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ABSTRACT. SupposeX is a real Banach space aftliK : X — X are accretive maps. Under
different continuity assumptions dnandK such that the inclusiot = v+ K F'u has a solution,
iterative methods are constructed which converge strongly to such a solution. No invertibility
assumption is imposed dii and the operator&” andF' need not be defined on compact subsets
of X. Our method of proof is of independent interest.
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1. INTRODUCTION

Let X be a real normed linear space with dual. Forl < ¢ < oo, we denote by/, the
generalized duality mapping froid to 2*" defined by

Jo(@) = {f € X7 (a, f*) = [llllF [l 1£71] = Nl 3,

where(-, -) denotes the generalized duality pairingg l&= 2, J, = J, and is denoted by. If
X is strictly convex, thery, is single-valued (see e.d., [25]).

A map A with domainD(A) C X is said to beaccretive if for every z,y € D(A) there
existsj(z —y) € J(z — y) such that

(Az — Ay, j(z —y)) > 0.

A is said to ben—accretiveif it is accretive andR (I + \A) (range of (I + AA)) = X, for all
A > 0, wherel is the identity mappingA is said to be)— strongly accretivef for everyz, y €
D(A) there existj(x — y) € J(xz — y) and a strictly increasing functiopr : [0, 00) — [0, 00),
¢(0) = 0 such that
(Az — Ay, j(z —y)) = o(||lz — y[DIlz — vl
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2 H. ZEGEYE

and it isstrongly accretivef for eachz,y € D(A), there existi(x — y) € J(z — y) and a
constant: € (0, 1) such that

(Az — Ay, j(z —y)) > k||lz — yl|~

Clearly, every strongly accretive mapyjisstrongly accretive and everystrongly accretive map

is accretive. Closely related to the class of accretive mappings is the class of pseudocontractive
mappings. A mapping’ : X — X is said to bgyseudocontractivéd and only if A .= 1 — T

is accretive. One can easily show that the fixed point of pseudocontractive mapjsnipe

zero of accretive mapping := [ — T'. If X is a Hilbert space, accretive operators are also
calledmonotone.The accretive mappings were introduced independently in 1967 by Browder
[3] and Kato [20]. Interest in such mappings stems mainly from their firm connection with
equations of evolution. It is known (see e.q.,/[28]) that many physically significant problems
can be modelled by initial-value problems of the form

(1.1) 2'(t) + Az(t) = 0, 2(0) = o,

whereA is an accretive operator in an appropriate Banach space. Typical examples where such
evolution equations occur can be found in the heat, wave or Schrédinger equations. One of the
fundamental results in the theory of accretive operators, due to Browider [4], statesAhat if
locally Lipschitzian and accretive thef is m—accretive which immediately implies that the
equationr + Az = h has a solution* € D(A) for anyh € X. This result was subsequently
generalized by Martin [22] to the continuous accretive operators. ((2)js independent

of ¢, then [1.1) reduces to

(1.2) Au =0,

whose solutions correspond to the equilibrium points of the systein (1.1). Consequently, consid-
erable research efforts have been devoted, especially within the past 20 years or so, to methods
of finding approximate solutions (when they exist) of equatjon| (1.2). One important general-
ization of equation(1]2) is the so-calleduation of Hammerstein tygsee e.g.,[18]), where a
nonlinear integral equation of Hammerstein type is one of the form:

(1.3) ulz) + / K (2, 9) £ (g, u(y))dy = h(z),

wheredy is ac-finite measure on the measure sp8céhe real kernek is defined o2 x Q) f
is a real-valued function defined éhx & and is, in general, nonlinear ahds a given function
on . If we now define an operatdt by

Ku(z) = /QK(x,y)v(y)dy; x €,

and the so-calleduperpositioror Nemytskioperator byF'u(y) := f(y,u(y)) then, the integral
equation[(1.3) can be put in operator theoretic form as follows:

(1.4) u+ KFu=0,

where, without loss of generality, we have taken= 0. We note that if K is an arbitrary
accretive map (not necessarily the identity), then= I + K F' need not be accretive. Inter-

est in equation (I]4) stems mainly from the fact that several problems that arise in differential
equations, for instance, elliptic boundary value problems whose linear parts possess Greens
functions can, as a rule, be transformed into the fgrm (1.4) (seele.g., [23, Chapter 1V]). Equa-
tions of Hammerstein type play a crucial role in the theory of optimal control systems (see
e.g., [17]). Several existence and uniqueness theorems have been proved for equations of the
Hammerstein type (see e.qd.} [2] 5/ 6, 8, 15]).
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For the iterative approximation of solutions @fuation [(1.R) the accretivity/ monotonicity
of A is crucial. The Mann iteration scheme (see elg., [21]) and the Ishikawa iteration scheme
(see e.g.,[[19]) have successfully been employed (seel€.q.,![7,110,/11) 12} 13,(14,[16, 19, 21,
24,127]). Attempts to apply these schemes to equafior} (1.4) have not provided satisfactory
results. In particular, the recursion formulas obtained involiked and this is not convenient
in applications. Part of the difficulty is, as has already been noted, the fact that the composition
of two accretive operators need not be accretive. In the special case in which the operators are
defined on subset® of X which are compact (or more generalgngle-boundedsee e.g.,

[1]), Brézis and Browder |1] have proved the strong convergence of a suitably defined Galerkin
approximation to a solution of (1.4).

Itis our purpose in this paper to use the method introduced In [12] which contains an auxiliary
operator, defined in terms df and £ in an arbitrary real Banach space which, under certain
conditions, is accretive whenev&rand £ are, and whose zeros are solutions of equafion (1.4).
Moreover, the operatorE” and F' need not be defined on a compact or angle-bounded subset
of X. Furthermore, our method which does not involve! provides an explicit algorithm for
the computation of solutions of equatign (1.4).

2. PRELIMINARIES

Let X be areal normed linear space of dimensiorR. Themodulus of smoothness$ X is
defined by:

T+yY|+lr—y
ptr) = sup I oy =y = >0
It is well known thatpx(7) < 7 V7 > 0 (see e.g.,[[26]). lfpx(7) > 0 V7 > 0, thenX is
said to besmooth If there exist a constant > 0 and a real number < ¢ < oo, such that
px (1) < erd, thenX is said to beg-uniformly smoothA Banach spac« is calleduniformly

smoothif lim, ., 27 = 0. If Eis a real uniformly smooth Banach space, then

T

. C
@1 eyl < N2l + 2y, 5(@) + Dmax { [l + Iyl 5 } ox(llyl]),

for everyx,y € X, whereD andc are positive constants (see e.g.,/[26]). Typical examples
of such uniformly smooth spaces are the Lebesfyjehe sequencé, and the SoboleW "
spaces foll. < p < co. Moreover, we have

%Tp, if 1<2<up;

(2.2) P, (T) = pro(T) = pwy, (T) < _
bt if p>2,
V7 > 0 (see e.qg.,[26]).
In the sequel we shall need the following results.
Theorem 2.1.[25]. Letq > 1 and X be a real smooth Banach space. Then the following are
equivalent.

(1) Xis uniformly smooth.
(2) There exists a continuous, strictly increasing and convex fungtioR™ — R, such
that for everyzr, y € B, for somer > 0 we get

(2.3) [z +yll” < [l2]]” + ¢ (y, Jo(2)) + g(llyl])-

Lemma 2.2. (see, e.¢g.J13]). Let X be a normed linear space antlbe the normalized duality
map onE. Then for any given, y € X, the following inequality holds:

lz+yl)* < ||z]* + 2 {y,j(z +y)), Vi(z+y) € J(x+y).
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Theorem 2.3.[9]. Let X be a real Banach spacel : X — X be a Lipschitz and strongly
accretive map with Lipschitz constaht> 0 and strong accretivity constante (0, 1). Assume

that Az = 0 has a solutiont* € X. DefineA. : X — X byA.x .=z —cAxforz € X
wheree := % {%} For arbitrary xy € X, define the Picard sequenge,,} in X by
Tni1 = Acxy,n > 0. Then{z,} converges strongly to* with ||z, — z*|| < §"||z1 — x*||
whered := (1 — 1)e) € (0,1). Moreoverz* is unique.

Theorem 2.4.[13] Let X be a real normed linear space. Let : X — X be uniformly
continuousp— strongly accretive mapping. Assurie= Ax has a solutiont* € X. Then,
there exists a real number, > 0 such that if the real sequendev,} C [0,o] satisfies the
following conditions:

@) lim o, = 0;
(i) >y = o0,
then for arbitraryz, € X the sequencéz, }, defined by

Tpy1 = Tp — OénAZL'n, n >0,
converges strongly to*, the unique solution dif = Ax.

We note that Theorefn 2.4 is Theorem 3.6 of [13] witlp-strongly accretive mapping.

3. MAIN RESuULTS

Lemma 3.1. For ¢ > 1, let X be a real uniformly smooth Banach space. Fet= X x X with
norm

lzlls = (lullg + [ll%) ",
for arbitrary z = [u,v] € E. Let E* := X* x X* denote the dual space &f. For arbitrary
x = [x1, 7] € F define the map'qE :E — E* by
.]qE(:E) = qu[xlvl‘Q] = [j;((ﬂfl),];((flfz)],
so that for arbitraryz; = [uy, v1], 20 = [ug, 2] in E the duality pairing(-, -) is given by
(21,75 (22)) = (un, 32 (u2)) + (v1, 5 (va)) -
Then

(a) E is uniformly smooth;
(b) jf is a single-valued duality mapping an

Proof. (@) Letz = [zq, 2], v = [11, y2| be arbitrary elements df. It suffices to show that
x andy satisfy condition (2) of Theorefn 2.1. We compute as follows:

|z +yllp = Iz +y1, 22 + 1ol
= |21+l + ez + gellk
< s + M2k + g(llwll) + g(llyll)
(1,35 @) + (. 7 (22)) |,

whereg is continuous, strictly increasing and a convex function (using (2) of Theorem
23, sinceX is uniformly smooth). It follows that

2 +yll < |2l + a{y. 3g (2)) + g (Ilyl]),
whereg'(|ly|]) == g(||1]]) + g(||v=]])- So, the result follows from Theorgm .1.
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(b) Forarbitraryr = [z, 2] € E,letjl (x) = jF[z1, 2o] = . Themp, = [5.X (1), 5.X (22)]
in £ Observe that fop > 1 such that, + 7 = 1,

1

pe= (I @0 3 @)’
= (1wl + a5 )

p
X*
(¢-1) (D)7
— (2l "l ")

— (llall + llltt) ™

= [Jall%

[14)4]

RS

g~ = ||z||% . Furthermore,

(,1q) = ([w1, 2], [ (21), 4o (22)])
= (21,7 (1)) + (@2, j (22))

= [l + [lz2ll

Hence,||,

q—1

(llallg + 2l ) °

S

= ([|lz1][% + l[z2]l%)
-1
= ||2|[e - [l¥]| 5

Henceg is a single-valued (sinc# is uniformly smooth) duality mapping oh.
0

Lemma 3.2. SupposeX is a real normed linear space. Lét K : X — X be maps such that
the following conditions hold:
(i) For eachu;,uy € X there existj(u; — us) € J(u; — ug) and a strictly increasing
function¢, : [0,00) — [0, 00), ¢1(0) = 0 such that
(Fup — Flug, j(u1 — ug)) > ¢1(|[ur — ua|)||ur — usll;

(i) For eachu;,uy; € X there existj(u; — us) € J(u; — ug) and a strictly increasing
functiongs : [0,00) — [0, 00), $2(0) = 0 such that

(Kup — Kug, j(ur — uz)) > ¢o(||ur — ual|)[|ur — uall;

(iii) ¢i(t) > (2+r;)tforall t € (0,00) and for some; > 0,7 =1,2.

Let £ := X x X with norm||z||% = ||ul|% + ||[v]|% for z = (u,v) € E and define a map
T:FE — EbyTz :=T(u,v) = (Fu — v,u + Kv). Then for eaclh, z; € E there exist
3E (21— 29) € J¥ (2, — 29) and a strictly increasing function : [0, 00) — [0, 00) with ¢(0) =
such that

(T21 = T2, 7%(21 = 22)) 2 ¢(||21 — 2a])] |21 — 2|

Proof. Define¢ : [0,00) — [0,00) by ¢(t) := min{r, ro}t for eacht € [0, c0). Clearly, ¢ is
a strictly increasing function witk»(0) = 0. Furthermore, observe that fer = (u,v;) and
z = (up,vs) arbitrary elements it we have(zy, j¥(z2)) = (u1,j(us)) + (v1,j(v2)) . Thus
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we have the following estimates:
(Tz1 — Tz, j"(21 — 22)) = (Fug — Fup — (v1 — v2), ji(ug — ug))
+ <KU1 — KUQ + (Ul — UQ),j(Ul — U2)>
= (Fuy — Fuy, j(u1 — ug)) — (v1 — va, j(u1 — ug))
+ <K711 — Kwy, j(v1 — 02)> + <U1 — Uy, j(v1 — U2)>
> ¢1([Jur — wa|)|Jur — wal| + @2(||vr — va| [)[Jv1 — va]
(3.1) — (1 — v, j (w1 — u2)) + (U1 — ua, j(v1 — v2)) .
Since X is an arbitrary real normed linear space, for each € X andj(z + y) € J(x + y)
(by Lemmd 2.P) we have that
lz+yll* < [l=[]* +2{y, j(z +y) = j(2)) + 2y, j(2))
< | ? + 2yl (x +y) = j(@)]] + 2 (y. j(2))
<l + 20yl (Il + il + 1) +2 ¢y, ()
2 2 2 2
< 12 yll® , He+yll® |yl | [l :
< el 2 (10E ¢ Bl TR BEIEY 4 2y
= 2|[2[1* + 2[[y[[* + [J= + y|[* + 2 (y, j(2)) -

Thus we gety, j(z)) > —|[z|]* — [[yl*.
Replacingy by —y we obtain— (y, j(z)) > —||z||> — ||y||*. Therefore,

— (o1 =2, ji(ur — uz)) > —|Jur — ug||* — ||v1 — vo|* and
(ur — g, j(v1 —va)) > —[lvr — va] |* — ||ur — wal[*.
Thus [3.1) and the above estimates give that
(Tz1 = Tz2, 57 (21 — 22)) 2> (| [ur — wa|])][ur — wal| + (|1 — va|[)[[or — val]
= 2{|ur — ua|[* = 2[|or — va[?

> (1l = wsll) = 2l = wall ) lles = |

+ (¢2(||Ul — val[) = 2[v1 — U2||>||U1 — o]
> ri[[ur — us|[® + ooy — va
> min{ry, roH{ llur = wl|? + oy = vall? |
= min{ry, 72 }||z1 — 2|?
= (|21 — 2|21 — 2],
completing the proof of Lemnja 3.2. O

Lemma 3.3. SupposeX is a real uniformly smooth Banach space. Eet : X — X be maps
such that the following conditions hold:

(i) Foreachu;,uy € X there exists a strictly increasing functign : [0, co) — [0, 00), ¢1(0) =
0 such that

(Fup — Fug, j(ur —ug2)) > é1(||ur — ual|)[Ju1r — ual|;
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(i) Foreachuy,u, € X there exists a strictly increasing functign : [0, c0) — [0, 00), ¢2(0) =
0 such that

(Kuy — Kug, j(u1 —ug)) > ¢o(||ur — ual])|Jur — us||;

(iii) ¢i(t) > (D +ry)t + 2L, py(t) < at?forall t € (0, 00) and for somey > 1,a > 0
andr; > 0,7 = 1,2, wherec and D are the constants appearing in inequality (2.1).

Let £ and 7" be defined as in Lemnja B.2. Then for each:, € E there exists a strictly
increasing function : [0, 00) — [0, 0o) with ¢(0) = 0 such that

(T2 — T, (21— 22)) 2 8(]|22 — )| — 2.
Proof. Define¢ : [0,00) — [0,00) by ¢(¢) := min{ry, o}t for eacht € [0,00). Thus as in

the proof of Lemma 3]2 we have thatis a strictly increasing function with(0) = 0 and for
21 = (ug,v1) andzy = (ug, v9) arbitrary elements i’ we have the following estimate:

(8.2) (T2 — Tz, 5%(21 — 22)) = d1(||ur — ua|[Jur — || + a([Jor — va|])][v1 — val]
— (1 — v, j(ur — u2)) + (ur — ua, j(v1 — v2)) .

SinceX is uniformly smooth for each,y € X by (2.1) we have that

Iz +yl* < ll2ll* + 2y, j(2)) + Dmax{||z]| + [|yl], g}px(HyH)
< lzl* + 2y, j(2)) + D[l=[ + [lyll + g}px(HyH)

< fall? + 2y, j(@)) + D (llallllyll + llyll* + Sox (1))
(sincepx(Jlyl]) < Iyl

, x|? yl|? ac
< el + 2 e + 0 (155 + 5y 4 )
(sincepx (||yl|) < ally||? by assumption fog > 1 anda > 0)

D 3D acD ,
< (145) il + 2201 + S5l + 200

and hence

1 1 D 3D acD
i(z)) > = 2_ (142 24 2 lyl12 4+ =2 |yl )
(o) 2 glle +oll = 5 (143 ) el + 22 00P + 52 ol

Replacingy by —y we obtain

1 1 D 3D acD
— (i@ > e —ylP == [1+ =2 24 2yl 4+ =2yl ) .
(o) 2 glle =l = 5 (143 ) el + 22 00P + 52 ol
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Thus [3.2) and the above estimates give that
(Tz — Tz, % (21 — 22))
> ¢1(lJur — o] )]y — uall + da((|vr — val])[|vr — va]

1 D
# (T == o= o) = (145 ) s =

2
= Pl = el = 222 o~ vl
3 (Hu1 —up v — v (1 " g) o, — va]|?
- Pl =l = 2P s — el
> P1([Jur — wal)[[ur — ual] + @2([|vr — va2[)|Jor — va|

1
+§ (||U1 — U9 — (Ul —’Ug)||2+ ||U1 —U2+U1 —U2||2)

1 acD
~ 5 (42Dl =l + P — )

2
1 acD
(3.3) -5 ((1+2D)Hful—v2H2—|-THful—vqu) .
Since for allz,y € X, x # y,
r+y

!
| < el + i)

2
we have that

[[(ur = uz) — (01 = v2)[|* + [[(ur — u2) + (01 = w2)[|* > [|ur — wal[* + [Jor — val[*.

Then [3.8) becomes

(Tz1 =Tz, 5% (21 — 22)) 2 61(||ur — wal])[Jur — us|| — <D||U1 — us|[?

acD

+22ur = wall) + dallor = el = ]

acD
= (Dl = sl + Pl = i)

> 1 |Jur — ua|[* + ra|for — va|?

> min{ry,ra} {||u1 — ug|? + ||vy — 1)2||2}

= min{r, m}||z1 — 2|?

= ¢(|lz1 — 2|])|[z1 — 2],
completing the proof of Lemnja 3.3. O
3.1. Convergence Theorems for Lipschitz Maps.
Remark 3.4. If K andF are Lipschitz single-valued maps with Lipschitz constz{r}zsanldLF

respectively, thefl” is a Lipschitz map with constart := (d max{L} + 1, L} + 1}> * for
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some constant > 0. Indeed, ifz; = (u1,v1), 20 = (ug, v2) in E then we have that

||T211 — TZQ||2 = ||(FU1 — FUQ) — (Ul — UQ)H2 + ||U1 — U2 +KU1 — K’U2||2
2 2
< (Ll = wal [ + oy = eall)” + (1l = wal| + Licllor = vall)
< d(L3lur = wal® + llon = val 2+ [un = | + Lo — val?)
for somed > 0
< dmax{L} +1, L + 1} (Ilur = sl 2 + [lon = sl 2)
= dmax{L% +1,L3% + 1}||z1 — 2%
Thus||Tz; — Tz|| < L||z1 — 22||. Consequently, we have the following theorem.

Theorem 3.5. Let X be real Banach space. Lét K : X — X be Lipschitzian maps with
Lipschitz constant& x and L, respectively such that the following conditions hold:
(i) For eachuy,us € X there existj(u; — us) € J(u; — uz) and a strictly increasing
functiong, : [0,00) — [0, 00), ¢1(0) = 0 such that

(Fup — Fug, j(ur —ug2)) > é1(||ur — ual|)[Ju1r — uall;

(i) For eachu;,us € X there existj(u; — uy) € J(u; — uy) and a strictly increasing
functiong, : [0,00) — [0,00), ¢2(0) = 0 such that

(Kuy = Kug, j(ur = u2)) = ¢o([[ur = ua|[)[ur — ualf;

(i) ¢;(t) > (2+ ry)t forall t € (0,00) and for somer; > 0,7 = 1,2 and lety :=
min{ry, 7o }.

Assume that + K F'u = 0 has a solution/* in X and letE := X x X and||z||% = ||u||% +

||v]|% for z = (u,v) € Eanddefinethemap : £ — EbyTz :=T(u,v) = (Fu—v, Kv+u).

Let L denote the Lipschitz constantéfands := % <m) Definethemapl. : £ — F

by A.z := z — T’z for eachz € E. For arbitrary z, € F, define the Picard sequenge, } in
Ebyz,.1 == A.z,,n > 0. Then{z,} converges strongly te* = [u*, v*| the unique solution
of the equatior?’z = 0 with ||z, — 2*|| < 6"||z1 — 2*||, wheres := (1 — 1ve) € (0,1).

Proof. Observe that* is a solution ofu + K F'u = 0 if and only if z* = [u*, v*] is a solution of
Tz = 0. HenceT'z = 0 has a solution* = [u*,v*] in E. SinceT is Lipschitz and by Lemma
[3.7 itis strongly accretive with constaniwhich, without loss of generality, we may assume is
in (0, 1)), the conclusion follows from Theoregm 2.3. O

Following the method of the proof of Theorém|3.5 and making use of Lemma 3.3 instead of
Lemmd 3.2 we obtain the following theorem.

Theorem 3.6. Let X be a real uniformly smooth Banach space. It : X — X be
Lipschitzian maps with Lipschitz constarig and Ly, respectively such that conditions (i)-
(iii) of Lemma| 3.8 are satisfied and let:= min{r;,r,}. Assume that + K Fu = 0 has the
solutionu* and set£ andT as in Theorerp 3|5. Lét, =, A., and{z, } be defined as in Theorem
[3.5. Then the conclusion of Theorgm|3.5 holds.

3.2. Convergence Theorems for Uniformly Continuousp-Strongly Accretive Maps.

Theorem 3.7.Let X be a real normed linear space. LEt K : X — X be uniformly continu-
ous maps such that the following conditions hold:
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(i) For eachu;,us € X there existj(u; — us) € J(u; — ug) and a strictly increasing
functiong, : [0,00) — [0, 00), ¢1(0) = 0 such that
(Fui — Fug, j(ur — u2)) 2 ¢1([|luwr — ua|[)[[ur — uall;
(i) For eachu;,us € X there existj(u; — uy) € J(u; — uy) and a strictly increasing
functiong, : [0,00) — [0, 00), ¢2(0) = 0 such that
(Kui — Kug, j(ur — u2)) = ¢a(|[ur — usl[)[|[ur — uall;

(iii) ¢i(t) > (2+r)tforallt € (0,00) and for some; > 0,i =1, 2.

Assume thab = u + K Fu has a solutionu* in X. LetF := X x X and||z||% = ||u||% +
||v]|% for z = (u,v) € Eanddefinethemap : £ — EbyTz :=T(u,v) = (Fu—v,u+Kwv).
Then there exists a real numbey > 0 such that if the real sequendev,, } C [0, .| satisfies
the following conditions

(@) lim,, o v, = 0;
(b) - an = o0,
then for arbitraryz, € E the sequencéz, }, defined by
Zp+1 = Rp — anTZna n Z 0)

converges strongly to* = [u*, v*|, whereu* is the unique solution df = u + K Fu.

Proof. SinceK andF' are uniformly continuous maps we have tfias a uniformly continuous
map. Observe also that is the solution of) = v + K Fu in X if and only if z* = [u*, v*] is
a solution of0 = Tz in E. Thus we obtain tha (7') ( null space of T # (). Also by Lemma
[3.9,T is p—strongly accretive. Therefore the conclusion follows from Thedrein 2.4. O

Following the method of proof of Theorein B.7 and making use of Lefnma 3.3 instead of
Lemmg 3.2 we obtain the following theorem.

Theorem 3.8. Let X be a real uniformly smooth Banach space. [tk : X — X be
uniformly continuous maps such that conditions (i)-(iii) of Theorem 3.6 are satisfied. Assume
that0 = u + K Fu has a solutions* in X. LetE,T and{z,} be defined as in Theorgm B.7.
Then, the conclusion of Theorém|3.7 holds.

Remark 3.9. We note that for the special case in which the real Banach spase—uniformly
smooth using the above method, the author and Chidume [12] proved the following theorem.

Theorem 3.10.[12]. Let X be a realg-uniformly smooth Banach space. LBtK : X —
X be Lipschitzian maps with positive constaiits and Ly respectively with the following
conditions:

(i) There existex > 0 such that
(Fup — Fug, jg(u1 — ug)) > allus — usl|?, Y ug,us € D(F);
(ii) There exists > 0 such that
(Kup — Kug, jo(ur — u2)) > Bllur — uz[|?, Vur,us € D(K);
(i) a,8>d:=q (1 +d,—c 297" andy := min{a — d, 3 — d} whered, andc are as
in (3.2) and (2.1) of12], respectively.
Assume that, + K F'u = 0 has solutionu* and set£’ andT as in Theorerh 3]5. Ldt be a
Lipschitz constant o’ ande, A. and z, be defined as in Theorgm B.5. Thien } converges

strongly toz* = [u*,v*] the unique solution of the equatidiz = 0 with ||z, — 2*|| <
0"||z1—=*||, whereu* is the solution of the equatiant+ K F'u = 0 andé := (1 — 1ve) € (0,1).
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The cases for Hilbert spaces ahglspaces1 < p < oco) are easily deduced from Theorem
[3.10. The theorems proved in this paper are analogues of the theadrefi2] for the more
general reaBanach spaces considered here

3.3

. Explicit Algorithms.

The method of our proofs provides the following explicit algorithms for computing the solu-
tion of the inclusior) = u + K Fu in the spaceX.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(a) For Lipschitz operators (Theor¢m|3.5 and Thedrem 3.6) with initial valyles < X,
define the sequencés,, } and{v,} in X as follows:

Upt1 = Up —€<Fun —Un>;

Upi1 = Un —6(Kvn+un).

Thenu,, — u* in X, the unique solution* of 0 = u + K Fu, wheree is as defined in
Theoreni 3.5.

(b) For uniformly continuous operators (Theorem 3.7 and Theprem 3.8) with initial values
ug, vg € X, define the sequencés,,} and{v, } in X as follows:

Upt1 = Uy — O (Fu, —vy);
Upt1 = Vp — ap(Kvy, + uy).
Thenu,, — «* in X, the unique solution* of 0 = u + K Fu, wherea,, is as defined in
Theoreni 377.
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