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ABSTRACT. In this paper a new claﬁﬁ (a, B) of starlike functions is introduced. A subclass
TS (a, B) of S (a, 3) with negative coefficients is also considered. These classes are based
on Ruscheweyh derivatives. Certain neighbourhood results are obtained. Partigl,$aimsf
functionsf(z) in these classes are considered and sharp lower bounds for the ratios of real part
of f(z) to f,(z) andf’(z) to f; (z) are determined.
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1. INTRODUCTION

Let .S denote the family of functions of the form
(1.2) f(z)=2z+ Z apz”
k=2

which are analytic in the open unit digk = {z : |z| < 1}. Also denote byl’, the subclass of
S consisting of functions of the form

1.2) f(2) :Z—Z|ak|zk
k=2

which are univalent and normalizedin
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2 THOMAS RosY, K.G. SUBRAMANIAN , AND G. MURUGUSUNDARAMOORTHY

For f € S, and of the form[(1]1) and(z) € S given byg (2) = z + 35, by2*, we define
the Hadamard product (or convolutiof) g of f andg by

(1.3) (fx9)(2) =2+ apbez".
k=2

For—1 <a<landg>0,we IetS? (o, B) be the subclass df consisting of functions of the
form (1.1) and satisfying the analytic criterion

(M) 20 e)
(1.4) Re{ D) } > B\ =55 r

whereD” is the Ruscheweyh derivative [6] defined by

-1

I

DM (2) :f(z)*(l_ﬁ:HZBk(A)akzk

and

A+Dpy A+D)A+1D) - (A+E—1)
(k-1 (k—1)!

We also lefl'S) («, 3) = S (a, 3)NT. It can be seen that, by specializing on the parameters

a, 3, X the classrsg (o, ) reduces to the classes introduced and studied by various authors
[1,19,[11/12].

The main aim of this work is to study coefficient bounds and extreme points of the gen-
eral cIasSTS? (a, B). Furthermore, we obtain certain neighbourhoods results for functions in

TS (o, 8) . Partial sumsf,,(z) of functionsf (z) in the classS («, 3) are considered.

(1.5) B (M) =

, A>0.

2. THE CLASSES S, (a, 3) AND T'S)) (a, 3)

In this section we obtain a necessary and sufficient condition and extreme points for functions
f(z) inthe classI'S) («, ).

Theorem 2.1. A sufficient condition for a functiofi(z) of the form ) to be i%) (o, ) is
that

o0

k=2

—1<a<1,3>0,\A>0andB()) is as defined i (1]5).
Proof. It suffices to show that

z(D)‘f (z))/ L Z(Dkf(z))/ B W
o M{ D/ (5 1}§1 |
We have
z (D)‘f (Z))/ 1 _Re z (DAf (z))/ B z (D)‘f (z))/ B
iy Te i { D (%) 1} S Y T .

(14 6) Sy (k= 1) B () 2]
1= 30, Be (V) gl [+

LAY, (=1 B |

SN LB W

<
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STARLIKE FUNCTIONS 3

This last expression is bounded abovelby « if

o0

S+ k—(a+B)] B (\) |ar] <1—a,

k=2
and the proof is complete. O
Now we prove that the above condition is also necessary forl'.
Theorem 2.2. A necessary and sufficient condition férof the form [(1.2) namely (z) =
z—=> bk ap > 0,2 € Utobe inTS?(a,ﬁ),—l <a<l1,4>0,A>0isthat

o

(2.2) SN+ k—(a+B)]Be(Nar <1—a

k=2

Proof. In view of Theorel, we need only to prove the necessitﬁ.ethSﬁ (o, B) andz is
real then

- 220:2 ak:Bk ()\) zk—1 = 1-— 220:2 akBk ()\) Zk—1
Letting = — 1 along the real axis, we obtain the desired inequality

oo

1-— 220:2 kakBk (/\) Zki1 > 1— ZZOZQ (]{7 - 1) akBk ()\) Zkil '

[(1+8)k— (a+B) Be (N ax < 1—a.
O

Theorem 2.3. The extreme points de? (o, ), =1 < a < 1, # > 0 are the functions given
by
-« i

(2.3) file) =1 and fi2) = = = e S
k=2,3,... where > —1 and B, () is as defined irf (1]5).

Corollary 2.4. A functionf € T'S) (a, ) if and only if f may be expressed &s,° | /i fi. (2)
whereyy, > 0,7, ue = 1 and fy, fo, ... are as defined if (2]3).

3. NEIGHBOURHOOD RESULTS

The concept of neighbourhoods of analytic functions was first introduced by Goodman [4]
and then generalized by Ruscheweyh [5]. In this section we study neighbourhoods of functions
in the family TS} (a, 3).

Definition 3.1. For f € S of the form [1.1) and > 0, we define;) — §- neighbourhood of by

Mg(f):{gESg(z):Z—i—Zbkzk and Zk”+1|ak—bk|§5},
k=2 k=2
wheren is a fixed positive integer.

We may writeM}! (f) = N5 (f) andM; (f) = M; (f) [B]. We also notice thad/; (f) was
defined and studied by Silverman [7] and also by others|[2, 3].

We need the following two lemmas to study the— 6- neighbourhood of functions in
TSy (o, B).

Lemma3.1.Letm > 0and—1 <~ < 1. If g(z) = 2 + Y77, b,z satisfiesy ;= , k1 [b*] <

74 theng € S (v, 3). The result is sharp.
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Proof. In view of the first part of Theorem 2.1, it is sufficient to show that

k(L+5)—(v+5) k!
T Bk(u)zm(“rﬁ)-
But
k(1+ﬁ)—(’y+ﬁ)3k(u): EA+8)-(+8)p+1)---(utk-1)
1—7 (1—7)(k—1)
cEAHB ) (p+2)---(ptk-1)
- (1—7)(k—1)! '

Therefore we need to prove that
prp+2)---(ptk-1)
k# (k—1)! -

SinceH (k, ) = [(p+ 1)/2#] < 1, we need only to show thd{ (k, ;1) is a decreasing function
of k. But H(k + 1, u) < H(k, ) is equivalent tq1 + p/k) < (1 + 1/k)*. The result follows
because the last inequality holds for alb 2. O

H(kzu)=<

Lemma 3.2. Let f(z) = z — Z,;“;Qakzk eT, -1 <a<l1, p>0ande > 0. If % €
TS (o, 8) then

[e.e]

n+1 _
Zkuﬂak < 2 (1 - ) (1"‘8)’
i 2—a+p)(1+N)
where eithem = 0and\ > 0ornp =1and1 < A < 2. The result is sharp with the extremal
function

B l-—a)(l+e)
f(z)_z_(2—a+ﬁ)(1+)\)z’ zeU.

Proof. Letting g (z) = %ﬁ” we haveg (z) =z — Y 2, 2k, 2 € U

In view of Corollary[2.4¢(z), may be written ag/ (2) = Yoo, yurgk (2), Whereyy, >
0, 2211 e =1,
g1 (2) =z and g; (2) = 2 — 1—a)(1+e)

(k:—oc—i—ﬂ)Bk()\)Z’ k=2,3,....

Therefore we obtain
- (1-a)(1+¢) k>
= —|— —
9(z) =m= kz:;ﬂk (Z (k—a+05) B ()\)Z
R (1-a)(1+¢) K
- 2_:“’“ ((k—wﬁ)Bk(A) o
Sincepy, > 0and) "~ u, < 1, it follows that

= N+l 41 (1-—a)(1+e)
Nl (e v i)

ENtl(1—a)(14€)

The result will follow if we can show thatl (k,n, «, e, \) = ot B0)

function of k. In view of By, (A) = 2% By, (\) the inequality
A(k+ 1,7770576,)\) S A(k7/’77a7€7)\)

is a decreasing
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is equivalent to
k+1D)"™ (k—a+B8) <k"(k+1—a+3) (A k).

This yields

(3.1) AMk—a+B)+A+a—-0>0

whenevemn = 0 andX > 0 and

(3.2) El(k+1) (A= 1)+ @2 =N (a~ ) +a-F>0,

wheneverp = 1 and1 < A < 2. Since [(3.) and (3]2) holds for all > 2, the proof is
complete. 0

Theorem 3.3. Suppose eithef = 0andA > 0ornp=1andl < X < 2.
Let—1 <a<1,and

2—a+0)(14+A) =2 (1—a)(1+¢e)(1+0)
2—a+8) 1+ (1+7) '
Let f € 7" and for all real number® < e < 4, assumef(ﬂ% e TS (a,f3).
Then thep-6 - neighbourhood of , namelyM{ (f) C S} (v, 3) where
(1= 2—a+B)1+N) -2 (1—-a)(1+e)(1+0)
C-—a+3)(1+X)(1+0) '

(1—a)(14¢) 2
2—a+p)(1+N) 7 -

Proof. For a functionf of the form [1.2), lety(z) = = + >_32, byz* be inMJ (f). In view of
Lemmd 3.2, we have

—-1<y<

5:

The result is sharp, with the extremal functiffx) =

[o.¢] o
SR b =) R ag — by — ax
k=2 k=2

211 (1 — o) (1 + &)
2-a+B8)(1+A)
(

Applying Lemm , it follows thay € 57 (v, 8) if § + 27’;0(1—;)“211;;5)) < 173 Thatis, if

1-7@C-atp)A+N)-2""(1—-a)1+e)(1+0)
2—a+8) 1+ (1+0)
This completes the proof. O

<Jd+

0 <

Remark 3.4. By taking 5 = 0 and letting\ = 0, A = 1 andn = 0 = ¢, we note that Theorems
1,2,4 in [8] follow immediately from Theorefn 3.3.

4. PARTIAL SUMS

Following the earlier works by Silverman|[8] and Silvia [10] on partial sums of analytic
functions. We consider in this section partial sums of functions in the slaés, 3) and obtain
sharp lower bounds for the ratios of real partfot) to f,,(z) and f’(z) to f!(z).

Theorem 4.1. Let f(z) € S) (a,3) be given byl) and define the partial sufiéz) and
fa(2), by

4.1) fi(z) =2z and f,(2) =z + Zakz (n e N/{1})
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Suppose also that

[e.9]

(42) ch |6Lk| S 1,
k=2
where(ck = [(Hﬁ)k_l(fl‘ﬂ)wk“)) .Thenf € S} (a, B). Furthermore,
(4.3) Re{f(z)}>1— €U, neN
fn (Z) Cn+1
and
fn (Z) } Cn+1
4.4 R > .
@9 Vet

Proof. It is easily seen that € S, («, 3). Thus from Theorerp 3|3 and by hypothefis|(4.2), we
have

(4.5) Ni(z) C S) (a, ),

which shows thaf € S) (o, 3) as asserted by Theorem4.1.
Next, for the coefficients,, given by [4.2) it is not difficult to verify that

(46) Ck+1 > Cp > 1.
Therefore we have
(4.7) Z lax| + cnia Z |lax| < ch lax| <1
k=2 k=n+1 k=2
by using the hypothesis (4.2).
By setting
f(2) ( 1 > }
48 Z) = Cp _ 1 —
(4.8) a1 (2) o {fn (2) Cn+1

oo k—1
Cn+1 Zk:n+1 agz

=1+ =

and applying[(4]7), we find that

(4 9) g1 (Z) -1 Cn+1 Z;O:n-‘rl |ak|
g(z)+1] 7 2~ 222:2 |ax| — cnia ZZO:TZH |ax]
<1, zelU,
which readily yields the assertion (#.3) of Theorenj 4.1. In order to see that
n+1
(4.10) f@)=z+"
Cn+1

gives sharp result, we observe that for re™™/” that 2 = 1+ 2= — 1 - L-as> — 1.
Similarly, if we take
fn (Z) Cn+1 }

(4.11) g2 (2) = (1 4+ cpy1) { ) 13 —

(14 cny1) Z;O:n—‘rl apz"!
L+ > 00, apzkt

=1—
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and making use of (4.7), we can deduce that

g2(2) —1 (L4 1) Dope i laxl

g2 (2) +1 2_222:2’ak| — (I + cpy1) ZZinH |ag|
<1, zelU,

which leads us immediately to the assertion|(4.4) of Thegrein 4.1.

The bound in[(4]4) is sharp for eaghe N with the extremal functiorf(z) given by -).
The proof of Theorerp 4] 1. is thus complete.

Theorem 4.2.1f f(z) of the form|[(1.]l) satisfies the conditi¢n (2.1). Then

(4.12)

S } _n+1
(4.13) R {f;L B >1 P
Proof. By setting

(4.1) 9(2) = eann {jf—i)) - <1 - ”tl)}

Cn+1 s k—1 o0 k—1
o n k-1
1+ 3 o karz

Cntl [e%¢} k—1

_ |y nfl Lek=ntl kayz
L+, kagzk—1 7

2"_:11 Zzo:n+l k ’akl

S n Cn 00 .
9(2)"‘1‘ 2_2Zk:2k|ak‘| - nill Zk:n+1k|ak|

g(z)—1 ;
Now )—g(z)ﬂ‘ <1if

(4.15) Zk|ak|+ Cntt Z lag| <1

k n+1

since the left hand side df (4]15) is bounded abov&Hy , ¢ |ay| if

n [e.9]

Cn+1
4.16 —k — k >
( ) E (ck — k) |ag| + E ] lax| >0,

k=2 k=n+1

and the proof is complete. The result is sharp for the extremal fungtioh= = + C"E O

Theorem 4.3.1f f(z) of the form[(1.]L) satisfies the conditidn (2.1) then
fo (2 )} Cn+1
Re > .
{f/() Tt 1+t

' (2 Cn
9 = [+ 1) + ] { 2 - ot}
(U 35) Y Rt
1+, kagzk1
and making use of (4.16), we can deduce that
g<z>—1‘< (L 558) S50 Fo e .
g(z)+1] = 2=237 klag| — (1 + i":ll) S klak] =7

Proof. By setting
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which leads us immediately to the assertion of the Thegren 4.3. O

Remark 4.4. We note that3 = 1, and choosing\ = 0, A = 1 these results coincide with the
results obtained in [13].
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