f(y, u(y))dy = h(x),

wheredy is aσ-finite measure on the measure spaceΩ; the real kernelK is defined onΩ×Ω, f
is a real-valued function defined onΩ×< and is, in general, nonlinear andh is a given function
onΩ. If we now define an operatorK by

Kv(x) :=

∫
Ω

K(x, y)v(y)dy; x ∈ Ω,

and the so-calledsuperpositionor Nemytskiioperator byFu(y) := f(y, u(y)) then, the integral
equation (1.3) can be put in operator theoretic form as follows:

(1.4) u+KFu = 0,

where, without loss of generality, we have takenh ≡ 0. We note that ifK is an arbitrary
accretive map (not necessarily the identity), thenA := I + KF need not be accretive. Inter-
est in equation (1.4) stems mainly from the fact that several problems that arise in differential
equations, for instance, elliptic boundary value problems whose linear parts possess Greens
functions can, as a rule, be transformed into the form (1.4) (see e.g., [23, Chapter IV]). Equa-
tions of Hammerstein type play a crucial role in the theory of optimal control systems (see
e.g., [17]). Several existence and uniqueness theorems have been proved for equations of the
Hammerstein type (see e.g., [2, 5, 6, 8, 15]).
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NONLINEAR EQUATIONS OFHAMMERSTEIN TYPE 3

For the iterative approximation of solutions ofequation (1.2), theaccretivity/ monotonicity
of A is crucial. The Mann iteration scheme (see e.g., [21]) and the Ishikawa iteration scheme
(see e.g., [19]) have successfully been employed (see e.g., [7, 10, 11, 12, 13, 14, 16, 19, 21,
24, 27]). Attempts to apply these schemes to equation (1.4) have not provided satisfactory
results. In particular, the recursion formulas obtained involvedK−1 and this is not convenient
in applications. Part of the difficulty is, as has already been noted, the fact that the composition
of two accretive operators need not be accretive. In the special case in which the operators are
defined on subsetsD of X which are compact (or more generally,angle-bounded(see e.g.,
[1]), Brèzis and Browder [1] have proved the strong convergence of a suitably defined Galerkin
approximation to a solution of (1.4).

It is our purpose in this paper to use the method introduced in [12] which contains an auxiliary
operator, defined in terms ofK andF in an arbitrary real Banach space which, under certain
conditions, is accretive wheneverK andF are, and whose zeros are solutions of equation (1.4).
Moreover, the operatorsK andF need not be defined on a compact or angle-bounded subset
of X. Furthermore, our method which does not involveK−1 provides an explicit algorithm for
the computation of solutions of equation (1.4).

2. PRELIMINARIES

LetX be a real normed linear space of dimension≥ 2. Themodulus of smoothnessof X is
defined by:

ρX(τ) := sup

{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
; τ > 0.

It is well known thatρX(τ) ≤ τ ∀τ > 0 (see e.g., [26]). IfρX(τ) > 0 ∀τ > 0, thenX is
said to besmooth. If there exist a constantc > 0 and a real number1 < q < ∞, such that
ρX(τ) ≤ cτ q, thenX is said to beq-uniformly smooth. A Banach spaceX is calleduniformly
smoothif limτ→0

ρX(τ)
τ

= 0. If E is a real uniformly smooth Banach space, then

(2.1) ||x+ y||2 ≤ ||x||2 + 2 〈y, j(x)〉+Dmax
{
||x||+ ||y||, c

2

}
ρX(||y||),

for everyx, y ∈ X, whereD andc are positive constants (see e.g., [26]). Typical examples
of such uniformly smooth spaces are the LebesgueLp, the sequencèp and the SobolevWm

p

spaces for1 < p <∞. Moreover, we have

(2.2) ρlp(τ) = ρLp(τ) = ρW p
m
(τ) ≤


1
p
τ p, if 1 < 2 < p;

p−1
2
τ 2, if p ≥ 2,

∀τ > 0 (see e.g., [26]).
In the sequel we shall need the following results.

Theorem 2.1. [25]. Let q > 1 andX be a real smooth Banach space. Then the following are
equivalent.

(1) X is uniformly smooth.
(2) There exists a continuous, strictly increasing and convex functiong : R+ → R+, such

that for everyx, y ∈ Br for somer > 0 we get

(2.3) ||x+ y||q ≤ ||x||q + q 〈y, jq(x)〉+ g(||y||).
Lemma 2.2. (see, e.g.,[13]). LetX be a normed linear space andJ be the normalized duality
map onE. Then for any givenx, y ∈ X, the following inequality holds:

||x+ y||2 ≤ ||x||2 + 2 〈y, j(x+ y)〉 , ∀j(x+ y) ∈ J(x+ y).
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4 H. ZEGEYE

Theorem 2.3. [9]. LetX be a real Banach space,A : X → X be a Lipschitz and strongly
accretive map with Lipschitz constantL > 0 and strong accretivity constantλ ∈ (0, 1). Assume
thatAx = 0 has a solutionx∗ ∈ X. DefineAε : X → X byAεx := x − εAx for x ∈ X

whereε := 1
2

{
λ

1+L(3+L−λ)

}
. For arbitrary x0 ∈ X, define the Picard sequence{xn} in X by

xn+1 = Aεxn, n ≥ 0. Then,{xn} converges strongly tox∗ with ||xn+1 − x∗|| ≤ δn||x1 − x∗||
whereδ :=

(
1− 1

2
λε

)
∈ (0, 1). Moreover,x∗ is unique.

Theorem 2.4. [13] Let X be a real normed linear space. LetA : X → X be uniformly
continuousφ− strongly accretive mapping. Assume0 = Ax has a solutionx∗ ∈ X. Then,
there exists a real numberγ0 > 0 such that if the real sequence{αn} ⊂ [0, γ0] satisfies the
following conditions:

(i) limαn = 0;
(ii)

∑
αn = ∞,

then for arbitraryx0 ∈ X the sequence{xn}, defined by

xn+1 := xn − αnAxn, n ≥ 0,

converges strongly tox∗, the unique solution of0 = Ax.

We note that Theorem 2.4 is Theorem 3.6 of [13] withA φ-strongly accretive mapping.

3. M AIN RESULTS

Lemma 3.1. For q > 1, letX be a real uniformly smooth Banach space. LetE := X ×X with
norm

||z||E :=
(
||u||qX + ||v||qX

) 1
q
,

for arbitrary z = [u, v] ∈ E. LetE∗ := X∗ × X∗ denote the dual space ofE. For arbitrary
x = [x1, x2] ∈ E define the mapjE

q : E → E∗ by

jE
q (x) = jE

q [x1, x2] := [jX
q (x1), j

X
q (x2)],

so that for arbitraryz1 = [u1, v1], z2 = [u2, v2] in E the duality pairing〈·, ·〉 is given by〈
z1, j

E
q (z2)

〉
=

〈
u1, j

X
q (u2)

〉
+

〈
v1, j

X
q (v2)

〉
.

Then

(a) E is uniformly smooth;
(b) jE

q is a single-valued duality mapping onE.

Proof. (a) Letx = [x1, x2], y = [y1, y2] be arbitrary elements ofE. It suffices to show that
x andy satisfy condition (2) of Theorem 2.1. We compute as follows:

||x+ y||qE = ||[x1 + y1, x2 + y2]||qE
= ||x1 + y1||qX + ||x2 + y2||qX
≤ ||x1||qX + ||x2||qX + g(||y1||) + g(||y2||)

+ q
{〈

y1, j
X
q (x1)

〉
+

〈
y2, j

X
q (x2)

〉 }
,

whereg is continuous, strictly increasing and a convex function (using (2) of Theorem
2.1, sinceX is uniformly smooth). It follows that

||x+ y||qE ≤ ||x||qE + q
〈
y, jE

q (x)
〉

+ g′(||y||),
whereg′(||y||) := g(||y1||) + g(||y2||). So, the result follows from Theorem 2.1.
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(b) For arbitraryx = [x1, x2] ∈ E, let jE
q (x) = jE

q [x1, x2] = ψq. Thenψq = [jX
q (x1), j

X
q (x2)]

in E∗. Observe that forp > 1 such that1
p

+ 1
q

= 1,

||ψq||E∗ =
(
||[jX

q (x1), j
X
q (x2)]||

) 1
p

=
(
||jq(x1)||pX∗ + ||jq(x2)||pX∗

) 1
p

=
(
||x1||(q−1)p

X + ||x2||(q−1)p
X

) 1
p

=
(
||x1||qX + ||x2||qX

) q−1
q

= ||x||q−1
X .

Hence,||ψq||E∗ = ||x||q−1
E . Furthermore,

〈x, ψq〉 =
〈
[x1, x2], [j

X
q (x1), j

X
q (x2)]

〉
=

〈
x1, j

X
q (x1)

〉
+

〈
x2, j

X
q (x2)

〉
= ||x1||qX + ||x2||qX

= (||x1||qX + ||x2||qX)
1
q

(
||x1||qX + ||x2||qX

) q−1
q

= ||x||E · ||ψ||q−1
E∗ .

Hence,jE
q is a single-valued (sinceE is uniformly smooth) duality mapping onE.

�

Lemma 3.2. SupposeX is a real normed linear space. LetF,K : X → X be maps such that
the following conditions hold:

(i) For eachu1, u2 ∈ X there existj(u1 − u2) ∈ J(u1 − u2) and a strictly increasing
functionφ1 : [0,∞) → [0,∞), φ1(0) = 0 such that

〈Fu1 − Fu2, j(u1 − u2)〉 ≥ φ1(||u1 − u2||)||u1 − u2||;

(ii) For eachu1, u2 ∈ X there existj(u1 − u2) ∈ J(u1 − u2) and a strictly increasing
functionφ2 : [0,∞) → [0,∞), φ2(0) = 0 such that

〈Ku1 −Ku2, j(u1 − u2)〉 ≥ φ2(||u1 − u2||)||u1 − u2||;

(iii) φi(t) ≥ (2 + ri)t for all t ∈ (0,∞) and for someri > 0, i = 1, 2.

LetE := X × X with norm||z||2E = ||u||2X + ||v||2X for z = (u, v) ∈ E and define a map
T : E → E by Tz := T (u, v) = (Fu − v, u + Kv). Then for eachz1, z2 ∈ E there exist
jE(z1−z2) ∈ JE(z1−z2) and a strictly increasing functionφ : [0,∞) → [0,∞) withφ(0) = 0
such that 〈

Tz1 − Tz2, j
E(z1 − z2)

〉
≥ φ(||z1 − z2||)||z1 − z2||.

Proof. Defineφ : [0,∞) → [0,∞) by φ(t) := min{r1, r2}t for eacht ∈ [0,∞). Clearly,φ is
a strictly increasing function withφ(0) = 0. Furthermore, observe that forz1 = (u1, v1) and
z2 = (u2, v2) arbitrary elements inE we have

〈
z1, j

E(z2)
〉

= 〈u1, j(u2)〉 + 〈v1, j(v2)〉 . Thus
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6 H. ZEGEYE

we have the following estimates:〈
Tz1 − Tz2, j

E(z1 − z2)
〉

= 〈Fu1 − Fu2 − (v1 − v2), j(u1 − u2)〉
+ 〈Kv1 −Kv2 + (u1 − u2), j(v1 − v2)〉

= 〈Fu1 − Fu2, j(u1 − u2)〉 − 〈v1 − v2, j(u1 − u2)〉
+ 〈Kv1 −Kv2, j(v1 − v2)〉+ 〈u1 − u2, j(v1 − v2)〉

≥ φ1(||u1 − u2||)||u1 − u2||+ φ2(||v1 − v2||)||v1 − v2||
− 〈v1 − v2, j(u1 − u2)〉+ 〈u1 − u2, j(v1 − v2)〉 .(3.1)

SinceX is an arbitrary real normed linear space, for eachx, y ∈ X andj(x + y) ∈ J(x + y)
(by Lemma 2.2) we have that

||x+ y||2 ≤ ||x||2 + 2 〈y, j(x+ y)− j(x)〉+ 2 〈y, j(x)〉
≤ ||x||2 + 2||y||||j(x+ y)− j(x)||+ 2 〈y, j(x)〉

≤ ||x||2 + 2||y||
(
||x+ y||+ ||x||

)
+ 2 〈y, j(x)〉

≤ ||x||2 + 2

(
||y||2

2
+
||x+ y||2

2
+
||y||2

2
+
||x||2

2

)
+ 2 〈y, j(x)〉

= 2||x||2 + 2||y||2 + ||x+ y||2 + 2 〈y, j(x)〉 .

Thus we get〈y, j(x)〉 ≥ −||x||2 − ||y||2.
Replacingy by−y we obtain−〈y, j(x)〉 ≥ −||x||2 − ||y||2. Therefore,

−〈v1 − v2, j(u1 − u2)〉 ≥ −||u1 − u2||2 − ||v1 − v2||2 and

〈u1 − u2, j(v1 − v2)〉 ≥ −||v1 − v2||2 − ||u1 − u2||2.

Thus (3.1) and the above estimates give that〈
Tz1 − Tz2, j

E(z1 − z2)
〉
≥ φ1(||u1 − u2||)||u1 − u2||+ φ2(||v1 − v2||)||v1 − v2||

− 2||u1 − u2||2 − 2||v1 − v2||2

≥
(
φ1(||u1 − u2||)− 2||u1 − u2||

)
||u1 − u2||

+
(
φ2(||v1 − v2||)− 2||v1 − v2||

)
||v1 − v2||

≥ r1||u1 − u2||2 + r2||v1 − v2||2

≥ min{r1, r2}
{
||u1 − u2||2 + ||v1 − v2||2

}
= min{r1, r2}||z1 − z2||2

= φ(||z1 − z2||)||z1 − z2||,

completing the proof of Lemma 3.2. �

Lemma 3.3. SupposeX is a real uniformly smooth Banach space. LetF,K : X → X be maps
such that the following conditions hold:

(i) For eachu1, u2 ∈ X there exists a strictly increasing functionφ1 : [0,∞) → [0,∞), φ1(0) =
0 such that

〈Fu1 − Fu2, j(u1 − u2)〉 ≥ φ1(||u1 − u2||)||u1 − u2||;
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(ii) For eachu1, u2 ∈ X there exists a strictly increasing functionφ2 : [0,∞) → [0,∞), φ2(0) =
0 such that

〈Ku1 −Ku2, j(u1 − u2)〉 ≥ φ2(||u1 − u2||)||u1 − u2||;

(iii) φi(t) ≥ (D + ri)t+
acD
4
tq−1, ρX(t) ≤ atq for all t ∈ (0,∞) and for someq > 1, a > 0

andri > 0, i = 1, 2, wherec andD are the constants appearing in inequality (2.1).

LetE andT be defined as in Lemma 3.2. Then for eachz1, z2 ∈ E there exists a strictly
increasing functionφ : [0,∞) → [0,∞) with φ(0) = 0 such that

〈
Tz1 − Tz2, j

E(z1 − z2)
〉
≥ φ(||z1 − z2||)||z1 − z2||.

Proof. Defineφ : [0,∞) → [0,∞) by φ(t) := min{r1, r2}t for eacht ∈ [0,∞). Thus as in
the proof of Lemma 3.2 we have thatφ is a strictly increasing function withφ(0) = 0 and for
z1 = (u1, v1) andz2 = (u2, v2) arbitrary elements inE we have the following estimate:

(3.2)
〈
Tz1 − Tz2, j

E(z1 − z2)
〉

= φ1(||u1 − u2||)||u1 − u2||+ φ2(||v1 − v2||)||v1 − v2||
− 〈v1 − v2, j(u1 − u2)〉+ 〈u1 − u2, j(v1 − v2)〉 .

SinceX is uniformly smooth for eachx, y ∈ X by (2.1) we have that

||x+ y||2 ≤ ||x||2 + 2 〈y, j(x)〉+Dmax{||x||+ ||y||, c
2
}ρX(||y||)

≤ ||x||2 + 2 〈y, j(x)〉+D{||x||+ ||y||+ c

2
}ρX(||y||)

≤ ||x||2 + 2 〈y, j(x)〉+D
(
||x||||y||+ ||y||2 +

c

2
ρX(||y||)

)
(sinceρX(||y||) ≤ ||y||)

≤ ||x||2 + 2 〈y, j(x)〉+D

(
||x|2

2
+
||y||2

2
+ ||y||2 +

ac

2
||y||q

)
(sinceρX(||y||) ≤ a||y||q by assumption forq > 1 anda > 0)

≤
(

1 +
D

2

)
||x||2 +

3D

2
||y||2 +

acD

2
||y||q + 2 〈y, j(x)〉 ,

and hence

〈y, j(x)〉 ≥ 1

2
||x+ y||2 − 1

2

((
1 +

D

2

)
||x||2 +

3D

2
||y||2 +

acD

2
||y||q

)
.

Replacingy by−y we obtain

−〈y, j(x)〉 ≥ 1

2
||x− y||2 − 1

2

((
1 +

D

2

)
||x||2 +

3D

2
||y||2 +

acD

2
||y||q

)
.
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8 H. ZEGEYE

Thus (3.2) and the above estimates give that〈
Tz1 − Tz2, j

E(z1 − z2)
〉

≥ φ1(||u1 − u2||)||u1 − u2||+ φ2(||v1 − v2||)||v1 − v2||

+
1

2

(
||u1 − u2 − (v1 − v2)||2 −

(
1 +

D

2

)
||u1 − u2||2

− 3D

2
||v1 − v2||2 −

acD

2
||v1 − v2||q

)
+

1

2

(
||u1 − u2 + v1 − v2||2 −

(
1 +

D

2

)
||v1 − v2||2

− 3D

2
||u1 − u2||2 −

acD

2
||u1 − u2||q

)
≥ φ1(||u1 − u2||)||u1 − u2||+ φ2(||v1 − v2||)||v1 − v2||

+
1

2

(
||u1 − u2 − (v1 − v2)||2 + ||u1 − u2 + v1 − v2||2

)
− 1

2

(
(1 + 2D)||u1 − u2||2 +

acD

2
||u1 − u2||q

)
− 1

2

(
(1 + 2D)||v1 − v2||2 +

acD

2
||v1 − v2||q

)
.(3.3)

Since for allx, y ∈ X, x 6= y, ∥∥∥∥x+ y

2

∥∥∥∥2

≤ 1

2
(||x||2 + ||y||2)

we have that

||(u1 − u2)− (v1 − v2)||2 + ||(u1 − u2) + (v1 − v2)||2 ≥ ||u1 − u2||2 + ||v1 − v2||2.

Then (3.3) becomes〈
Tz1 − Tz2, j

E(z1 − z2)
〉
≥ φ1(||u1 − u2||)||u1 − u2|| −

(
D||u1 − u2||2

+
acD

4
||u1 − u2||q

)
+ φ2(||v1 − v2||)||v1 − v2||

−
(
D||v1 − v2||2 +

acD

4
||v1 − v2||q

)
≥ r1||u1 − u2||2 + r2||v1 − v2||2

≥ min{r1, r2}
{
||u1 − u2|2 + ||v1 − v2||2

}
= min{r1, r2}||z1 − z2||2

= φ(||z1 − z2||)||z1 − z2||,
completing the proof of Lemma 3.3. �

3.1. Convergence Theorems for Lipschitz Maps.

Remark 3.4. If K andF are Lipschitz single-valued maps with Lipschitz constantsLK andLF

respectively, thenT is a Lipschitz map with constantL :=
(
d max{L2

F + 1, L2
K + 1}

) 1
2

for
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some constantd > 0. Indeed, ifz1 = (u1, v1), z2 = (u2, v2) in E then we have that

||Tz1 − Tz2||2 = ||(Fu1 − Fu2)− (v1 − v2)||2 + ||u1 − u2 +Kv1 −Kv2||2

≤
(
LF ||u1 − u2||+ ||v1 − v2||

)2

+
(
||u1 − u2||+ LK ||v1 − v2||

)2

≤ d
(
L2

F ||u1 − u2||2 + ||v1 − v2||2 + ||u1 − u2||2 + L2
K ||v1 − v2||2

)
for somed > 0

≤ dmax{L2
F + 1, L2

K + 1}
(
||u1 − u2||2 + ||v1 − v2||2

)
= dmax{L2

F + 1, L2
K + 1}||z1 − z2||2.

Thus||Tz1 − Tz2|| ≤ L||z1 − z2||. Consequently, we have the following theorem.

Theorem 3.5. LetX be real Banach space. LetF,K : X → X be Lipschitzian maps with
Lipschitz constantsLK andLF , respectively such that the following conditions hold:

(i) For eachu1, u2 ∈ X there existj(u1 − u2) ∈ J(u1 − u2) and a strictly increasing
functionφ1 : [0,∞) → [0,∞), φ1(0) = 0 such that

〈Fu1 − Fu2, j(u1 − u2)〉 ≥ φ1(||u1 − u2||)||u1 − u2||;

(ii) For eachu1, u2 ∈ X there existj(u1 − u2) ∈ J(u1 − u2) and a strictly increasing
functionφ2 : [0,∞) → [0,∞), φ2(0) = 0 such that

〈Ku1 −Ku2, j(u1 − u2)〉 ≥ φ2(||u1 − u2||)||u1 − u2||;

(iii) φi(t) ≥ (2 + ri)t for all t ∈ (0,∞) and for someri > 0, i = 1, 2 and let γ :=
min{r1, r2}.

Assume thatu+KFu = 0 has a solutionu∗ inX and letE := X×X and||z||2E = ||u||2X +
||v||2X for z = (u, v) ∈ E and define the mapT : E → E byTz := T (u, v) = (Fu−v,Kv+u).
LetL denote the Lipschitz constant ofT andε := 1

2

(
γ

1+L(3+L−γ)

)
. Define the mapAε : E → E

byAεz := z − εTz for eachz ∈ E. For arbitrary z0 ∈ E, define the Picard sequence{zn} in
E by zn+1 := Aεzn, n ≥ 0. Then{zn} converges strongly toz∗ = [u∗, v∗] the unique solution
of the equationTz = 0 with ||zn+1 − z∗|| ≤ δn||z1 − z∗||, whereδ :=

(
1− 1

2
γε

)
∈ (0, 1).

Proof. Observe thatu∗ is a solution ofu+KFu = 0 if and only if z∗ = [u∗, v∗] is a solution of
Tz = 0. HenceTz = 0 has a solutionz∗ = [u∗, v∗] in E. SinceT is Lipschitz and by Lemma
3.2 it is strongly accretive with constantγ (which, without loss of generality, we may assume is
in (0, 1)), the conclusion follows from Theorem 2.3. �

Following the method of the proof of Theorem 3.5 and making use of Lemma 3.3 instead of
Lemma 3.2 we obtain the following theorem.

Theorem 3.6. Let X be a real uniformly smooth Banach space. LetF,K : X → X be
Lipschitzian maps with Lipschitz constantsLK andLF , respectively such that conditions (i)-
(iii) of Lemma 3.3 are satisfied and letγ := min{r1, r2}. Assume thatu + KFu = 0 has the
solutionu∗ and setE andT as in Theorem 3.5. LetL, ε, Aε, and{zn} be defined as in Theorem
3.5. Then the conclusion of Theorem 3.5 holds.

3.2. Convergence Theorems for Uniformly Continuousφ-Strongly Accretive Maps.

Theorem 3.7.LetX be a real normed linear space. LetF,K : X → X be uniformly continu-
ous maps such that the following conditions hold:
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(i) For eachu1, u2 ∈ X there existj(u1 − u2) ∈ J(u1 − u2) and a strictly increasing
functionφ1 : [0,∞) → [0,∞), φ1(0) = 0 such that

〈Fu1 − Fu2, j(u1 − u2)〉 ≥ φ1(||u1 − u2||)||u1 − u2||;
(ii) For eachu1, u2 ∈ X there existj(u1 − u2) ∈ J(u1 − u2) and a strictly increasing

functionφ2 : [0,∞) → [0,∞), φ2(0) = 0 such that

〈Ku1 −Ku2, j(u1 − u2)〉 ≥ φ2(||u1 − u2||)||u1 − u2||;
(iii) φi(t) ≥ (2 + ri)t for all t ∈ (0,∞) and for someri > 0, i = 1, 2.

Assume that0 = u +KFu has a solutionu∗ in X. LetE := X ×X and ||z||2E = ||u||2X +
||v||2X for z = (u, v) ∈ E and define the mapT : E → E byTz := T (u, v) = (Fu−v, u+Kv).
Then there exists a real numberγ0 > 0 such that if the real sequence{αn} ⊂ [0, γ0] satisfies
the following conditions

(a) limn→∞ αn = 0;
(b)

∑
αn = ∞,

then for arbitraryz0 ∈ E the sequence{zn}, defined by

zn+1 := zn − αnTzn, n ≥ 0,

converges strongly toz∗ = [u∗, v∗], whereu∗ is the unique solution of0 = u+KFu.

Proof. SinceK andF are uniformly continuous maps we have thatT is a uniformly continuous
map. Observe also thatu∗ is the solution of0 = u +KFu in X if and only if z∗ = [u∗, v∗] is
a solution of0 = Tz in E. Thus we obtain thatN(T ) ( null space of T) 6= ∅. Also by Lemma
3.2,T is φ−strongly accretive. Therefore the conclusion follows from Theorem 2.4. �

Following the method of proof of Theorem 3.7 and making use of Lemma 3.3 instead of
Lemma 3.2 we obtain the following theorem.

Theorem 3.8. Let X be a real uniformly smooth Banach space. LetF,K : X → X be
uniformly continuous maps such that conditions (i)-(iii) of Theorem 3.6 are satisfied. Assume
that 0 = u + KFu has a solutionu∗ in X. LetE, T and{zn} be defined as in Theorem 3.7.
Then, the conclusion of Theorem 3.7 holds.

Remark 3.9. We note that for the special case in which the real Banach spaceX is q−uniformly
smooth using the above method, the author and Chidume [12] proved the following theorem.

Theorem 3.10. [12]. LetX be a realq-uniformly smooth Banach space. LetF,K : X →
X be Lipschitzian maps with positive constantsLK and LF respectively with the following
conditions:

(i) There existsα > 0 such that

〈Fu1 − Fu2, jq(u1 − u2)〉 ≥ α||u1 − u2||q, ∀ u1, u2 ∈ D(F );

(ii) There existsβ > 0 such that

〈Ku1 −Ku2, jq(u1 − u2)〉 ≥ β||u1 − u2||q, ∀ u1, u2 ∈ D(K);

(iii) α, β > d := q−1(1 + dq − c−12q−1) andγ := min{α− d, β − d} wheredq andc are as
in (3.2) and (2.1) of[12], respectively.

Assume thatu + KFu = 0 has solutionu∗ and setE andT as in Theorem 3.5. LetL be a
Lipschitz constant ofT andε, Aε andzn be defined as in Theorem 3.5. Then{zn} converges
strongly toz∗ = [u∗, v∗] the unique solution of the equationTz = 0 with ||zn+1 − z∗|| ≤
δn||z1−z∗||, whereu∗ is the solution of the equationu+KFu = 0 andδ :=

(
1− 1

2
γε

)
∈ (0, 1).
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The cases for Hilbert spaces andLp spaces(1 < p < ∞) are easily deduced from Theorem
3.10. The theorems proved in this paper are analogues of the theoremsin [12] for the more
general realBanach spaces considered here.

3.3. Explicit Algorithms.
The method of our proofs provides the following explicit algorithms for computing the solu-

tion of the inclusion0 = u+KFu in the spaceX.

(a) For Lipschitz operators (Theorem 3.5 and Theorem 3.6) with initial valuesu0, v0 ∈ X,
define the sequences{un} and{vn} in X as follows:

un+1 = un − ε
(
Fun − vn

)
;

vn+1 = vn − ε
(
Kvn + un

)
.

Thenun → u∗ in X, the unique solutionu∗ of 0 = u +KFu, whereε is as defined in
Theorem 3.5.

(b) For uniformly continuous operators (Theorem 3.7 and Theorem 3.8) with initial values
u0, v0 ∈ X, define the sequences{un} and{vn} in X as follows:

un+1 = un − αn(Fun − vn);

vn+1 = vn − αn(Kvn + un).

Thenun → u∗ in X, the unique solutionu∗ of 0 = u+KFu, whereαn is as defined in
Theorem 3.7.
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