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Abstract

If f is a convex function the following variant of the classical Jensen’s Inequality
is proved

f <J'1 tan- ) H'/.'L’/.ﬂ> < flwn) + flen) = Y wnf ()

) . I A Variant of Jensen’s Inequality
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Let0 < 23 < 29 < --- < 1z, and letw;, (1 < k < n) be positive weights
associated with these, and whose sum is unity. Then Jensen’s inequality [
reads :

Theorem 1.1.1f f is a convex function on an interval containing thethen

(L.1) (X wn) <37 wif ().

Note: Here and, in all that follows) - meansy ;" . A.McD. Mercer
Our purpose in this note is to prove the following variant bfij.
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Theorem 1.2.1f f is a convex function on an interval containing thethen Title Page
Contents
f <x1 + @, — Zwm) < fla) + fan) = Y wif ().
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Towards proving this theorem we shall need the following lemma: < >
Lemma 1.3. For f convex we have: Go Back
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Proof of Lemmad..3. Write y, = x1 + x,, — x3. Thenz; + x,, = z; + y; SO that
the pairs z1, z,, and x;, y, possess the same mid-point. Since that is the case

there exists\ such that

xp = Ary + (1 = Ny,
Y = (1 = Nz + Az,

where) < A < landl <k <n. A Variant of J - i
Hence, applyingX.1) twice we get ariant of Jensen's inequality
A.McD. Mercer
flyr) < (1 =N f(x1) + Af(2n)
= f(z1) + f(zn) — [M(z1) + (1 = A) f ()] _
Title Page
= f(z1) + f(zn) — f(z) Contents
and sincey, = z; + z, — ;, this concludes the proof of the lemma. O 4« dd
Proof of Theorenl..2. We have 4 d
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and this concludes the proof.
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Let us writeA = x+x, — A andG = et whereA andG denote the usual
arithmetic and geometric means of the

(a) Then takingf(z) as the convex function log z, Theoreml.2 gives:

A>G

(b) Taking f(x) as the functioog =% which is convex ifd < = < 1, Theo-
rem1.2gives

Aw) G

A(l—z) Gl —x)
provided thatr;, € (0, 5] for all k.

The example (a) is a special case of a family of inequalities found by a dif-
ferent method inJ]. The example (b) is, of course, an analogue of Ky-Fan’s

Inequality [].
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