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ABSTRACT. In this paper, we prove an existence and uniqueness result for solutions of some
bilateral problems of the form

(Au,v —u) > (f,v—u), Vo € K
ue K

where A is a standard Leray-Lions operator defined Wi L,/ (£2), with M an N-function
which satisfies theA,-condition, and wherek is a convex subset o Ly (2) with ob-
stacles depending on some Carathéodory fundgjignu). We consider first, the casg <
W1E3(Q) and secondly wher¢g € L'(2). Our method deals with the study of the limit
of the sequence of solutions, of some approximate problem with nonlinearity term of the form
g (@, un)[* gz, un) X M([Vugl).
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1. INTRODUCTION

Let 2 be an open bounded subset®o¥, N > 2, with the segment property. Consider the
following obstacle problem:

(Au,v —u) > (f,v —u), Yv € K,
(P)
u€ K,

where A(u) = —div(a(x,u, Vu)) is a Leray-Lions operator defined 6¥; L/ (Q2), with M
being an/N-function which satisfies thé\,-condition and wherex is a convex subset of
WL (2).
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2 D. MESKINE AND A. ELMAHI

In the variational case (i.e. whefec W~1E(Q)), it is well known that proble has
been already studied by Gossez and Mustonen in [10].

In this paper, we consider a recent approach of penalization in order to prove an existence
theorem for solutions of some bilateral problems7j {ype.

We recall that L. Boccardo and F. Murat, see [6], have approximated the model variational
inequality:

(—Apu,v —u) > (f,v—u), Ywe K
ue K ={veW Q) :|v(x) <1ae.inQ},
with f € W1 (Q) and—A,u = —div(|Vul|P~2Vu), by the sequence of problems:
—Apuy, + |ug|" tu, = fin D'(Q)
u, € WyP(Q) N L™ ().

In[7], A. Dall'aglio and L. Orsina generalized this result by taking increasing powers depending
also on some Carathéodory functigrsatisfying the sign condition and some hypothesis of
integrability. Following this idea, we have studiedlin [5] the sequence of problems:

— Aty + |g(z, w) " g(@, un) [Vun [P = £in D'(Q)

un € WoP(Q), |g(x, un)|" [Vun|? € L}(R)
Here, we introduce the general sequence of equations in the setting of Orlicz-Sobolev spaces
Auy, + [g(z,u,) " g2, un) M(|Vu,|) = fin D'(Q)

un € Wo Lyt (Q), |g(z, un)|" M(|Vun|) € L1(Q).

We are interested throughout the paper in studying the limit of the sequen®¥e prove that
this limit satisfies some bilateral problem of tfj@)(form under some conditions an In the
first we takef € W~ FE5;(Q) and next inL'(Q).

2. PRELIMINARIES

2.1. N—Functions. Let M : Rt — R* be an/N-function, i.e. M is continuous, convex, with
M(t) > 0fort>O,MT(t) —>Oast—>0andMT(t) — oo ast — 0.

Equivalently, M admits the representationt/(¢) = fot a(s)ds, wherea : Rt — Rt is
nondecreasing, right continuous, wiik0) = 0, a(t) > 0 for ¢t > 0 anda(t) tends tooo as
t — 00.

The N-function M conjugate taV/ is defined byM (t) = [,
given bya(t) = sup{s : a(s) <t} (seell]).

The N-function is said to satisfy th&, condition, denoted by/ € A,, if for somek > 0:

(2.1) M(2t) < kM(t) Vt > 0;

a(s)ds, wherea : RT — R* is

when [2.1) holds only for > somet, > 0 then}M is said to satisfy the\, condition near
infinity.

We will extend theséV-functions into even functions on atl.

Let P and@ be two N-functions. P < Q means thaP’ grows essentially less rapidly than

Q. i.e. for each > 0, 7% — 0 ast — co. This is the case if and only Ifm; . —?3?183 =

Q(et)
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2.2. Orlicz spaces. Let ) be an open subset &". The Orlicz classK,,(Q) (resp. the Orlicz
spacel;(€2)) is defined as the set of (equivalence classes of) real valued measurable functions
u on ¢ such that:

u(z)

/ M (u(z))dr < 400 (resp./ M(T)da: < 4oo for some\ > 0) .
Q Q

Ly (92) is a Banach space under the norm

|ullar,e = inf {A >0: /QM(@)OZ:): < 1}

and K,(2) is a convex subset df ().

The closure inL,,(2) of the set of bounded measurable functions with compact support in
Q1 is denoted by, (€2).

The equalityE),(2) = L(€2) holds if only if M satisfies the\, condition, for all¢ or for ¢
large according to whethél has infinite measure or not.

The dual ofE),(2) can be identified withl.;;(Q2) by means of the pairing,, uvdz, and the
dual norm ofL77(2) is equivalent td| - [|37 q-

The spacel,,(9) is reflexive if and only ifA/ and M satisfy theA, condition, for allt or
for t large, according to whethé&l has infinite measure or not.

2.3. Orlicz-Sobolev spacesWe now turn to the Orlicz-Sobolev spac8/*L;,(Q2) (resp.
W1'Ey () is the space of all functions such thatu and its distributional derivatives up to
order 1 lie inL,, () (resp.Ey(Q2)). Itis a Banach space under the norm

lullar =Y 1D%uar.

o] <1

Thus, WL (Q) andW!E)(Q) can be identified with subspaces of producf\of- 1 copies
of L/(€2). Denoting this product by] L,,, we will use the weak topologies([ [ L., [ [ Eq7)
ando (H L]V[, H Lﬁ)

The spacéVj Ey; () is defined as the (norm) closure of the Schwarz sga@e) in W' E,,(Q)
and the spac®/j L, () as thes (] Ly, [ E47) closure of D(Q) in WLy ().

We say thati,, converges ta: for the modular convergence W' L, () if for some\ > 0

D*u,, — D*
/M (%) dr — 0 forall |a| < 1.
Q

This implies convergence for ([ [ Las, [T L3p)-
If M satisfies the\,-condition onR ™", then modular convergence coincides with norm con-
vergence.

2.4. The spacesV 'Ly, () and WE; (Q). Let W1 L17(Q2) (resp. W' E7(©)) denote
the space of distributions an which can be written as sums of derivatives of orger of
functions inLy; (resp. E5;7(2)). Itis a Banach space under the usual quotient norm.

If the open sef) has the segment property then the spa¢®) is dense iV L,,(2) for the
modular convergence and thus for the topoleg [ Las, [ [ Lz7) (cf. [8,19]). Consequently,
the action of a distribution i’ ~! L17(Q) on an element ofi’} L,,(£2) is well defined.
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2.5. Lemmas related to the Nemytskii operators in Orlicz spacesWe recall some lemmas
introduced in[[3] which will be used in this paper.

Lemma 2.1. Let I : R — R be uniformly Lipschitzian, with#’(0) = 0. Let M be an
N—function and letu € W'Ly(Q2) (resp. W'Ey,(Q)). ThenF(u) € WLy () (resp.
W1'Ey(2)). Moreover, if the seD of discontinuity points of” is finite, then

5 F’(u)a%iu a.e.in{z € Q:u(x) ¢ D},
gz, ) =

0 a.e.in{r € Q:u(x) ¢ D}.

Lemma 2.2. Let F : R — R be uniformly Lipschitzian, witF'(0) = 0. We suppose that
the set of discontinuity points df’ is finite. LetM be an N-function, then the mapping
F WLy (Q) — WLy (Q) is sequentially continuous with respect to the weak* topology

o (IT Lo, I1 Exp)-

2.6. Abstract lemma applied to the truncation operators. We now give the following lemma
which concerns operators of the Nemytskii type in Orlicz spaces|(see [3]).

Lemma 2.3. LetQ2 be an open subset & with finite measure.
Let M, P and( be N-functions such thap <« P, andletf : 2 xR — R be a Carathéodory
function such that a.e: € 2 and all s € R:

[f (2, 8)] < (@) + kP M (kals]),

wherek,, k, are real constants and(x) € Eg(€2).
Then the Nemytskii operatdy, defined byN(u)(z) = f(z,u(z)) is strongly continuous
from
1 1
P E]\/[(Q), — | =<UuE€ LM(Q) : d(u, EM(Q)) < —
kz k2
into Eg(Q2).

3. THE MAIN RESULT

Let Q2 be an open bounded subseffdf, N > 2, with the segment property.

Let M be anN-function satisfying the\,-condition near infinity.

Let A(u) = —div(a(z,Vu)) be a Leray-Lions operator defined diy L, () into
W1L4(Q2), wherea : Q x RY — RY is a Carathéodory function satisfying for ae.c
and for all¢, ¢’ e RN, (¢ # (') :

(3.1) la(z, Q) < h(x) + M M(ki|C])
(3.2) (a(z,¢) —a(z,{)) (=) >0
(3.3) a(z,O)C > aM ('%')

with a, A > 0, k; >0, h € E57(Q).
Furthermore, leg : 2 x R — R be a Carathéodory function such that for a.ez €2 and for
all s e R:

(3.4) g(x,s)s =0
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(3.5) |9(, s)| < b(]s])

for almostr € Q\QY there exists = ¢(z) > 0 such that:

g(ﬁ, 8) > 17 Vs E]Q+($),Q+($) + 6[7
(3.6)
for almost z € Q\Q> there existse = ¢(z) > 0 such that:

| gz,5) < 1, Vs €lg_(2) — €,q_ ()],
whereb : R, — R, is a continuous and nondecreasing function, With = 0 and where
¢+(x) =inf{s > 0: g(z,s) > 1}
¢_(z) = sup{s < 0: g(z,s) < —1}
QO ={r€Q:qi(z) = oo}
QO ={reQ:q (r)=—o0}.
We define fors andk in R, k& > 0, Tj(s) = max(—Fk, min(k, s)).

Theorem 3.1.Let f € W~ Ey;(2). Assume thaf (3/1)  (3.6) hold true and that the function
s — g(z, s) is nondecreasing for a.e: € Q. Then, for any real number > 0, the problem

Afun) + gl un)" gl w) M (I220) = fin D/(0)
()
tn € WAL (Q), lg(z, wn)|" M (M) e L)

17
admits at least one solution, such that:

(3.7) Vk >0  Ti(u,) — Tp(u) for modular convergence iy Ly ()
whereu is the unique solution of the following bilateral problem

(Au,v —u) > (f,v—u), Vv € K
(P)

we K={veWiLy(Q):q <v<gq, ael},

Remark 3.2. If the functions — g¢(x, s) is strictly nondecreasing for a.ex € () then the
assumption (3]6) holds true.

Proof.Step 1: A priori estimates.
The existence of, is given by Theorem 3.1 of [3]. Choosing= u,, as a test function
in (), and using the sign condition (8.4), we get

By Proposition 5 of[[11] one has:

(3.8) /M (‘V—)I\Ln|> dr < C, and / a(x, uy, Vu,)Vu,dr < C|
Q Q
(3.9) (a(z, u,, Vu,)) is bounded in L77(2))",
(3.10) Llste.orgtewar () e <
Q H
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We then deduce
/ lg(z, u,)|" M (M) dr < C, forall k> 0.
{Jun|>k} u

Sinceb is continuous and sindg0) = 0 there exist® > 0 such that
b(|s]) < 1forall |s| <é.

On the other hand, by th&, condition there exist two positive constamfsand K’ such

that

M (i) < KM (%) + K’ forall ¢+ >0,
7

which implies

/ !g(x,un)I"M<Wu”|)dx§/ (K'+KM<|V“”|>)dx.
{lun|<8} 2 {Jun|<6} A

Consequently fronj (3]8)

(3.11) /]g(m,un)|nM <|Vun|> dr < C, forall n.
Q H

Step 2: AlImost everywhere convergence of the gradients.
Since(u,) is a bounded sequencelifi) L,;(€2) there exist some € W} L,,(£2) such
that (for a subsequence still denotedipy

(3.12) u, — uweakly inWl L, (Q) for o (H L, HEM> , strongly inE,,(),

and a.e. in.
Furthermore, if we have

Aty = 1 = gl )" sl (V21

with |g(z, u,)|""" g(x, un) M ('VML"') being bounded irL! () then as in[[2], one can
show that
(3.13) Vu, — Vua.e. in{Q.

Step3:ue K={veWiLy(Q):q <v<gq, ae.inQ}.
Sinces — g(z, s) is nondecreasing, then in view ¢f (B.6), we have:

{seR:|g(z,s)] <lae. inQ} ={seR:q <s<gq ae. inQ}.
It suffices to verify thatg(x,u)| < 1 a.e.

We have
/mmeM(Ww)msa
Q %
which gives
/ mL%WMCWM)mso
{lg(z,un)|>k} H
and

[ ()
{lg(@un)| >k} Iz k
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wherek > 1. Lettingn — +oo for k fixed, we deduce by using Fatou’s lemma
/ M('V“"‘)dxzo
{lg(z,u)|>k} K

lg(z,u)] < 1a.e.in.

and so that,

Step 4: Strong convergence of the truncations.
Let ¢(s) = sexp(ys?), wherey is chosen such that > (1)
Itis well known thatp'(s) — 25 |¢(s)| > 1,Vs € R, whereK is a constant which will be
used later. The use of the test functign= ¢(z,,) in wherez,, = Ty(u,) — Tk (u)
gives

2

|Vu,|

(i o) + [ Tates " ) (521) otz = (7.0

which implies, by using the fact thatz, u,,)¢(z,) > 0on{x € Q : |u,| > k},

|V,
U

(A, 0l + [

{0<un <Th(w)}{lun|<k}

902, w) " gl ) M (

o) a3 (221 o)

(V|
L

The second and the third terms of the last inequality will be denoted respectively by
I, andI’, ande;(n) denote various sequences of real numbers which terda®

n — +00.

On the one hand we have

< | (o031 (
{0<un <Tx ()} {lun| <k}

o, )" M (‘V“"’

. ) Oz)d < (£, 0(20).
{Th (v) Sun <0}N{|un|<k}

|V,

) oGl

<

/ ) 16(z0)lda,
{0<un<uln{|un|<k}

but sincelg(z, u,)| < lon{z € Q:0 < u, < u}, then we have

Vu,
L ] S/{l l<k}M(’ :j ‘) 16(2,)|do.

By using the fact that

[ A

we obtain
K
1] < [ Klotelde + 5 [ ate, V() V() lo(z)ldo.
Q Q

which gives

(3.14) 1) <am+ & / (e, VT () VT ()| 6(20) | e

(07
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Similarly,

Vu,
(3.15) 12, s/{ |<k}M(| P ‘) |¢(2n)|da

K
<)+ [ ale VTuun)) VTi(un)|o()lds
Q
The first term on the left hand side of the last inequality can be written as:
(3.16) / oz, V) [V Tk () — VTh(w)]6 ()
Q
= / a(x, Vu,) [VTi(u,) — VTk(u)]gb/(zn)dx
{lun|<k}
— / a(z, Vi, ) VT (w) (2,)dz.
{lun|>k}
For the second term on the right hand side of the last equality, we have

<c, / a2, V) [V T () X g 5
Q

‘/ a(zx, Vun)VTk(u)gb'(zn)dx
{lun|>k}

The right hand side of the last inequality tends to Onatends to infinity. Indeed,
the sequencéu(z, Vu,)), is bounded in( L37(2))" while VT (w) X {ju, >k} tends to 0
strongly in(E;(2))V.

We define for every > 0, Q, = {z € Q : |VT,(u(x))| < s} and we denote by its

characteristic function. For the first term of the right hand sidé of [3.16), we can write

(3.17) /{ o a(x, V) [VTi(un) — V()¢ (2)d
_ / la(z, VTi(u,)) = a(z, VT(u)x)|[VTk (1) — V()X (20)dx
+ /Q a(r, V() xs) [V T(tn) — VT(u) o] (2)da
- /Q a2, VT (1)) VT ()Xo & (20) .

The second term of the right hand side|of (3.17) tends to O since
a(w, VTi(un)X,)9 (20) — alw, VI, (u)xs) strongly in(Egz(€2)™
by Lemmd 2.B and
VTi(un) = VTi(u) weakly in (L (Q))N for o (H Lu().]] EM(Q)> .
The third term of7) tends te [, a(z, VT (u)) VT (u)xo\o.dx asn — oo since

a(z, VTi(uy)) — a(z, VTi,(u)) weakly foro (H By, 1 LM(Q)) .

J. Inequal. Pure and Appl. Math4(5) Art. 98, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

ASYMPTOTIC BEHAVIOUR OF SOME EQUATIONS IN ORLICZ SPACES 9

Consequently, fronj (3.16) we have
(3.18) / o, V) [V Tk () — VTh(w)]6 (20)da
Q

= [ oo, V() = ale, VTu(u)x)
X [VTi(ttn) — V(1) x6] @ (20)d + €3(n).
We deduce that, in view of (3.1.7) arjd (3.18),

/Q 0z, VTi(un)) — ale, VTx(u)xs)]
< [VT(t) — VTk(w)] (¢’<zn> - %wxznﬂ) dn

< e3(n) + / (e, VT3 () VT () xen d.

and so
/Q (0, VT(wn)) — ale, VTk(w)xo) [V Tk (un) — VTi(w)x)de

< 2e3(n) + 2 /Q a(z, VI (w)) VT (u)xa\o,dz.

Hence
/a(x, VT (un))VTi(uy)dx
Q

S/Qa(m,VTk(un))VTk(u)Xsdx—i—/Qa(:v,VTk(u)Xs)[VTk(un)—VTk(u)Xs]da:

+ 2€e3(n) + 2 /Q a(x, VT (u))VTi(u)xo\,dx.

Now considering the limit sup over, one has

(3.19) limsup/a(x, VTi(un)) VT (uy,)dx
0

n—-+o0o

< limsup/ a(m,VTk(un))VTk(u)Xsdx—|—limsup/a(x,VTk(u)XS)
Q Q

n—-+o0o n—-+00

X [VTi(un) — VTi(u)xs|de + 2 /Q a(z, VI (w)) VTi(u)xo\o,de.

The second term of the right hand side of the inequdlity {3.19) tends to 0, since
a(z, VT (un)xs) — alz, VIi(u)ys) strongly in Eq7(Q),

while VT}(u,) tends weakly tov T}, (u).
The first term of the right hand side of (3]19) tends|tpu(x, VT (u)) VT (u)x.da
since

a(x, VTi(u,)) — a(z, VIi(u)) weakly in(Li(2))Y
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for o (I Laz, [ 1 Ear) While VT (u)xs € Eyn(€2). We deduce then

limsup/a(m,VTk(un))VTk(un)dx S/
Q Q

n—-+00

a(x, VT (u) VT (u)xsdz

—1—2/@(3:, VT (uw)) VT (u)xa\o,dx,
0

by using the fact thai(x, VT (u))VTi(u) € L'(Q) and lettings — oo we get, since
meas(2\Qs) — 0

limsup/a(x,VTk(un))VTk(un)d:c g/
Q Q

n—-4oo

a(z, VT (u))VTi(u)dx

which gives, by using Fatou’s lemma,

(3.20) lim a(x, VI (u,))VTi(u,)dx = /
Q

n—-400 Q

a(x, VI (u)VTi(u)dz.

On the other hand, we have
M (M> <k + 4 / o, VT (1)) V T () d,
K @ Jo
then by using[(3.20) and Vitali's theorem, one easily has
M (M) — M (W> strongly inL'(9).

(3.21)
p I
By writing
[VT (un)| [VT (un)|
(3.22) u (|VTk<Un) — VTk(U)‘) < M < 7 > n M ( 1 >
' 24 = 2 2

one has, by[(3.21) and Vitali's theorem again,

(3.23) T (u,) — T (u) for modular convergence i, Ly ().
Step 5: u is the solution of the variational inequalifyP).
Choosingw = Ty (u, — 0T,,(v)) as a test function in&,), wherev € K and0 < § < 1,

gives

(At i = 0T (o)) + [ o) gl )M (

V|
. ) Ti(u, — 0T, (v))dz
= (/. Ti(un — 0T (v))),

sinceg(z, u,) Ty (u, — 0T,,(v)) > 00N
{r € Q:u, >0andu, > 0T,,(v)} U{zx € Q:u, <0andu, <07T,(v)}

we have
n—1 |vun|
lg(z, un)|[" g2, un) M . Ty (up — 075, (v))dz
Q
n—1 |vun|
> 9z, un)|" gz, un) M T (up — 0T, (v))d
{0<un<O0Tm (v)} H
—W“"') Tty — 0T (v))dz.

+f o) ol )
{0Tm (v) <un <0} 7
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The first and the second terms in the right hand side of the last inequality will be denoted

respectively by/, , and.J? .
Defining

Om(z) =  sup g(z,s)
0<s<0Tm (v)

we get0 < d1,,(z) < 1a.e. and

Vu,
<k / (61 (@) M (M) dz.
' {0<un<0Tm (v)} o

we have then by using (3.23) and Lebesgue’s theorem

Since

J,lL’m — 0 asn — +oo.

Similarly
Tm n
| Tl < k/ |9,m ()" M (M) dr — 0 asn — +oo,
{lun|<m} H

where
bom(®) = inf g(a,s).

0T, (v)<s<0
On the other hand , by using Fatou’s lemma and the fact that
a(z, Vu,) — a(x, Vu) weakly in(Ly(Q))" for o(I1 Ly, [1Ey,),
one easily has
lim inf(Au,,, Ty, (u, — 0T,,(v))) < (Au, Tp(u — 0T,,(v))).

n—-+o00

Consequently
(Au, T (u = 0T (v))) < (f, Ti(u — 0T (v))),

this implies that by letting: — + o0, sinceTy(u — 07,,(v)) — u— 0T,,(v) for modular

convergence iy Ly (9),
(Au,u — 0T, (v)) < (f,u— 0T, (v)),
in which we can easily pass to the limit&s— 1 andm — +oo to obtain
(Au,u —v)) < (f,u—v).

4. THE L' CASE

In this section, we study the same problems as before but we assumg thatl ¢, are

bounded.

Theorem 4.1.Let f € L(£2). Assume that the hypotheses are as in Theprefry3.and ¢,

belong toL>°(2). Then the problen\P,) admits at least one solutian, such that:
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whereu is the unique solution of the bilateral problem:

(@)

(Au,v —u) > / flv—u)dz,Yv e K
Q

ueK={veWiLyQ):q <v<gq,ael.

Proof. We sketch the proof since the steps are similar to those in S¢gtion 3.
The existence ofi,, is given by Theorem 1 of [4]. Indeed, it is easy to see that, s)| > 1 on
{|s| > ~v}, wherey = max {supess ¢, — infess ¢} and so that

Step 1:

(4.2)

(4.2)

(4.3)

Step 2:

Step 3:

Step 4:

J. Inequal.

lg(z, s)[" M (g) > M (M> for |s| > .
7 It

A priori estimates.
Choosingv = T, (u,), as a test function if/;,), and using the sign conditiop (3.4), we

obtain
VT, (uy,
o [ar (52 de <1,

and Va,

n un

Un, | >
which gives
/ M (M) de < C
{lun|>~} K

and finally

|Vu,|
_1¥enl < C.
/QM <maX{A,u} dr=C

On the other hand, as in Sectign 3, we have
[ ot (’V“"‘) dr < C.
Q K

Almost everywhere convergence of the gradients.
Due to ), there exists somes W, L,,(2) such that (for a subsequence)

u, — u weakly inWy Ly () for o(ILL s, TTE57).

Write
n— Vu,

Aty = 1 = gl )" ) (V21
and remark that, by (4.2), the second hand side is uniformly bounded ). Then as
in Sectior 3

Vu, — Vua.e. inf.

ueK={veWiLy(Q):q <v<gq,ae. inQ}.
Similarly, as in the proof of Theorelm 3.1, one can prove this step with the aid of property
@3).
Strong convergence of the truncations.
It is easy to see that the proof is the same as in Section 3.
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Step 5: u is the solution of the bilateral proble()).
Letv € K and0 < 6 < 1. Takingv, = Ti(u, — 6v),k > 0 as a test function in
(P.), one can see that the proof is the same by replaEjn@) with v in Sectior] 3. We
remark that' C L>(12).

Step 6: u,, — u for modular convergence W, Ly (2).
We shall prove thaVu,, — Vu in (Ly(Q))Y for the modular convergence by using
Vitali's theorem.
Let £ be a measurable subset(ofwe have for any: > 0

E H En{|un|<k} H En{|un|>k} H

Lete > 0. By virtue of the modular convergence of the truncates, there exists some
n(e, k) such that for any2 measurable

<|Vun]
En{un|<k} 2
Choosing[’ (u, — Ty (uy)), with k& > 0 a test function in[{,) we obtain:

(4.4) |E| < n(e k) = ) dr < %, Vn.

(V|

(A, T1 (uy, — Ti(uy)) /|gxun " g(x, un)M( ;

) it = Tifu)o
_ /Q FT3(t, — To(un))d,

which implies

[ ety (M) ws [\
{Jun|>k+1} 1% {|un|>k}

Note thatmeas{z € Q : |u,(z)| > k} — 0 uniformly onn whenk — oco. We deduce
then that there exists = k(¢) such that

/ \fldz < <, Vn,
{Jun|>k} 2

/ lg(z, u,)|" M (|Vun|) dr < E, vn.
{Jun|>k+1} iz 2

By settingt(e) = max {k + 1, v} we obtain

(4.5) / M ('V““’) de < <. vn.
{Jun|>t(e)} p 2

Combining [[4.4) and (4]5) we deduce that there exjsts0 such that

which gives

Vu,
/M (M) <€, VYnwhen|E| < n, E measurable
E H

which shows the equi-integrability @/ (‘V“"‘> in L(2), and therefore we have

M (M> — M (M) strongly inL'(€2).
1

L
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By remarking that

(52 <3 o (52w (2

one easily has, by using the Lebesgue theorem
/M(w) dx — 0 asn — +oo,
Q 21
which completes the proof.
0]
Remark 4.2. The conditionb(0) = 0 is not necessary. Indeed, takifg(u,,), h > 0, as a test
function in(P,) with
hs if |s| <

(gh(S): .
sgn(s) if |s| >

we obtain
/|g(9137un)|"1 gz, uy)M (|VZH|) O (uy)dr < / 10 (uy)dz.
Q Q

and then, by lettingg — +oo,

/ lg(z, u,)|" M (M) de < C.
Q 2
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