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Abstract

In this paper, we prove that the classical Entropy Power Inequality, as derived in
the continuous case, can be extended to the discrete family of binomial random
variables with parameter 1/2.
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1. Introduction
The continuous Entropy Power Inequality

(1.1) e2h(X) + e2h(Y ) ≤ e2h(X+Y )

was first stated by Shannon [1] and later proved by Stam [2] and Blachman [3].
Later, several related inequalities for continuous variables were proved in [4],
[5] and [6]. There have been several attempts to provide discrete versions of
the Entropy Power Inequality: in the case of Bernoulli sources with addition
modulo 2, results have been obtained in a series of papers [7], [8], [9] and [11].

In general, inequality (1.1) does not hold whenX andY are discrete ran-
dom variables and the differential entropy is replaced by the discrete entropy: a
simple counterexample is provided whenX andY are deterministic.

In what follows,Xn ∼ B
(
n, 1

2

)
denotes a binomial random variable with

parametersn and 1
2
, and we prove our main theorem:

Theorem 1.1.The sequenceXn satisfies the following Entropy Power Inequal-
ity

∀m, n ≥ 1, e2H(Xn) + e2H(Xm) ≤ e2H(Xn+Xm).

With this aim in mind, we use a characterization of the superadditivity of a
function, together with an entropic inequality.
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2. Superadditivity
Definition 2.1. A functionn y Yn is superadditive if

∀m, n Ym+n ≥ Ym + Yn.

A sufficient condition for superadditivity is given by the following result.

Proposition 2.1. If Yn

n
is increasing, thenYn is superadditive.

Proof. Takem andn and supposem ≥ n. Then by assumption

Ym+n

m + n
≥ Ym

m

or
Ym+n ≥ Ym +

n

m
Ym.

However, by the hypothesism ≥ n

Ym

m
≥ Yn

n

so that
Ym+n ≥ Ym + Yn.

In order to prove that the function

(2.1) Yn = e2H(Xn)

is superadditive, it suffices then to show that functionn y Yn

n
is increasing.
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3. An Information Theoretic Inequality
Denote asB ∼ Ber (1/2) a Bernoulli random variable so that

(3.1) Xn+1 = Xn + B

and

(3.2) PXn+1 = PXn ∗ PB =
1

2
(PXn + PXn+1) ,

wherePXn = {pn
k} denotes the probability law ofXn with

(3.3) pn
k = 2−n

(
n

k

)
.

A direct application of an equality by Topsøe [12] yields

(3.4) H
(
PXn+1

)
=

1

2
H (PXn+1) +

1

2
H (PXn)

+
1

2
D

(
PXn+1||PXn+1

)
+

1

2
D

(
PXn||PXn+1

)
.

Introduce the Jensen-Shannon divergence

(3.5) JSD (P, Q) =
1

2
D

(
P

∥∥∥∥P + Q

2

)
+

1

2
D

(
Q

∥∥∥∥P + Q

2

)
and remark that

(3.6) H (PXn) = H (PXn+1) ,
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since each distribution is a shifted version of the other. We conclude thus that

(3.7) H
(
PXn+1

)
= H (PXn) + JSD (PXn+1, PXn) ,

showing that the entropy of a binomial law is an increasing function ofn. Now
we need the stronger result thatYn

n
is an increasing sequence, or equivalently

that

(3.8) log
Yn+1

n + 1
≥ log

Yn

n

or

(3.9) JSD (PXn+1, PXn) ≥ 1

2
log

n + 1

n
.

We use the following expansion of the Jensen-Shannon divergence, due to B.Y.
Ryabko and reported in [13].

Lemma 3.1. The Jensen-Shannon divergence can be expanded as follows

JSD (P, Q) =
1

2

∞∑
ν=1

1

2ν (2ν − 1)
∆ν (P, Q)

with

∆ν (P, Q) =
n∑

i=1

|pi − qi|2ν

(pi + qi)
2ν−1 .

This lemma, applied in the particular case whereP = PXn andQ = PXn+1

yields the following result.
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Lemma 3.2. The Jensen-Shannon divergence betweenPXn+1 andPXn can be
expressed as

JSD (PXn+1, PXn) =
∞∑

ν=1

1

ν (2ν − 1)
· 22ν−1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
,

wherem2ν

(
B

(
n + 1, 1

2

))
denotes the order2ν central moment of a binomial

random variableB
(
n + 1, 1

2

)
.

Proof. DenoteP = pi, Q = p+
i andp̄i = (pi+p+

i )/2. For the term∆ν (PXn+1, PXn)
we have

∆ν (PXn+1, PXn) =
n∑

i=1

∣∣p+
i − pi

∣∣2ν(
p+

i + pi

)2ν−1 = 2
n∑

i=1

(
p+

i − pi

p+
i + pi

)2ν

p̄i

and
p+

i − pi

p+
i + pi

=
2−n

(
n

i−1

)
− 2−n

(
n
i

)
2−n

(
n

i−1

)
+ 2−n

(
n
i

) =
2i− n− 1

n + 1

so that

∆ν (PXn+1, PXn) = 2
n∑

i=1

(
2i− n− 1

n + 1

)2ν

p̄i

= 2

(
2

n + 1

)2ν n∑
i=1

(
i− n + 1

2

)2ν

p̄i

=
22ν+1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
.
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Finally, the Jensen-Shannon divergence becomes

JSD (PXn+1, PXn) =
1

4

+∞∑
ν=1

1

ν (2ν − 1)
∆ν (PXn+1, PXn)

=
+∞∑
ν=1

1

ν (2ν − 1)
· 22ν−1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
.
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4. Proof of the Main Theorem
We are now in a position to show that the functionn y Yn

n
is increasing, or

equivalently that inequality (3.9) holds.

Proof. We remark that it suffices to prove the following inequality

(4.1)
3∑

ν=1

1

ν (2ν − 1)
· 22ν−1

(n + 1)2ν m2ν

(
B

(
n + 1,

1

2

))
≥ 1

2
log

(
1 +

1

n

)
since the termsν > 3 in the expansion of the Jensen-Shannon divergence are
all non-negative. Now an explicit computation of the three first even central
moments of a binomial random variable with parametersn + 1 and 1

2
yields

m2 =
n + 1

4
, m4 =

(n + 1) (3n + 1)

16
and m6 =

(n + 1) (15n2 + 1)

64
,

so that inequality (4.1) becomes

1

60

30n4 + 135n3 + 245n2 + 145n + 37

(n + 1)5 ≥ 1

2
log

(
1 +

1

n

)
.

Let us now upper-bound the right hand side as follows

log

(
1 +

1

n

)
≤ 1

n
− 1

2n2
+

1

3n3

so that it suffices to prove that

1

60
· 30n4 + 135n3 + 245n2 + 145n + 37

(n + 1)5 − 1

2

(
1

n
− 1

2n2
+

1

3n3

)
≥ 0.
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Rearranging the terms yields the equivalent inequality

1

60
· 10n5 − 55n4 − 63n3 − 55n2 − 35n− 10

(n + 1)5 n3
≥ 0

which is equivalent to the positivity of polynomial

P (n) = 10n5 − 55n4 − 63n3 − 55n2 − 35n− 10.

Assuming first thatn ≥ 7, we remark that

P (n) ≥ 10n5 − n4

(
55 +

63

6
+

55

62
+

35

63
+

10

64

)
=

(
10n− 5443

81

)
n4

whose positivity is ensured as soon asn ≥ 7.

This result can be extended to the values1 ≤ n ≤ 6 by a direct inspection at
the values of functionn y Yn

n
as given in the following table.

n 1 2 3 4 5 6

e2H(Xn)

n
4 4 4.105 4.173 4.212 4.233

Table 1: Values of the functionn y Yn

n
for 1 ≤ n ≤ 6.
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