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1. I NTRODUCTION

In 1935, G. Grüss [3] proved the following classical integral inequality (see, also [4, p. 296]):∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x)−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣
≤ 1

4
(P − p) (Q− q) ,

provided thatf andg are two integrable functions on[a, b] such that

p ≤ f (x) ≤ P, q ≤ g (x) ≤ Q,

for all x ∈ [a, b], wherep, P, q, Q are constants.
A large number of generalizations, extensions and variants of this inequality have been given

by several authors since its discovery, see [1, 2], [4] – [6] and the references given therein. The
main purpose of this paper is to establish new weighted integral and discrete inequalities of the
Grüss type involving functions of several independent variables. The analysis used in the proofs
is elementary and our results provide new estimates on inequalities of this type.
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2 B.G. PACHPATTE

2. STATEMENT OF RESULTS

In what follows,R andN denote the set of real and natural numbers respectively.

Let Di [a, b] = {xi : ai < xi < bi} for i = 1, . . . , n, ai, bi ∈ R, D =
n∏

i=1

Di [ai, bi] andD̄ be

the closure ofD. For a differentiable functionu (x) : D̄ → R, we denote the first order partial
derivatives by∂u(x)

∂xi
(i = 1, . . . , n) and

∫
D

u (x) dx then-fold integral∫ b1

a1

· · ·
∫ bn

an

u (x1, . . . , xn) dx1 . . . dxn.

If ∥∥∥∥ ∂u

∂xi

∥∥∥∥
∞

= sup
x∈D

∣∣∣∣∂u (x)

∂xi

∣∣∣∣ < ∞,

then we say that the partial derivatives∂u(x)
∂xi

are bounded. LetNi [0, ai] = {0, 1, 2, . . . , ai} , ai ∈

N, (i = 1, . . . , n) andB =
n∏

i=1

Ni [0, ai]. For a functionz (x) : B → R we define the first order

forward difference operators as

∆1z (x) = z (x1 + 1, x2, . . . , xn)− z (x) , . . . , ∆nz (x) = z (x1, . . . , xn−1, xn + 1)− z (x)

and denote then-fold sum overB with respect to the variabley = (y1, . . . , yn) ∈ B by∑
y

z (y) =

a1−1∑
y1=0

· · ·
an−1∑
yn=0

z (y1, . . . , yn) .

Clearly, ∑
y

z (y) =
∑

x

z (x) for x, y ∈ B.

If ‖∆iz‖∞ = sup
x∈B

|∆iz (x)| < ∞, then we say that the partial differences∆iz (x) are bounded.

The notation
xi−1∑
ti=yi

∆iz (y1, . . . , yi−1, ti, xi+1, . . . , xn) , xi, yi ∈ Ni [0, ai] (i = 1, . . . , n) ,

we mean fori = 1 it is
∑x1−1

t1=y1
∆1z (t1, x2, . . . , xn) and so on, and fori = n it is

∑xn−1
tn=yn

∆n

×z (y1, . . . , yn−1, tn). We use the usual convention that the empty sum is taken to be zero. We
use the following notations to simplify the details of presentation.

For continuous functionsp, q defined onD̄ and differentiable onD, w (x) a real-valued non-
negative and integrable function for everyx ∈ D with

∫
D

w (x) dx > 0 andxi, yi ∈ Di [ai, bi],
we set

A [w, p, q] =

∫
D

w (x) p (x) q (x) dx

− 1∫
D

w (x) dx

(∫
D

w (x) p (x) dx

)(∫
D

w (x) q (x) dx

)
,

H [p, xi, yi] =
n∑

i=1

∥∥∥∥ ∂p

∂xi

∥∥∥∥
∞
|xi − yi| .
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For the functionsp, q : B → R whose forward differences∆ip, ∆iq exist,w (x) a real-valued
nonnegative function defined onB and

∑
x

w (x) > 0 andxi, yi ∈ Ni [0, ai], we set

L [w, p, q] =
∑

x

w (x) p (x) q (x)− 1∑
x

w (x)

(∑
x

w (x) p (x)

)(∑
x

w (x) q (x)

)
,

M [p, xi, yi] =
n∑

i=1

‖∆ip‖∞ |xi − yi| .

Our main results on weighted Grüss type integral inequalities involving functions of many in-
dependent variables are embodied in the following theorem.

Theorem 2.1.Letf, g be real-valued continuous functions on̄D and differentiable onD whose
derivatives∂f

∂xi
, ∂g

∂xi
are bounded. Letw (x) be a real-valued, nonnegative and integrable func-

tion for x ∈ D and
∫

D
w (x) dx > 0. Then

(2.1) |A [w, f, g]| ≤ 1

2
∫

D
w (x) dx

∫
D

w (x)

[
|g (x)|

∫
D

H [f, xi, yi] w (y) dy

+ |f (x)|
∫

D

H [g, xi, yi] w (y) dy

]
dx,

(2.2) |A [w, f, g]| ≤ 1(∫
D

w (x) dx
)2 ∫

D

w (x)

(∫
D

H [f, xi, yi] w (y) dy

)
×
(∫

D

H [g, xi, yi] w (y) dy

)
dx.

Remark 2.2. If we taken = 1 andD = I = {a < x < b} in (2.1), then we get

∣∣∣∣∣
∫ b

a

w (t) f (t) g (t) dt− 1∫ b

a
w (t) dt

(∫ b

a

w (t) f (t) dt

)(∫ b

a

w (t) g (t) dt

)∣∣∣∣∣
≤ 1

2
∫ b

a
w (t) dt

∫ b

a

w (t)

[
|g (t)|

∫ b

a

‖f ′‖∞ |t− s|w (s) ds

+ |f (t)|
∫ b

a

‖g′‖∞ |t− s|w (s) ds

]
dt.

Similarly, one can obtain the special version of (2.2). It is easy to see that the upper bound given
on the right side in the above inequality (whenw(t) = 1) is different from those given by Grüss
in [3].

The next theorem deals with the discrete versions of the inequalities in Theorem 2.1.
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Theorem 2.3. Let f, g be real-valued functions defined onB and∆if, ∆ig are bounded. Let
w (x) be a real-valued nonnegative function defined onB and

∑
x

w (x) > 0. Then

(2.3) |L [w, f, g]| ≤ 1

2
∑
x

w (x)

∑
x

w (x)

[
|g (x)|

∑
y

M [f, xi, yi]w (y)

+ |f (x)|
∑

y

M [g, xi, yi]w (y)

]
,

(2.4) |L (w, f, g)|

≤ 1(∑
x

w (x)

)2

∑
x

w (x)

(∑
y

M [f, xi, yi] w (y)

)(∑
y

M [g, xi, yi] w (y)

)
.

Remark 2.4. In a recent paper [6] the author gave multidimensional Grüss type finite difference
inequalities whose proofs were based on a certain finite difference identity. Here we note that
the inequalities established in (2.3) and (2.4) are of more general type and can be considered as
the weighted generalizations of the similar inequalities given in [6].

3. PROOF OF THEOREM 2.1

Let x = (x1, . . . , xn) ∈ D̄, y = (y1, . . . , yn) ∈ D. From then-dimensional version of the
mean value theorem we have (see [7, p. 174])

(3.1) f (x)− f (y) =
n∑

i=1

∂f (c)

∂xi

(xi − yi)

and

(3.2) g (x)− g (y) =
n∑

i=1

∂g (c)

∂xi

(xi − yi) ,

wherec = (y1 + α (x1 − y1) , . . . , yn + α (xn − yn)) (0 < α < 1). Multiplying both sides of
(3.1) and (3.2) byg(x) andf (x) respectively and adding we get

(3.3) 2f (x) g (x)− g (x) f (y)− f (x) g (y)

= g (x)
n∑

i=1

∂f (c)

∂xi

(xi − yi) + f (x)
n∑

i=1

∂g (c)

∂xi

(xi − yi) .

Multiplying both sides of (3.3) byw (y) and integrating the resulting identity with respect toy
overD we have

(3.4) 2

(∫
D

w (y) dy

)
f (x) g (x)− g (x)

∫
D

w (y) f (y) dy − f (x)

∫
D

w (y) g (y) dy

= g (x)

∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy + f (x)

∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy.
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Next, multiplying both sides of (3.4) byw (x) and integrating the resulting identity with respect
to x onD we get

(3.5) 2

(∫
D

w (y) dy

)∫
D

w (x) f (x) g (x) dx

−
(∫

D

w (x) g (x) dx

)(∫
D

w (y) f (y) dy

)
−
(∫

D

w (x) f (x) dx

)(∫
D

w (y) g (y) dy

)
=

∫
D

w (x) g (x)

(∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

)
dx

+

∫
D

w (x) f (x)

(∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy

)
dx.

From (3.5) and using the properties of modulus we have

|A [w, f, g]| ≤ 1

2
∫

D
w (x) dx

[∫
D

w (x) |g (x)|

(∫
D

n∑
i=1

∣∣∣∣∂f (c)

∂xi

∣∣∣∣ |xi − yi|w (y) dy

)
dx

+

∫
D

w (x) |f (x)|

(∫
D

n∑
i=1

∣∣∣∣∂g (c)

∂xi

∣∣∣∣ |xi − yi|w (y) dy

)
dx

]

≤ 1

2
∫

D
w (x) dx

∫
D

w (x)

[
|g (x)|

∫
D

n∑
i=1

∥∥∥∥ ∂f

∂xi

∥∥∥∥
∞
|xi − yi|w (y) dy

+ |f (x)|
∫

D

n∑
i=1

∥∥∥∥ ∂g

∂xi

∥∥∥∥
∞
|xi − yi|w (y) dy

]
dx

=
1

2
∫

D
w (x) dx

∫
D

w (x)

[
|g (x)|

∫
D

H [f, xi, yi] w (y) dy

+ |f (x)|
∫

D

H [g, xi, yi] w (y) dy

]
dx.

This is the required inequality in (2.1).
Multiplying both sides of (3.1) and (3.2) byw (y) and integrating the resulting identities with

respect toy onD we get

(3.6)

(∫
D

w (y) dy

)
f (x)−

∫
D

w (y) f (y) dy =

∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

and

(3.7)

(∫
D

w (y) dy

)
g (x)−

∫
D

w (y) g (y) dy =

∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy.
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Multiplying the left sides and right sides of (3.6) and (3.7) we get

(3.8)

(∫
D

w (y) dy

)2

f (x) g (x)−
(∫

D

w (y) dy

)
f (x)

∫
D

w (y) g (y) dy

−
(∫

D

w (y) dy

)
g (x)

∫
D

w (y) f (y) dy +

(∫
D

w (y) f (y) dy

)(∫
D

w (y) g (y) dy

)
=

(∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

)(∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy

)
.

Multiplying both sides of (3.8) byw (x) and integrating the resulting identity with respect tox
onD, by simple calculations we obtain

(3.9)
∫

D

w (x) f (x) g (x) dx− 1∫
D

w (y) dy

(∫
D

w (x) f (x) dx

)(∫
D

w (x) g (x) dx

)
=

1(∫
D

w (y) dy
)2 ∫

D

w (x)

(∫
D

n∑
i=1

∂f (c)

∂xi

(xi − yi) w (y) dy

)

×

(∫
D

n∑
i=1

∂g (c)

∂xi

(xi − yi) w (y) dy

)
dx.

From (3.9) and following the proof of the inequality (2.1) with suitable modifications we get
the required inequality in (2.2). The proof is complete. �

Remark 3.1. Multiplying the left sides and right sides of (3.1) and (3.2), then multiplying the
resulting identity byw (y), integrating it with respect toy onD, again multiplying the resulting
identity byw (x), integrating it with respect tox overD and following the similar arguments as
in the proofs of (2.1), (2.2) we have

(3.10) |A [w, f, g]| ≤ 1

2
∫

D
w (x) dx

∫
D

w (x)

(∫
D

H [f, xi, yi] H [g, xi, yi] w (y) dy

)
dx.

4. PROOF OF THEOREM 2.3

Forx = (x1, . . . , xn) , y = (y1, . . . , yn) in B, it is easy to observe that the following identities
hold (see [6]):

(4.1) f (x)− f (y) =
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}

and

(4.2) g (x)− g (y) =
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}
.
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Multiplying both sides of (4.1) and (4.2) byg (x) andf (x) respectively, and adding we obtain

(4.3) 2f (x) g (x)− g (x) f (y)− f (x) g (y)

= g (x)
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}

+ f (x)
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

}
.

Multiplying both sides of (4.3) byw (y) and summing both sides of the resulting identity with
respect toy overB, we have

(4.4) 2
∑

y

w (y) f (x) g (x)− g (x)
∑

y

w (y) f (y)− f (x)
∑

y

w (y) g (y)

= g (x)
∑

y

(
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y)

+ f (x)
∑

y

(
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y) .

Now, multiplying both sides of (4.4) byw (x) and summing the resulting identity with respect
to x onB we have

(4.5) 2

(∑
y

w (y)

)∑
x

w (x) f (x) g (x)

−

(∑
x

w (x) g (x)

)(∑
y

w (y) f (y)

)
−

(∑
x

w (x) f (x)

)(∑
y

w (y) g (y)

)

=
∑

x

w (x) g (x)

[∑
y

(
n∑

i=1

{
xi−1∑
ti=yi

∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y)

]

+
∑

x

w (x) f (x)

[∑
y

(
n∑

i=1

{
xi−1∑
ti=yi

∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)

})
w (y)

]
.

From (4.5) and using the properties of modulus we have

|L (w, f, g)| |

≤ 1

2
∑
x

w (x)

[∑
x

w (x) |g (x)|

×
∑

y

(
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆if (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
)

w (y)

+
∑

x

w (x) |f (x)|

×
∑

y

(
n∑

i=1

∣∣∣∣∣
{

xi−1∑
ti=yi

|∆ig (y1, . . . , yi−1, ti, xi+1, . . . , xn)|

}∣∣∣∣∣
)

w (y)

]
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≤ 1

2
∑
x

w (x)

∑
x

w (x)

[
|g (x)|

∑
y

(
n∑

i=1

∣∣∣∣∣
{
‖∆if‖∞

xi−1∑
ti=yi

1

}∣∣∣∣∣
)

w (y)

+ |f (x)|
∑

y

(
n∑

i=1

‖∆ig‖∞ |xi − yi|

)
w (y)

]

=
1

2
∑
x

w (x)

∑
x

w (x)

[∑
x

w (x) |g (x)|
∑

y

(
n∑

i=1

‖∆if‖∞ |xi − yi|

)
w (y)

+ |f (x)|
∑

y

(
n∑

i=1

‖∆ig‖∞ |xi − yi|

)
w (y)

]

=
1

2
∑
x

w (x)

∑
x

w (x)

[
|g (x)|

∑
y

M [f, xi, yi] w(y)

+ |f(x)|
∑

y

M [g, xi, yi] w(y)

]
,

which is the required inequality in (2.3).
The proof of the inequality (2.4) can be completed by following the proof of (2.3) and closely

looking at the proof of (2.2). Here we omit the details. �

Remark 4.1. Multiplying the left sides and right sides of (4.1) and (4.2), then multiplying the
resulting identity byw (y), summing it with respect toy overB, again multiplying the resulting
identity byw (x), summing it with respect tox overB and closely looking at the proof of the
inequality (2.3) we get

(4.6) |L (w, f, g)| ≤ 1

2
∑
x

w (x)

∑
x

w (x)

(∑
y

M [f, xi, yi] M [g, xi, yi] w (y)

)
.

In concluding we note that in [2] Fink has given some Grüss type inequalities for measures
other than the Lebesgue measure, including signed measures which provide different upper
bounds. In addition, in [2] new proofs to some old results are also given. However, the inequal-
ities established here are different and cannot be compared with those of given in [2].
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