
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 4, Issue 5, Article 98, 2003

ASYMPTOTIC BEHAVIOUR OF SOME EQUATIONS IN ORLICZ SPACES

D. MESKINE AND A. ELMAHI

DÉPARTEMENT DEMATHÉMATIQUES ET INFORMATIQUE

FACULTÉ DES SCIENCESDHAR-MAHRAZ

B.P 1796 ATLAS-FÈS,FÈS MAROC.
meskinedriss@hotmail.com

C.P.RDE FÈS, B.P 49, FÈS, MAROC.

Received 26 March, 2003; accepted 05 August, 2003
Communicated by A. Fiorenza

ABSTRACT. In this paper, we prove an existence and uniqueness result for solutions of some
bilateral problems of the form 〈Au, v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K

u ∈ K

whereA is a standard Leray-Lions operator defined onW 1
0 LM (Ω), with M an N-function

which satisfies the∆2-condition, and whereK is a convex subset ofW 1
0 LM (Ω) with ob-

stacles depending on some Carathéodory functiong(x, u). We consider first, the casef ∈
W−1EM (Ω) and secondly wheref ∈ L1(Ω). Our method deals with the study of the limit
of the sequence of solutionsun of some approximate problem with nonlinearity term of the form
|g(x, un)|n−1g(x, un)×M(|∇un|).

Key words and phrases:Strongly nonlinear elliptic equations, Natural growth, Truncations, Variational inequalities, Bilateral
problems.
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1. I NTRODUCTION

Let Ω be an open bounded subset ofRN , N ≥ 2, with the segment property. Consider the
following obstacle problem:

(P)

 〈Au, v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K,

u ∈ K,

whereA(u) = −div(a(x, u,∇u)) is a Leray-Lions operator defined onW 1
0 LM(Ω), with M

being anN -function which satisfies the∆2-condition and whereK is a convex subset of
W 1

0 LM(Ω).
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2 D. MESKINE AND A. ELMAHI

In the variational case (i.e. wheref ∈ W−1EM(Ω)), it is well known that problem (P) has
been already studied by Gossez and Mustonen in [10].

In this paper, we consider a recent approach of penalization in order to prove an existence
theorem for solutions of some bilateral problems of (P) type.

We recall that L. Boccardo and F. Murat, see [6], have approximated the model variational
inequality:  〈−∆pu, v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K

u ∈ K = {v ∈ W 1,p
0 (Ω) : |v(x)| ≤ 1 a.e. inΩ},

with f ∈ W−1,p′(Ω) and−∆pu = −div(|∇u|p−2∇u), by the sequence of problems: −∆pun + |un|n−1un = f in D′(Ω)

un ∈ W 1,p
0 (Ω) ∩ Ln(Ω).

In [7], A. Dall’aglio and L. Orsina generalized this result by taking increasing powers depending
also on some Carathéodory functiong satisfying the sign condition and some hypothesis of
integrability. Following this idea, we have studied in [5] the sequence of problems: −∆pun + |g(x, un)|n−1 g(x, un)|∇un|p = f in D′(Ω)

un ∈ W 1,p
0 (Ω), |g(x, un)|n |∇un|p ∈ L1(Ω)

Here, we introduce the general sequence of equations in the setting of Orlicz-Sobolev spaces Aun + |g(x, un)|n−1 g(x, un)M(|∇un|) = f in D′(Ω)

un ∈ W 1
0 LM(Ω), |g(x, un)|n M(|∇un|) ∈ L1(Ω).

We are interested throughout the paper in studying the limit of the sequenceun. We prove that
this limit satisfies some bilateral problem of the (P) form under some conditions ong. In the
first we takef ∈ W−1EM(Ω) and next inL1(Ω).

2. PRELIMINARIES

2.1. N−Functions. Let M : R+ → R+ be anN -function, i.e.M is continuous, convex, with
M(t) > 0 for t > 0, M(t)

t
→ 0 ast → 0 and M(t)

t
→∞ ast →∞.

Equivalently,M admits the representation:M(t) =
∫ t

0
a(s)ds, wherea : R+ → R+ is

nondecreasing, right continuous, witha(0) = 0, a(t) > 0 for t > 0 anda(t) tends to∞ as
t →∞.

TheN -functionM conjugate toM is defined byM(t) =
∫ t

0
ā(s)ds, wherea : R+ → R+ is

given byā(t) = sup{s : a(s) ≤ t} (see [1]).
TheN -function is said to satisfy the∆2 condition, denoted byM ∈ ∆2, if for somek > 0:

(2.1) M(2t) ≤ kM(t) ∀t ≥ 0;

when (2.1) holds only fort ≥ somet0 > 0 thenM is said to satisfy the∆2 condition near
infinity.

We will extend theseN -functions into even functions on allR.
Let P andQ be twoN -functions.P � Q means thatP grows essentially less rapidly than

Q, i.e. for eachε > 0, P (t)
Q(εt)

→ 0 ast →∞. This is the case if and only iflimt→∞
Q−1(t)
P−1(t)

= 0.
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ASYMPTOTIC BEHAVIOUR OF SOME EQUATIONS IN ORLICZ SPACES 3

2.2. Orlicz spaces.Let Ω be an open subset ofRN . The Orlicz classKM(Ω) (resp. the Orlicz
spaceLM(Ω)) is defined as the set of (equivalence classes of) real valued measurable functions
u onΩ such that:∫

Ω

M(u(x))dx < +∞
(

resp.
∫

Ω

M(
u(x)

λ
)dx < +∞ for someλ > 0

)
.

LM(Ω) is a Banach space under the norm

‖u‖M,Ω = inf

{
λ > 0 :

∫
Ω

M(
u(x)

λ
)dx ≤ 1

}
andKM(Ω) is a convex subset ofLM(Ω).

The closure inLM(Ω) of the set of bounded measurable functions with compact support in
Ω is denoted byEM(Ω).

The equalityEM(Ω) = LM(Ω) holds if only if M satisfies the∆2 condition, for allt or for t
large according to whetherΩ has infinite measure or not.

The dual ofEM(Ω) can be identified withLM(Ω) by means of the pairing
∫

Ω
uvdx, and the

dual norm ofLM(Ω) is equivalent to‖ · ‖M,Ω.
The spaceLM(Ω) is reflexive if and only ifM andM satisfy the∆2 condition, for allt or

for t large, according to whetherΩ has infinite measure or not.

2.3. Orlicz-Sobolev spaces.We now turn to the Orlicz-Sobolev space,W 1LM(Ω) (resp.
W 1EM(Ω)) is the space of all functionsu such thatu and its distributional derivatives up to
order 1 lie inLM(Ω) (resp.EM(Ω)). It is a Banach space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Thus,W 1LM(Ω) andW 1EM(Ω) can be identified with subspaces of product ofN + 1 copies
of LM(Ω). Denoting this product by

∏
LM , we will use the weak topologiesσ (

∏
LM ,

∏
EM)

andσ (
∏

LM ,
∏

LM).
The spaceW 1

0 EM(Ω) is defined as the (norm) closure of the Schwarz spaceD(Ω) in W 1EM(Ω)
and the spaceW 1

0 LM(Ω) as theσ (
∏

LM ,
∏

EM) closure ofD(Ω) in W 1LM(Ω).
We say thatun converges tou for the modular convergence inW 1LM(Ω) if for someλ > 0∫

Ω

M

(
Dαun −Dαu

λ

)
dx → 0 for all |α| ≤ 1.

This implies convergence forσ (
∏

LM ,
∏

LM).
If M satisfies the∆2-condition onR+, then modular convergence coincides with norm con-

vergence.

2.4. The spacesW−1LM̄ (Ω) and W−1EM̄ (Ω). Let W−1LM(Ω) (resp.W−1EM(Ω)) denote
the space of distributions onΩ which can be written as sums of derivatives of order≤ 1 of
functions inLM (resp.EM(Ω)). It is a Banach space under the usual quotient norm.

If the open setΩ has the segment property then the spaceD(Ω) is dense inW 1
0 LM(Ω) for the

modular convergence and thus for the topologyσ (
∏

LM ,
∏

LM) (cf. [8, 9]). Consequently,
the action of a distribution inW−1LM(Ω) on an element ofW 1

0 LM(Ω) is well defined.
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4 D. MESKINE AND A. ELMAHI

2.5. Lemmas related to the Nemytskii operators in Orlicz spaces.We recall some lemmas
introduced in [3] which will be used in this paper.

Lemma 2.1. Let F : R → R be uniformly Lipschitzian, withF (0) = 0. Let M be an
N−function and letu ∈ W 1LM(Ω) (resp. W 1EM(Ω)). ThenF (u) ∈ W 1LM(Ω) (resp.
W 1EM(Ω)). Moreover, if the setD of discontinuity points ofF ′ is finite, then

∂

∂xi

F (u) =

 F ′(u) ∂
∂xi

u a.e. in{x ∈ Ω : u(x) /∈ D},

0 a.e. in{x ∈ Ω : u(x) /∈ D}.

Lemma 2.2. Let F : R → R be uniformly Lipschitzian, withF (0) = 0. We suppose that
the set of discontinuity points ofF ′ is finite. LetM be anN -function, then the mapping
F : W 1LM(Ω) → W 1LM(Ω) is sequentially continuous with respect to the weak* topology
σ (

∏
LM ,

∏
EM).

2.6. Abstract lemma applied to the truncation operators. We now give the following lemma
which concerns operators of the Nemytskii type in Orlicz spaces (see [3]).

Lemma 2.3. LetΩ be an open subset ofRN with finite measure.
LetM, P andQ beN -functions such thatQ � P , and letf : Ω×R → R be a Carathéodory

function such that a.e.x ∈ Ω and alls ∈ R:

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

wherek1, k2 are real constants andc(x) ∈ EQ(Ω).
Then the Nemytskii operatorNf defined byNf (u)(x) = f(x, u(x)) is strongly continuous

from

P
(

EM(Ω),
1

k2

)
=

{
u ∈ LM(Ω) : d(u, EM(Ω)) <

1

k2

}
into EQ(Ω).

3. THE M AIN RESULT

Let Ω be an open bounded subset ofRN , N ≥ 2, with the segment property.
Let M be anN -function satisfying the∆2-condition near infinity.
Let A(u) = −div(a(x,∇u)) be a Leray-Lions operator defined onW 1

0 LM(Ω) into
W−1LM(Ω), wherea : Ω × RN → RN is a Carathéodory function satisfying for a.e.x ∈ Ω
and for allζ, ζ ′ ∈ RN , (ζ 6= ζ ′) :

(3.1) |a(x, ζ)| ≤ h(x) + M
−1

M(k1|ζ|)

(3.2) (a(x, ζ)− a(x, ζ
′
))(ζ − ζ ′) > 0

(3.3) a(x, ζ)ζ ≥ αM

(
|ζ|
λ

)
with α, λ > 0, k1 ≥ 0, h ∈ EM(Ω).

Furthermore, letg : Ω×R → R be a Carathéodory function such that for a.e.x ∈ Ω and for
all s ∈ R:

(3.4) g(x, s)s ≥ 0
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(3.5) |g(x, s)| ≤ b(|s|)

(3.6)



for almostx ∈ Ω\Ω∞
+ there existsε = ε(x) > 0 such that:

g(x, s) > 1, ∀s ∈]q+(x), q+(x) + ε[;

for almost x ∈ Ω\Ω∞
− there existsε = ε(x) > 0 such that:

g(x, s) < −1, ∀s ∈]q−(x)− ε, q−(x)[,

whereb : R+ → R+ is a continuous and nondecreasing function, withb(0) = 0 and where

q+(x) = inf{s > 0 : g(x, s) ≥ 1}
q−(x) = sup{s < 0 : g(x, s) ≤ −1}

Ω∞
+ = {x ∈ Ω : q+(x) = +∞}

Ω∞
− = {x ∈ Ω : q−(x) = −∞}.

We define fors andk in R, k ≥ 0, Tk(s) = max(−k, min(k, s)).

Theorem 3.1. Let f ∈ W−1EM(Ω). Assume that (3.1) – (3.6) hold true and that the function
s → g(x, s) is nondecreasing for a.e.x ∈ Ω. Then, for any real numberµ > 0, the problem

(Pn)


A(un) + |g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
= f in D′(Ω)

un ∈ W 1
0 LM(Ω), |g(x, un)|n M

(
|∇un|

µ

)
∈ L1(Ω)

admits at least one solutionun such that:

(3.7) ∀k > 0 Tk(un) → Tk(u) for modular convergence inW 1
0 LM(Ω)

whereu is the unique solution of the following bilateral problem

(P )

 〈Au, v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K

u ∈ K = {v ∈ W 1
0 LM(Ω) : q− ≤ v ≤ q+ a.e.},

Remark 3.2. If the functions → g(x, s) is strictly nondecreasing for a.e.x ∈ Ω then the
assumption (3.6) holds true.

Proof.Step 1: A priori estimates.
The existence ofun is given by Theorem 3.1 of [3]. Choosingv = un as a test function
in (Pn), and using the sign condition (3.4), we get

〈Aun, un〉 ≤ 〈f, un〉.
By Proposition 5 of [11] one has:

(3.8)
∫

Ω

M

(
|∇un|

λ

)
dx ≤ C, and

∫
Ω

a(x, un,∇un)∇undx ≤ C,

(3.9) (a(x, un,∇un)) is bounded in(LM(Ω))N ,

(3.10)
∫

Ω

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
undx ≤ C.
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6 D. MESKINE AND A. ELMAHI

We then deduce∫
{|un|>k}

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤ C, for all k > 0.

Sinceb is continuous and sinceb(0) = 0 there existsδ > 0 such that

b(|s|) ≤ 1 for all |s| ≤ δ.

On the other hand, by the∆2 condition there exist two positive constantsK andK ′ such
that

M

(
t

µ

)
≤ KM

(
t

λ

)
+ K ′ for all t ≥ 0,

which implies∫
{|un|≤δ}

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤

∫
{|un|≤δ}

(
K ′ + KM

(
|∇un|

λ

))
dx.

Consequently from (3.8)

(3.11)
∫

Ω

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤ C, for all n.

Step 2: Almost everywhere convergence of the gradients.
Since(un) is a bounded sequence inW 1

0 LM(Ω) there exist someu ∈ W 1
0 LM(Ω) such

that (for a subsequence still denoted byun)

(3.12) un ⇀ u weakly inW 1
0 LM(Ω) for σ

(∏
LM ,

∏
EM

)
, strongly inEM(Ω),

and a.e. inΩ.

Furthermore, if we have

Aun = f − |g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
with |g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
being bounded inL1(Ω) then as in [2], one can

show that

(3.13) ∇un → ∇u a.e. inΩ.

Step 3: u ∈ K = {v ∈ W 1
0 LM(Ω) : q− ≤ v ≤ q+ a.e. inΩ}.

Sinces → g(x, s) is nondecreasing, then in view of (3.6), we have:

{s ∈ R : |g(x, s)| ≤ 1 a.e. inΩ} = {s ∈ R : q− ≤ s ≤ q+ a.e. inΩ}.
It suffices to verify that|g(x, u)| ≤ 1 a.e.
We have ∫

Ω

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤ C,

which gives ∫
{|g(x,un)|>k}

|g(x, un)|n M

(
|∇un|

µ

)
|dx ≤ C

and ∫
{|g(x,un)|>k}

M

(
|∇un|

µ

)
dx ≤ C

kn
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wherek > 1. Lettingn → +∞ for k fixed, we deduce by using Fatou’s lemma∫
{|g(x,u)|>k}

M

(
|∇un|

µ

)
dx = 0

and so that,

|g(x, u)| ≤ 1 a.e. inΩ.

Step 4: Strong convergence of the truncations.
Let φ(s) = s exp(γs2), whereγ is chosen such thatγ ≥

(
1
α

)2
.

It is well known thatφ
′
(s)− 2K

α
|φ(s)| ≥ 1

2
,∀s ∈ R, whereK is a constant which will be

used later. The use of the test functionvn = φ(zn) in (Pn) wherezn = Tk(un)− Tk(u)
gives

〈Aun, φ(zn)〉+

∫
Ω

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
φ(zn)dx = 〈f, φ(zn)〉

which implies, by using the fact thatg(x, un)φ(zn) ≥ 0 on{x ∈ Ω : |un| > k},

〈Aun, φ(zn)〉+

∫
{0≤un≤Tk(u)}∩{|un|≤k}

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
φ(zn)dx

+

∫
{Tk(u)≤un≤0}∩{|un|≤k}

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
φ(zn)dx ≤ 〈f, φ(zn)〉.

The second and the third terms of the last inequality will be denoted respectively by
I1
n,k andI2

n,k and εi(n) denote various sequences of real numbers which tend to0 as
n → +∞.
On the one hand we have∣∣I1

n,k

∣∣ ≤ ∫
{0≤un≤Tk(u)}∩{|un|≤k}

|g(x, un)|n M

(
|∇un|

µ

)
|φ(zn)|dx

≤
∫
{0≤un≤u}∩{|un|≤k}

|g(x, un)|n M

(
|∇un|

µ

)
|φ(zn)|dx,

but since|g(x, un)| ≤ 1 on{x ∈ Ω : 0 ≤ un ≤ u}, then we have∣∣I1
n,k

∣∣ ≤ ∫
{|un|≤k}

M

(
|∇un|

µ

)
|φ(zn)|dx.

By using the fact that

M

(
|∇un|

µ

)
≤ K ′ + KM

(
|∇un|

λ

)
we obtain∣∣I1

n,k

∣∣ ≤ ∫
Ω

K ′|φ(zn)|dx +
K

α

∫
Ω

a(x,∇Tk(un))∇Tk(un)|φ(zn)|dx,

which gives

(3.14)
∣∣I1

n,k

∣∣ ≤ ε1(n) +
K

α

∫
Ω

a(x,∇Tk(un))∇Tk(un)|φ(zn)|dx.
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8 D. MESKINE AND A. ELMAHI

Similarly,

∣∣I2
n,k

∣∣ ≤ ∫
{|un|≤k}

M

(
|∇un|

µ

)
|φ(zn)|dx(3.15)

≤ ε1(n) +
K

α

∫
Ω

a(x,∇Tk(un))∇Tk(un)|φ(zn)|dx.

The first term on the left hand side of the last inequality can be written as:

(3.16)
∫

Ω

a(x,∇un)[∇Tk(un)−∇Tk(u)]φ
′
(zn)dx

=

∫
{|un|≤k}

a(x,∇un)[∇Tk(un)−∇Tk(u)]φ
′
(zn)dx

−
∫
{|un|>k}

a(x,∇un)∇Tk(u)φ
′
(zn)dx.

For the second term on the right hand side of the last equality, we have∣∣∣∣∫
{|un|>k}

a(x,∇un)∇Tk(u)φ
′
(zn)dx

∣∣∣∣ ≤ Ck

∫
Ω

|a(x,∇un)||∇Tk(u)|χ{|un|>k}dx.

The right hand side of the last inequality tends to 0 asn tends to infinity. Indeed,
the sequence(a(x,∇un))n is bounded in(LM(Ω))N while∇Tk(u)χ{|un|>k} tends to 0
strongly in(EM(Ω))N .
We define for everys > 0, Ωs = {x ∈ Ω : |∇Tk(u(x))| ≤ s} and we denote byχs its
characteristic function. For the first term of the right hand side of (3.16), we can write

(3.17)
∫
{|un|≤k}

a(x,∇un)[∇Tk(un)−∇Tk(u)]φ
′
(zn)dx

=

∫
Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]φ
′
(zn)dx

+

∫
Ω

a(x,∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]φ
′
(zn)dx

−
∫

Ω

a(x,∇Tk(un))∇Tk(u)χΩ\Ωsφ
′
(zn)dx.

The second term of the right hand side of (3.17) tends to 0 since

a(x,∇Tk(un)χs)φ
′
(zn) → a(x,∇Tk(u)χs) strongly in(EM(Ω))N

by Lemma 2.3 and

∇Tk(un) ⇀ ∇Tk(u) weakly in(LM(Ω))N for σ
(∏

LM(Ω),
∏

EM(Ω)
)

.

The third term of (3.17) tends to−
∫

Ω
a(x,∇Tk(u))∇Tk(u)χΩ\Ωsdx asn →∞ since

a(x,∇Tk(un)) ⇀ a(x,∇Tk(u)) weakly forσ
(∏

EM(Ω),
∏

LM(Ω)
)

.
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Consequently, from (3.16) we have

(3.18)
∫

Ω

a(x,∇un)[∇Tk(un)−∇Tk(u)]φ
′
(zn)dx

=

∫
Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]φ
′
(zn)dx + ε2(n).

We deduce that, in view of (3.17) and (3.18),∫
Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]

(
φ
′
(zn)− 2K

α
|φ(zn)|

)
dx

≤ ε3(n) +

∫
Ω

a(x,∇Tk(u))∇Tk(u)χΩ\Ωsdx,

and so∫
Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]dx

≤ 2ε3(n) + 2

∫
Ω

a(x,∇Tk(u))∇Tk(u)χΩ\Ωsdx.

Hence∫
Ω

a(x,∇Tk(un))∇Tk(un)dx

≤
∫

Ω

a(x,∇Tk(un))∇Tk(u)χsdx +

∫
Ω

a(x,∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]dx

+ 2ε3(n) + 2

∫
Ω

a(x,∇Tk(u))∇Tk(u)χΩ\Ωsdx.

Now considering the limit sup overn, one has

(3.19) lim sup
n→+∞

∫
Ω

a(x,∇Tk(un))∇Tk(un)dx

≤ lim sup
n→+∞

∫
Ω

a(x,∇Tk(un))∇Tk(u)χsdx + lim sup
n→+∞

∫
Ω

a(x,∇Tk(u)χs)

× [∇Tk(un)−∇Tk(u)χs]dx + 2

∫
Ω

a(x,∇Tk(u))∇Tk(u)χΩ\Ωsdx.

The second term of the right hand side of the inequality (3.19) tends to 0, since

a(x,∇Tk(un)χs) → a(x,∇Tk(u)χs) strongly inEM(Ω),

while∇Tk(un) tends weakly to∇Tk(u).
The first term of the right hand side of (3.19) tends to

∫
Ω

a(x,∇Tk(u))∇Tk(u)χsdx
since

a(x,∇Tk(un)) ⇀ a(x,∇Tk(u)) weakly in(LM(Ω))N
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for σ (
∏

LM ,
∏

EM) while∇Tk(u)χs ∈ EM(Ω). We deduce then

lim sup
n→+∞

∫
Ω

a(x,∇Tk(un))∇Tk(un)dx ≤
∫

Ω

a(x,∇Tk(u))∇Tk(u)χsdx

+ 2

∫
Ω

a(x,∇Tk(u))∇Tk(u)χΩ\Ωsdx,

by using the fact thata(x,∇Tk(u))∇Tk(u) ∈ L1(Ω) and lettings → ∞ we get, since
meas(Ω\Ωs) → 0

lim sup
n→+∞

∫
Ω

a(x,∇Tk(un))∇Tk(un)dx ≤
∫

Ω

a(x,∇Tk(u))∇Tk(u)dx

which gives, by using Fatou’s lemma,

(3.20) lim
n→+∞

∫
Ω

a(x,∇Tk(un))∇Tk(un)dx =

∫
Ω

a(x,∇Tk(u))∇Tk(u)dx.

On the other hand, we have

M

(
|∇Tk(un)|

µ

)
≤ K ′ +

K

α

∫
Ω

a(x,∇Tk(un))∇Tk(un)dx,

then by using (3.20) and Vitali’s theorem, one easily has

(3.21) M

(
|∇Tk(un)|

µ

)
→ M

(
|∇Tk(u)|

µ

)
strongly inL1(Ω).

By writing

(3.22) M

(
|∇Tk(un)−∇Tk(u)|

2µ

)
≤

M
(
|∇Tk(un)|

µ

)
2

+
M

(
|∇Tk(un)|

µ

)
2

one has, by (3.21) and Vitali’s theorem again,

(3.23) Tk(un) → Tk(u) for modular convergence inW 1
0 LM(Ω).

Step 5: u is the solution of the variational inequality (P ).
Choosingw = Tk(un−θTm(v)) as a test function in (Pn), wherev ∈ K and0 < θ < 1,
gives

〈Aun, Tk(un − θTm(v))〉+

∫
Ω

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
Tk(un − θTm(v))dx

= 〈f, Tk(un − θTm(v))〉,

sinceg(x, un)Tk(un − θTm(v)) ≥ 0 on

{x ∈ Ω : un ≥ 0 andun ≥ θTm(v)} ∪ {x ∈ Ω : un ≤ 0 andun ≤ θTm(v)}
we have∫

Ω

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
Tk(un − θTm(v))dx

≥
∫
{0≤un≤θTm(v)}

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
Tk(un − θTm(v))dx

+

∫
{θTm(v)≤un≤0}

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
Tk(un − θTm(v))dx.
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The first and the second terms in the right hand side of the last inequality will be denoted
respectively byJ1

n,m andJ2
n,m.

Defining
δ1,m(x) = sup

0≤s≤θTm(v)

g(x, s)

we get0 ≤ δ1,m(x) < 1 a.e. and

|J1
n,m| ≤ k

∫
{0≤un≤θTm(v)}

(δ1,m(x))nM

(
|∇un|

µ

)
dx.

Since ∣∣∣∣(δ1,m(x))nM

(
|∇un|

µ

)
χ{|un|≤m}

∣∣∣∣ ≤ M

(
|∇Tm(un)|

µ

)
,

we have then by using (3.23) and Lebesgue’s theorem

J1
n,m −→ 0 asn → +∞.

Similarly

|J2
n,m| ≤ k

∫
{|un|≤m}

|δ2,m(x)|nM
(
|∇Tm(un)|

µ

)
dx → 0 asn → +∞,

where
δ2,m(x) = inf

θTm(v)≤s≤0
g(x, s).

On the other hand , by using Fatou’s lemma and the fact that

a(x,∇un) → a(x,∇u) weakly in(LM(Ω))N for σ(ΠLM , ΠEM),

one easily has

lim inf
n→+∞

〈Aun, Tk(un − θTm(v))〉 ≤ 〈Au, Tk(u− θTm(v))〉.

Consequently

〈Au, Tk(u− θTm(v))〉 ≤ 〈f, Tk(u− θTm(v))〉,

this implies that by lettingk → +∞, sinceTk(u− θTm(v)) → u− θTm(v) for modular
convergence inW 1

0 LM(Ω),

〈Au, u− θTm(v)〉 ≤ 〈f, u− θTm(v)〉,

in which we can easily pass to the limit asθ → 1 andm → +∞ to obtain

〈Au, u− v〉〉 ≤ 〈f, u− v〉.

�

4. THE L1 CASE

In this section, we study the same problems as before but we assume thatq− and q+ are
bounded.

Theorem 4.1. Let f ∈ L1(Ω). Assume that the hypotheses are as in Theorem 3.1,q− andq+

belong toL∞(Ω). Then the problem(Pn) admits at least one solutionun such that:

un → u for modular convergence inW 1
0 LM(Ω),
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12 D. MESKINE AND A. ELMAHI

whereu is the unique solution of the bilateral problem:

(Q)

 〈Au, v − u〉 ≥
∫

Ω

f(v − u)dx, ∀v ∈ K

u ∈ K = {v ∈ W 1
0 LM(Ω) : q− ≤ v ≤ q+ a.e.}.

Proof. We sketch the proof since the steps are similar to those in Section 3.
The existence ofun is given by Theorem 1 of [4]. Indeed, it is easy to see that|g(x, s)| ≥ 1 on
{|s| ≥ γ}, whereγ = max {supess q+,− infess q−} and so that

|g(x, s)|n M

(
|ζ|
µ

)
≥ M

(
|ζ|
µ

)
for |s| ≥ γ.

Step 1: A priori estimates.
Choosingv = Tγ(un), as a test function in (Pn), and using the sign condition (3.4), we
obtain

(4.1) α

∫
Ω

M

(
|∇Tγ(un)|

λ

)
dx ≤ γ‖f‖1

and ∫
{|un|>γ}

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤ ‖f‖1,

which gives ∫
{|un|>γ}

M

(
|∇un|

µ

)
dx ≤ C

and finally

(4.2)
∫

Ω

M

(
|∇un|

max{λ, µ}

)
dx ≤ C.

On the other hand, as in Section 3, we have

(4.3)
∫

Ω

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤ C.

Step 2: Almost everywhere convergence of the gradients.
Due to (4.2), there exists someu ∈ W 1

0 LM(Ω) such that (for a subsequence)

un ⇀ u weakly inW 1
0 LM(Ω) for σ(ΠLM , ΠEM).

Write

Aun = f − |g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
and remark that, by (4.2), the second hand side is uniformly bounded inL1(Ω). Then as
in Section 3

∇un → ∇u a.e. inΩ.

Step 3: u ∈ K = {v ∈ W 1
0 LM(Ω) : q− ≤ v ≤ q+ a.e. inΩ}.

Similarly, as in the proof of Theorem 3.1, one can prove this step with the aid of property
(4.3).

Step 4: Strong convergence of the truncations.
It is easy to see that the proof is the same as in Section 3.
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Step 5: u is the solution of the bilateral problem(Q).
Let v ∈ K and0 < θ < 1. Taking vn = Tk(un − θv), k > 0 as a test function in
(Pn), one can see that the proof is the same by replacingTm(v) with v in Section 3. We
remark thatK ⊂ L∞(Ω).

Step 6: un → u for modular convergence inW 1
0 LM(Ω).

We shall prove that∇un → ∇u in (LM(Ω))N for the modular convergence by using
Vitali’s theorem.
Let E be a measurable subset ofΩ, we have for anyk > 0∫
E

M

(
|∇un|

µ

)
dx ≤

∫
E∩{|un|≤k}

M

(
|∇un|

µ

)
dx +

∫
E∩{|un|>k}

M

(
|∇un|

µ

)
dx.

Let ε > 0. By virtue of the modular convergence of the truncates, there exists some
η(ε, k) such that for anyE measurable

(4.4) |E| < η(ε, k) ⇒
∫

E∩{|un|≤k}
M

(
|∇un|

µ

)
dx <

ε

2
, ∀n.

ChoosingT1(un − Tk(un)), with k > 0 a test function in (Pn) we obtain:

〈Aun, T1(un − Tk(un))〉+

∫
Ω

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
T1(un − Tk(un))dx

=

∫
Ω

fT1(un − Tk(un))dx,

which implies∫
{|un|>k+1}

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤

∫
{|un|>k}

|f |dx.

Note thatmeas{x ∈ Ω : |un(x)| > k} → 0 uniformly onn whenk → ∞. We deduce
then that there existsk = k(ε) such that∫

{|un|>k}
|f |dx <

ε

2
, ∀n,

which gives ∫
{|un|>k+1}

|g(x, un)|n M

(
|∇un|

µ

)
dx <

ε

2
, ∀n.

By settingt(ε) = max {k + 1, γ} we obtain

(4.5)
∫
{|un|>t(ε)}

M

(
|∇un|

µ

)
dx <

ε

2
, ∀n.

Combining (4.4) and (4.5) we deduce that there existsη > 0 such that∫
E

M

(
|∇un|

µ

)
< ε, ∀n when|E| < η, E measurable,

which shows the equi-integrability ofM
(
|∇un|

µ

)
in L1(Ω), and therefore we have

M

(
|∇un|

µ

)
→ M

(
|∇u|

µ

)
strongly inL1(Ω).
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By remarking that

M

(
|∇un −∇u|

2µ

)
≤ 1

2

[
M

(
|∇un|

µ

)
+ M

(
|∇u|

µ

)]
one easily has, by using the Lebesgue theorem∫

Ω

M

(
|∇un −∇u|

2µ

)
dx → 0 asn → +∞,

which completes the proof.

�

Remark 4.2. The conditionb(0) = 0 is not necessary. Indeed, takingθh(un), h > 0, as a test
function in(Pn) with

θh(s) =

 hs if |s| ≤ 1
h

sgn(s) if |s| ≥ 1
h
,

we obtain ∫
Ω

|g(x, un)|n−1 g(x, un)M

(
|∇un|

µ

)
θh(un)dx ≤

∫
Ω

fθh(un)dx.

and then, by lettingh → +∞,∫
Ω

|g(x, un)|n M

(
|∇un|

µ

)
dx ≤ C.
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