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ABSTRACT. The authors derive several inequalities associated with differential subordinations
between analytic functions and a linear operator defined for a certain fampiyaiént functions,

which is introduced here by means of this linear operator. Some special cases and consequences
of the main results are also considered.
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1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let A (p, n) denote the class of functiorfsnormalizedby

(1.1) f(z)=2"+ Z ay, 2° (p,n e N:={1,2,3,...}),
k=p+n
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2 V. RAVICHANDRAN, N. SEENIVASAGAN, AND H.M. SRIVASTAVA

which areanalyticin the openunit disk
U:={z:zeCand|z| < 1}.
In particular, we set
A(p,1)="A, and A(1,1) = A=A,.

Afunction fe A (p,n) is said to be in the clasd (p, n; «) if it satisfies the following inequality:
" (2)
/' (z)
We also denote bi («) andS* («), respectively, the usual subclassesdatonsisting of func-

tions which areconvex of ordery in U andstarlike of order« in U. Thus we have (see, for
details, [3] and[[9])

(1.2) 9%(1—1— ><a (z€U;a>p).

Zf” (Z)
I (z)

(1.3) K(a)::{f:fGA and D‘i<l+ )>a (zGU;0§a<1)}

and

(1.4) S*(a)::{f:feA and%(z;/(g))>a (zEU;O§a<1)}.

In particular, we write
KO0)=K and §*(0)=:S5".
For the above-defined clag(p, n; a) of p-valent functions, Owat al. [S] proved the fol-
lowing results.

Theorem A. (Owa et al.[5, p. 8, Theorem 1] If
1
f(z) e Alp.n;q) (p< a §p+§n> :
then

f(z) 2p+n
(1.5) m(;;f/@)) > Gatn)p (z€U).

Theorem B. (Owa et al.[S), p. 10, Theorem 2] If

f(z) e A(p,n; ) (p<a§p+%n),
then

(1.6) 0 <R (ZJ{/(S)) < (2;3;4;7;)1) (z€U).

In fact, as already observed by Owaal [5, p. 10], varioudurther special cases of (for
example) Theoreim|B whem= n = 1 were considered earlier by Nunokawa [4], Saitilal
[7], and Singh and Singh[8].

The main object of this paper is to present an extension of each of the inequélities (1.5)
and [1.6) asserted by Theorem A and Thedrém B, respectively, to hold true for a linear operator
associated with a certain general clas®, n; a, ¢, «) of p-valent functions, which we introduce
here.
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For two functionsf (z) given by [1.1) andj (=) given by

g(z)=2"+ ) bz" (pneN),
k

:p+n
the Hadamard product (or convolutiofy) * g) (z) is defined, as usual, by

.7) (fxg)(2) =2+ Z ap by 25 =1 (g* f) (2).

k=p+n
In terms of the Pochhammer symlal), or theshiftedfactorial, since
(1), =k (keNy:=NuU{0}),
given by
ANg:=1 and (\),=AX(A+1)---(A+k—-1) (keN),
we now define the function, (a, c; z) by
. . D S % k+p
(1.8) Op (a,c;2) = 2P + Z 2z
1 (©)y
(z€U; a €R; ceR\ Zy; Zy :={0,-1,-2,...}).
Corresponding to the functias), (a, c; z), Saitoh[6] introduced a linear operatby (a, ¢) which
is defined by means of the following Hadamard product (or convolution):

(1.9) Ly(a,c) f(2) = ¢p(a,c;2) % f(2) (f€A)

or, equivalently, by
(1.10) L,(a,c) f(z) =2+ Z % gy 2P (2 €T).
k=1 k

The definition [(1.p) or[(1.70) of the linear operaty (a, ) is motivated essentially by the
familiar Carlson-Shaffer operator

L(a,c):= Ly (a,c),

which has been used widely on such spaces of analytic and univalent functionesii («)
and S*(«) defined by[(1.8) and (1.4), respectively (see, for example, [9]). A linear operator
L, (a,c), analogous td., (a, c) considered here, was investigated recently by Liu and Srivastava
[2] on the space aineromorphicallyp-valent functions irfilJ. We remark in passing that a much
more general convolution operator than the operéipfa, c) considered here, involving the
generalized hypergeometric function in the defining Hadamard product (or convolution), was
introduced earlier by Dziok and Srivastava [1].

Making use of the linear operatdr, (a, ¢) defined by[(1.9) of (1.10), we say that a function
f € A(p,n) is in the aforementionedeneralclassA (p, n; a, ¢, ) if it satisfies the following
inequality:

L (a+2,c)f(z))
1.11 R( 2 <«
(40 (Zartare
(zGU; a>1; a€R; cGR\Z&).
The Ruscheweyh derivative ¢f(z) of orderd + p — 1 is defined by

s f(2) (feApn); 0 € R\ (—00,~])

o0+p—1 2) =
(1.12) DL f (2) i
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or, equivalently, by

—~ (6+k—1
(1.13) DOTP7L f(2) 1= 2P + Z ( ke p >ak 2F
k=p+n
(f € Alp,n); 6 € R\ (=00, —p]).
In particular, ifd = I (1 + p € N), we find from the definition (1.12) of (1.]L3) that
P dl+p—1

(I+p—1) dettr-? {7 )},
(f € A(p,n); L+peN).

(1.14) DAFP=L £ (2) =

Since
(1.15) Ly (6+p,1) f(2) = D71 f(2),

(f € A(pan) ) NS R\ (_007 _p]) )
which can easily be verified by comparing the definitigns (1.10) and](1.13), we may set

(1.16) A(p,n;6 +p,1,a) = A(p,n;d,a).

Thus a functionf € A (p,n) is in the class4 (p, n; §, «) if it satisfies the following inequality:
D6+p+1 f (Z)

1.17 _

(17 (S <o

(z€eU; a>1; 0 €R\(—oc0,—p]).
Finally, for two functionsf andg analytic inU, we say that the functioffi (z) is subordinate
to g (z) in U, and write

f=g or f(z)=<g(:) (z€U),
if there exists a Schwarz function(z), analytic inU with
w(0) =0 and |w(z)| <1 (z€0),
such that
(1.18) f(z)=g(w(z)) (z€U).
In particular, if the functiory is univalentin U, the above subordination is equivalent to
f(0) =g(0) and f(U) C g(U).

In our present investigation of the above-defined general clagsn; a, ¢, ), we shall re-
quire each of the following lemmas.

Lemma 1. (cf. Miller and Mocanu@| p. 35, Theorem 2.3i (i)] Let(2 be a set in the complex
planeC and suppose thab (u, v; z) is a complex-valued mapping:

d:C*xU—C,
where
w=1u; +ius and v = vy + ivs.
Also let® (iusy, vy; 2) ¢ € for all z € U and for all realu, and v, such that
1
(1.19) v S —5n (14 u3).

If

q(z)=1+4cyp 2"+ cppa 2"+ -+

J. Inequal. Pure and Appl. Math4(4) Art. 70, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

LINEAR OPERATORDEFINED FOR ACLASS OF MULTIVALENT FUNCTIONS 5

is analytic inU and
®(q(2),2¢' (2);2) €Q (2 €),
then
R{q(2)} >0 (z€).

Lemma 2. (cf. Miller and Mocany3,, p. 132, Theorem 3.4l] Letv (z) be univalent ifU and
suppose that the functionsand ¢ are analytic in a domaiD D 1 (U) with ¢ (¢) # 0 when
¢ € ¢ (U). Define the functiong (z) andh (z) by

(1.20) Q) ==/ () (¥ (2)) and h(2):=(v () +Q(2),
and assume that
(i) Q (z) is starlike univalent irflJ

and
(i) | (Zg((;))) >0 (z€U).
I
(1.21) (q(2)) +20 ) p(a(2) <h(z) (z€V),
then

q(z) <¢(2) (2€0)
andv (z) is the best dominant.
2. INEQUALITIES INVOLVING THE LINEAR OPERATOR L,(a,c)
By appealing to Lemm 1 of the preceding section, we first prove Thedrem 1 below.

Theorem 1. Let the parameters and « satisfy the following inequalities:

(2.1) a>-1 and 1<a<1+

2(a+1)
If f(2) € A(p,n;a,c, ), then
Ly(a,¢)f(2) 2a+n
(22 Lo o) ” mary T GV
and
Lp(a—i—l,c)f(z)) 2a(a+1)—2+mn B
(2.3) R ( L(a.0)/(2) < Yt (z €eU).
Proof. Define the functiory(z) by
_ Ly, 9f(7)
(2.4) (=0 +5= 0T 555 eV
where
(2.5) 2a +n

fi= 20(a+1)—2+n
Then, clearlyg(z) is analytic inU and
q(z) =14cn 2"+ 2"+ (2 €D).
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By a simple computation, we observe frdm {2.4) that
(1—75)2¢(2) z(Lp(a, c)f(z))/ Z(Lp(a +1, c)f(z))/

(1=Ba:)+6 "~ Lladfz)  Lla+lafi)
Making use of the familiar identity:
2.7) 2(Lyp(a,)f(2)) = aLy(a +1,¢) f(2) = (a = p)Ly(a, ) f(2),
we find from [2.6) that
(1=B=(2) _,, , Llat+1Lafe)
(1=B)a(z) + 8 Ly(a,c) f(z)
which, in view of [2.4), yields
Ly(a+2,c)f(z) 1 N 1 ( a . (1-8)xd(2) )
Ly(a+1,0)f(z) a+1l a+1\(1-PF)qz)+5 (1-p(z)+p
or, equivalently,
Ly(a+2,0)f(z) _ 1 a—(1-p)zq(z)
28) Cereare a0 T )
If we define®(u, v; z) by

(2.6)

Ly(a+2,¢)f(2)

—(at+1) Ly(a+1,¢)f(2)’

0 s (1 25E)

then, by the hypothesis of Theoréin 1 thiat A(p, n; a, ¢, o), we have
R{D (¢(2),2¢'(2);2)} =R <Lp(a +2,0)f(2)

Ly(a+1,¢)f(2)
We will now show that

)<a (z€U; a>1).

RA{D (iug,v1;2)} 2 «
for all z € U and for all reak:, andv, constrained by the inequality (1]19). Indeed we find from

(2.9) that

RAD (s, 01:2)} = — [1 i ( o= S)—@W)]

_ 1 {1 L, <[a— (1—B)unllp -1 —ﬂ)iW]H

a+1 (1— B)2u + 52
1 (1 N la—(1— ﬁ)vﬂﬁ)
Tari\ A=)
so that, by usind (1.19), we have
1n(] — 2
210)  R{® (iuy,v1;2)} = a—j—l (1 | Ala +(12f(;)2u§)f; “2)]) (z€U).

From the inequalities ifj (2.1), we get

and hence the function
a+zn(l —B)(1+z°)

(1= 3P+ 5
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is an increasing function for = 0. Thus we find from[(2.10) that

RA{D (iug,v1;2)} 2 b <1 + w

o >:a (z€U).

Thefirst assertion[(2]2) of Theorejm 1 follows by applying Lenjma 1.
Next, we define the function(z) by

Ly(a,c)f(z)
L,(a+1,¢)f(2)

whereg is given by [(2.5). Then, in view of the already proven asserfiorn (2.2) of Thegdrem 1, we
have

¥(2) = (=€),

(2.11) R{Y(z)}>pF>0 (z€)
so that
(2.12) R (@) >0 (zel).
Since [(2.1P) holds true, we have
1 1
RN (1) S W6 - L

or

1 1
*(57) Sy <0
which, in view of [2.11), yields

1 1
0<?R < — 2eU
(75)<5 v
which is thesecondassertion[(2]3) of Theorejm 1. O

The following result is a special case of Theoflgm 1 obtained by taking

a=0+p and c=1.

Corollary 1. If
n
. . < 0
£(2) € Alpins8,a) (6+p>1,1:a<1+2(5+p+1)),
then
Do+PLlf(2) 20 +2p+n
9%( Dt f(2) ) - 20(6+p+1)—2+n (z€T),

and

9‘{( DoHPf(2) ) _ 2000 +p+1)—2+n (e D).

Do+r=1f(z) 20+2p+n
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3. FURTHER RESULTS INVOLVING DIFFERENTIAL SUBORDINATION BETWEEN
ANALYTIC FUNCTIONS

We begin by proving the following result.
Lemma 3. Let the functiong(z) and«(z) be analytic inU and suppose that

¥(z) #0 (2 €U)

is also univalent irlU and thatzv’(z) /v (z) is starlike univalent iflU. If

@ " (Gom e o)
(:€U; a,8€C; B#£0)

and

3:2) @ "’ ;](i)) “ 9 " :fé))’
(z€U: a,fC; f£0),

then

q(2) <9¥(2) (2 €U)
andg(z) is the best dominant.

Proof. By setting

IO =% and (0 =—§,

it is easily observed that both( ) andy(() are analytic inC\{0} and that

p(C) #0 (¢ € C\{0}).
Also, by letting

33) Q) = =1 (Ee(v() = -5 )
and
34) ) = 0(0(:) + Q) = 55 -0 2 1)

we find thatQ)(z) is starlike univalent irJ and that
zh’(z)) _ (g 1 { 2'(z) zw’(z)l)
(o) =2 Gt e S l) 7o
(2€U; o, 8€C; B#0),

by the hypothesiq (3.1) of Lemm& 3. Thus, by applying Lemima 2, our proof of L§mma 3 is
completed. O

We now prove the following result involving differential subordination between analytic
functions.
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Theorem 2. Let the functiony(z) # 0 (z € U) be analytic and univalent ifv and suppose
that 2¢'(z) /(=) is starlike univalent iflJ and

a 2"(z) w’(Z)D

59 (o 1 e o)) 7
(z € U; a e C\{-1}).

If f € A, satisfies the following subordination:

Ly(a+2,¢)f(2) 1 a— 2 (z2)
59 L@t LofG) “a+l 1+ 552) cew,
then
(3.7) Lyla,)f(z) W(z) (2 €D)

Lp(a+1,c)f(2)
andi(z) is the best dominant.

Proof. Let the functiony(z) be defined by
e Lp(CL,C)f(Z)
1) e+ 1,07()
so that, by a straightforward computation, we have
. W) HL(00f(2)  2(Lfa+1,07¢)
q(z) Ly(a,c)f(z) Ly(a+1,0)f(2)
which follows also from[(26) in the special case wihies: 0.
Making use of the familiar identity (2.7) once again @rectly from (2.8) with 3 = 0), we
find that

(ZEU; feAp)>

Ly(a+2,¢)f(2) ., Ly(a+1,¢)f(2) i
La+1,0)f(z) Ly(a,0)f(2) (a+1)

1 a zq'(z)>
= ]_ —|— —_ s
a+1 ( a(z)  q(2)
which, in light of the hypothesi$ (3.6) of Theor¢in 2, yields the following subordination:
o () a 2(2)
q(z) az)  v(z)  v(z)
The assertiorj (3] 7) of Theorém 2 now follows from Lenjrha 3. O
Remark 1. If the functiom)(z) is such that
R{yY(2)} >0 (2€0)
and if 2¢/'(z) /4 () is starlike inU, then the conditiorf3.5)) is satisfied for > 0.

In its special case when

Ly(a+2,¢)f(2)

LatLof)

(z € U).

a=0+p and c=1,
Theorenj  yields the following result.

Corollary 2. Let the functiony)(z) # 0 (z € U) be analytic and univalent ifv and suppose
that z¢’(z) /1 (z) is starlike univalent il and
. <5+p . {1 LR )

¥(2) () W) D >0 (2€U; 0 € R\ (—00,p]).
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If f € A satisfies the following subordination:

DOt f(2) 1 §+p—2/(2)
Df(z) 4 p+l (1 e ) (=€),
then S
DG L
TS <1(z) (z€U).

Lastly, by using a similar technique as above, we can prove Theggrem 3 below.
Theorem 3. If f € A(p,n) and

2f"(2) 1+ Bz" n(A — B)z"
(3.9) M P T A T U A1+ B
(:€U; -1<B<AZ<1),
then
(3.10) pflz) 1+42 g

z2f'(z) ~1 + Bz"
Proof. Let the functiony(z) be defined by

(3.11) q(2) = 5}0,((?) (z€U; feAlp,n)),
so that
(3.12) L AR e 2 ()

R OO
If the function(z) is defined by
14+ AR
V) =g
then, in view of (3.P) and (3.12), we get
p 2z  p 2W(2)
— — U).
7 BT T BT
The result (Theorein 3) now follows from Leminja 3 (with= p and = 1).

(-1<B<A<1; z€U),

The following result is a simple consequence of Thedrem 3.

Corollary 3. If f € A satisfies the following subordination:
2f"(z) 1 —4dz+ 2?

1+ 702) < T (z € 1),
then
(3.13) N (Zf@)) >0 (zel)

or, equivalentlyf is starlike inU (that is, f € S*).
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Remark 2. The foregoing analysis can be appligditatis mutandisin order to rederive The-
oremA]of Owa et al.[5]. Indeed, if

(3.14) 1) € Alp,n; ) (p ca<p+t én) ,

then we can first show that

1+ ZJ{C,<(ZZ)> <¥(z) (z€U),
where
14+ Bz n(A — B)z" p(1+ Bz")? —n(A+1)z"
V) =P T T AT A B T (Lt A1 — )
20+n
(A_1—25, B=—1. §= 2a+n).
By letting

u(®) =R{Y(2)} (2=€""€dU; 0=6=<2nr),
it is easily seen for
(1—A)2p+n(l+ A)—2pcosb|
2(1+ A% +2Acosb)

u(f) = (0 <0 < 2nm)

that

(3.15) w(0) = u(r) = 124 pé’Jfﬁ; D2 (0<0<amm,

which shows that(U) contains the half-plan& (w) < «, whereq (z) is given, as before,

by (3.11). Thus, under the hypotheg[3.14), we have the subordinatiof.9) and hencegby
Theorenfd) also the subordinatiof3.10), which leads us to the assertidh.5) of Theorenp]
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