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Abstract

Characterization of quasiconvexity and pseudoconvexity of lower semicontin-
uous functions on Banach spaces are presented in terms of abstract subdif-
ferentials relying on a Mean Value Theorem. We give some properties of the
normal cone to the lower level set of f . We also obtain necessary and suffi-
cient optimality conditions in quasiconvex and pseudoconvex programming via
variational inequalities.
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1. Introduction
It is natural in convex analysis to search for characterizations of generalized
convex functions in terms of some kind of generalized derivatives or subdif-
ferentials. Several contributions to this question has been made recently. The
reader may consult for example [3, 5, 11, 13, 16, 20] for quasiconvex functions
and [2, 8, 21, 23, 25] for pseudoconvex functions.

In this paper, we shall define an abstract subdifferential as in [1, 23] which
allows us to extend some results in [1, 2, 8, 23] and to give some properties of
the normal cone to lower level sets of a given functionf .

Notice that the condition0 ∈ ∂f(x̄) for x̄ ∈ X, is known to be a necessary
but not a sufficient optimality condition in quasiconvex programming for some
subdifferentials. We give, using some variational inequalities, a necessary and
sufficient condition for a point to be either a local or a global minimum.

After the introduction of some notations and definitions in Section2, we
present in Section3 some properties of the abstract subdifferential and normal
cone to lower level sets of quasiconvex and pseudoconvex functions. Then, in
Section4, we give some optimality conditions involving variational inequalities.
This should extend our previous results stated for quasiconvex lower semicon-
tinuous functions on Banach spaces with the Clarke-Rockafellar subdifferential
in [13].
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2. Preliminaries
Let X be a real Banach space,X∗ its dual and〈·, ·〉 the duality pairing between
X∗ andX. The segment[a, b] is the set{a + t(b− a); t ∈ [0, 1]} while [a, b[
is the set[a, b] \ {b}. The open ball with centerx and radiusr in X is denoted
by B(x, r), and the polar cone of a nonempty subsetA of X is

A◦ = {x∗ ∈ X∗; 〈x∗, a〉 ≤ 0, ∀a ∈ A}.

For an extended real valued functionf : X 7→ R∪{+∞}, the effective domain
is defined by

dom(f) = {x ∈ X; f(x) < ∞}.
We write l.s.c. for lower semicontinuous, andxn→fx when xn → x and
f(xn) → f(x).

The abstract subdifferential we consider here is defined as follows:

Definition 2.1. An operator∂ that associates to any l.s.c. functionf : X 7→
R ∪ {+∞} and a pointx ∈ X a subset∂f(x) of X∗ is a subdifferential if the
following assertions hold:

(P1) ∂f(x) = {x∗ ∈ X∗; f(y) ≥ f(x) + 〈x∗, y − x〉 ∀y ∈ X } whenf
is convex.

(P2) If x ∈ dom f is a local minimum off , then0 ∈ ∂f(x).

(P3) ∂f(x) = ∂g(x), for anyg : X 7→ R ∪ {+∞} such thatf − g is constant
in a neighborhood ofx.

(P4) ∂f(x) = ∅, for anyx ∈ X such thatf(x) = +∞.
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It is well known that the Clarke-Rockafellar subdifferential∂CRf satisfies
Zagrodny’s Mean value theorem [27]. In order to extend this theorem to our
subdifferential, we shall deal with a particular space associated with∂ called
∂-reliable.

Definition 2.2. [23]. A Banach spaceX is ∂-reliable if for each l.s.c. function
f : X 7→ R ∪ {+∞}, for any Lipschitz convex functiong and anyx ∈ dom f
such thatf + g achieves its minimum inX and eachε > 0 we have:

0 ∈ ∂f(u) + ∂g(v) + εB∗
1(0),

for someu, v ∈ Bε(x) such that|f(u)− f(v)| < ε.

In the case of the Clarke-Rockafellar subdifferential∂CR [26] or Iofee subd-
ifferential∂I [7], any Banach space is∂-reliable.

In the sequel, we will restrict ourselves to subdifferentials that are included
in the dag subdifferential

∂†f(x) = {x∗ ∈ X∗; 〈x∗, v〉 ≤ f †(x, v) ∀v ∈ X},

where
f †(x, v) = lim sup

(t,y)→(0+,x)

t−1(f(y + t(v + x− y)− f(y)).

This subdifferential was introduced by Penot (see [22]), it is large enough to
contain the Clarke-Rockafellar∂CR and Upper Dini∂D+ subdifferentials and
still has good properties.

Our results rely on the following mean value theorem.
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Theorem 2.1. [23]. Let X be a∂-reliable space andf : X 7→ R ∪ {+∞} a
l.s.c. function. For anya ∈ dom f , b ∈ X \ {a}, β ≤ b, there exists a sequence
cn in X converging to somec ∈ [a, b) and a sequencec∗n ∈ ∂f(cn) such that for
anyb′ = c + t(b− a), with t > 0 we have:

i) lim infn〈c∗n, b− a〉 ≥ β − f(a),

ii) lim infn〈c∗n, c− cn〉 ≥ 0,

iii) lim infn

〈
c∗n,

||b−a||
||b′−c||(b

′ − cn)
〉
≥ β − f(a).

Following the methods of [1, 16, 20], we get a similar lemma for our abstract
subdifferential, which is immediate by Theorem2.1.

Lemma 2.2. Let X be a Banach∂-reliable space,f a l.s.c. function. Let
a, b ∈ X with f(a) < f(b) then there existsc ∈ [a, b[ and two sequences
cn → c, c∗n ∈ ∂f(cn) with

〈c∗n, x− cn〉 > 0,

for anyx = c + t(b− a) with t > 0.

Proof. Let a, b ∈ X with f(a) < f(b), then we can find by Theorem2.1,
c ∈ [a, b[ and two sequencescn → c, c∗n ∈ ∂f(cn) with

lim inf
n

〈c∗n, c− cn〉 ≥ 0,

and
lim inf

n
〈c∗n, b− a〉 ≥ f(b)− f(a) > 0.
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Forx = c + t(b− a) with t > 0, we have

〈c∗n, x− cn〉 = 〈c∗n, c− cn〉+ t〈c∗n, b− a〉.

It follows that
lim inf

n
〈c∗n, x− cn〉 > 0.

Hence, forn large enough, we have that

〈c∗n, x− cn〉 > 0.
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3. Generalized Convex Functions and Generalized
Monotone Multifunctions

3.1. Quasiconvex Functions and Quasimonotone Multifunc-
tions

We recall the characterization of quasiconvex functions of [22, 23]. It will allow
us to extend and generalize some properties of the normal cone to the lower level
set given in [12, 13] to a more general setting.

Indeed, forf : X 7→ R∪{+∞} a l.s.c. function,f is said to be quasiconvex
if for everyx, y ∈ X andλ ∈ [0, 1] one has

f(λx + (1− λ)y) ≤ max{f(x), f(y)}.

And denoting by
Sf (λ) = {x ∈ X; f(x) ≤ λ }.

Quasiconvexity is geometrically equivalent to the fact thatSf (λ) is a convex
set for allλ ∈ R. In the above one could use the strict level sets as well.

Recall that a multifunctionA : X → X∗ is said to be quasimonotone if for
every pair of distinct pointsx, y ∈ X:

∃x∗ ∈ A(x), such that〈x∗, y − x〉 > 0 then, ∀y∗ ∈ A(y), 〈y∗, y − x〉 ≥ 0.

Theorem 3.1. [22, 23] Let X be a Banach space andf : X 7→ R ∪ {+∞} a
l.s.c. function. And consider the following assertions

i) f is quasiconvex.
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ii) ∂f is quasimonotone.

Theni) impliesii) if ∂f ⊂ ∂†f . Andii) impliesi) if X is ∂-reliable.

Forx0 ∈ X, set

L(x0) = {x ∈ X; f(x) = f(x0)}.

Then we have

Proposition 3.2. LetX be a Banach∂-reliable space, andf a l.s.c. quasicon-
vex function such that∂f ⊂ ∂†f . If for x0 ∈ X there existsr > 0 with

0 6∈ ∂f(x), for all x ∈ B(x0, r) ∩ L(x0),

then we have
[∂f(x0)]

◦◦ ⊂ N(Sf (f(x0)); x0),

whereN(Sf (f(x0)); x0) is the normal cone to the lower level setSf (f(x0)) at
the pointx0.

Proof. Suppose by contradiction that there existsv such that

v ∈ [∂f(x0)]
◦◦ and v 6∈ N(Sf (f(x0)); x0).

We can check that

Cl(R+co(∂f(x0))) = [∂f(x0)]
◦◦.
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So, we can suppose without loss of generality thatv = x∗0 ∈ ∂f(x0). Then, we
can find somex1 ∈ Sf (x0) such that

(3.1) 〈x∗0, x1 − x0〉 > 0.

We claim thatf(x0) = f(x1). Otherwise by Lemma2.2, there existsc ∈
[x1, x0[ and two sequencescn→fc andc∗n ∈ ∂f(cn) with

〈c∗n, x0 − cn〉 > 0.

By using the quasimonotonicity of∂f we have:

〈x∗0, x0 − cn〉 ≥ 0.

Then, lettingn → +∞ we get

〈x∗0, x0 − c〉 ≥ 0.

It follows that
〈x∗0, x0 − x1〉 ≥ 0.

A contradiction with (3.1), thusf(x0) = f(x1).

Now, set Vx1 = {x ∈ X : 〈x∗0, x− x0〉 > 0}.
Vx1 is an open neighborhood ofx1 and using the same argument as above we

can check thatx1 is a minimum off onVx1, and that

xλ = x0 + λ(x1 − x0) ∈ Vx1 andf(xλ) = f(x0) for anyλ ∈]0, 1[.

Then there existsr > 0 andλ̄ ∈]0, 1[ such thatxλ̄ is a global minimum off on
B(x0, r) ∩ Vx1. Therefore0 ∈ ∂f(xλ̄), which is impossible.
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The former proposition extends some already known results for differen-
tiable functions (see for instance [5]). If we denote byT (Sf (f(x); x), the tan-
gent cone of the lower level convex setSf (f(x)) at the pointx ∈ X, then

T (Sf (f(x)); x) = [N(Sf (f(x)); x)]◦.

A sufficient condition that allows us to obtain the equality in Proposition3.2 is
stated in the following proposition

Proposition 3.3. Under the hypothesis of Proposition3.2and if

[∂f(x)]◦ ⊂ T (Sf (f(x)); x).

Then we have
N(Sf (f(x)); x) = [∂f(x)]◦◦.

Proof. By the bipolar theorem [4] one has

[∂f(x)]◦◦ ⊃ N(Sf (f(x)); x).

And from Proposition3.2, the equality immediately holds.

The following condition

N(Sf (f(x)); x) = [∂f(x)]◦◦,

is in fact a certain kind of regularity condition, which holds only for a sub-
class of quasiconvex functions. Another abstract aproach was developed in [15]
based on Crouzeix’s representation theorem [6] who obtained a similar equality
for his quasi-subdifferential.
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Consider the multifunctionΓ from X to X∗ defined by

Γ(x) = N(Sf (f(x)); x), for x ∈ X.

Then by using Proposition3.3, we obtain

Proposition 3.4. Let X be a Banach∂-reliable space,f a l.s.c. quasiconvex
function. If for anyx ∈ X, ∂f(x) is nonempty such that

(∂f(x))◦ ⊂ T (Sf (f(x)); x).

Then, the multifunctionΓ is quasimonotone.

Proof. Sincef is quasiconvex, by Theorem3.1 ∂f is quasimonotone. Using
Proposition 2.8 of [12], it follows easily that the multifunctionx 7→ [∂f(x)]◦◦

is quasimonotone. Then by Proposition3.3, Γ is also quasimonotone.
It follows thatΓ is quasimonotone.

A particular case of this proposition when∂ coincides with the Clarke-
Rockafellar subdifferential∂CR, was treated in [13], whose exact statement is
the following.

Proposition 3.5. Let X be a Banach space,f a l.s.c. function fromX to R ∪
{+∞} such that∂CRf(x) is nonempty and0 6∈ ∂CRf(x) for all x ∈ X.

If f is quasiconvex then the multifunctionΓ is quasimonotone.
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3.2. Pseudoconvexity and Subdifferential Properties

The original definition of pseudoconvexity was introduced by Mangazarian in
[21] for differentiable functions. This concept was exended later by many au-
thors (see for instance [17, 22, 24]) for arbitrary functions. We will here use the
following form:

A function f is said to be pseudoconvex for the subdifferential∂ if for any
x, y ∈ X:

∃x∗ ∈ ∂f(x) : 〈x∗, y − x〉 ≥ 0 =⇒ f(x) ≤ f(y).

A multifunctionA : X → X∗ is said to be pseudomonotone if for every pair of
distinct pointsx, y ∈ X

∃x∗ ∈ A(x) : 〈x∗, y − x〉 > 0 then, ∀y∗ ∈ A(y), 〈y∗, y − x〉 > 0.

As in the differentiable case, every pseudoconvex function satisfies the funda-
mental properties:

• every local minimum off is global.

• 0 ∈ ∂f(x) implies thatx is a global minimum off .

Another interesting property extending a result of [8] where it was stated for
the Clarke-Rockafellar subdifferential is the following.

Proposition 3.6. Let X be a Banach∂-reliable andf : X 7→ R ∪ {+∞} be
a l.s.c. function and pseudoconvex function such that∂f ⊂ ∂†f , let x, y ∈ X.
Then the existence ofx∗ ∈ ∂f(x) verifying〈x∗, y−x〉 > 0 impliesf(x) < f(y).
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Proof. Let x, y ∈ X such that〈x∗, y − x〉 > 0 for somex∗ ∈ ∂f(x), then there
existsε > 0 such that

〈x∗, y′ − x〉 > 0, ∀y′ ∈ B(y, ε).

By the pseudoconvexity off , we havef(y′) ≥ f(x).
In particular,f(y) ≥ f(x). If we suppose by contradiction thatf(y) = f(x),

theny must be a global minimum. On the other hand, sincef †(x, y − x) > 0
then, there exist two sequencesxn → x, tn → 0+ such that

tn
−1

[
f(xn + tn(y − xn)− f(xn))

]
> 0.

By the quasiconvexity of the functionf (see for instance the proof of Proposi-
tion 2.2 in [8]), we getf(y) > f(xn) which is impossible.

We use this proposition to prove a known result for the Clarke-Rockafellar
subdifferential for bigger subdifferentials

Theorem 3.7. Let X be a∂-reliable space andf : X 7→ R ∪ {+∞} a l.s.c.
function such that∂f ⊂ ∂†f . And consider the following assertions

i) f is pseudoconvex.

ii) ∂f is pseudomonotone.

Then,i) impliesii) . Andii) impliesi) if f is radially continuous.

Proof. The implicationii) =⇒ i) is in [23]. For i) =⇒ ii) , suppose by contradic-
tion that there existx, y ∈ X, such that there existx∗ ∈ ∂f(x) andy∗ ∈ ∂f(y)
verifying

〈x∗, y − x〉 > 0 and 〈y∗, y − x〉 ≤ 0.
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Then, from Proposition3.5and the pseudoconvexity off we have

f(x) < f(y) and f(y) ≤ f(x).

A contradiction.

Now, we state a similar result to Proposition3.2for pseudoconvex functions.

Proposition 3.8. Let X be a Banach∂-reliable space with∂ ⊂ ∂†, f a l.s.c.
and pseudoconvex function fromX to R ∪ {+∞}. Then we have

[∂f(x)]◦◦ ⊂ N(Sf (f(x)); x).

Proof. Let x∗ ∈ ∂f(x) and suppose by contradiction thatx∗ 6∈ N(Sf (f(x)); x).
Then, there existsy ∈ Sf (f(x)) such that〈x∗, y−x〉 > 0 for somex∗ ∈ ∂f(x).
It follows then by Proposition3.6thatf(y) > f(x), which is impossible.
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4. Optimality Conditions and Variational
Inequalities

4.1. Quasiconvex Programming

We recall the Minty variational inequality (we use the terminology of Gian-
nessi [9]) that we shall use for our subdifferential. It will be exploited to give
some conditions of optimality in nonlinear programming and necessary and suf-
ficient conditions for optimality in quasiconvex programming.

Let Γ be a multifunction fromX to X∗, S ⊂ X andx̄ ∈ S.
A point x̄ is a Minty equilibrium ofΓ if the following variational inequality

holds

(D) ∀x ∈ S, 〈γ(x), x− x̄〉 ≥ 0, ∀γ(x) ∈ Γ(x).

Suppose thatf is a l.s.c. function fromX to R ∪ {+∞} and consider the
following minimisation problem

(4.1) minimizef(x), subject tox ∈ C.

Then we have

Proposition 4.1. Let X be a Banach∂-reliable space. If̄x is a Minty equilib-
rium point of∂f , then we have

i) If S = X, thenx̄ is a global minimum off .

ii) If S = N , whereN is a convex open neighborhood ofx̄ thenx̄ is a local
minimum off .

http://jipam.vu.edu.au/
mailto:hassounia@hotmail.com
http://jipam.vu.edu.au/


On Generalized Monotone
Multifunctions with

Applications to Optimality
Conditions in Generalized

Convex Programming

A. Hassouni and A. Jaddar

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 26

J. Ineq. Pure and Appl. Math. 4(4) Art. 67, 2003

http://jipam.vu.edu.au

Proof. It is enough to prove (ii). Suppose by contradiction thatx̄ is not a solu-
tion of the program (4.1), then there existsx ∈ S such thatf(x) < f(x̄). By
Lemma2.2, there existsc ∈ [x, x̄[ and two sequencescn →f c, c∗n ∈ ∂f(cn)
with

〈c∗n, d− cn〉 > 0,

for anyd = c + t(x̄− x) wheret > 0.
SinceS is a convex open neighborhood ofx̄ then[x, x̄] ⊂ S. Furthermore,

for n large enoughcn ∈ S.
In the particular case whered = x̄, we have:

〈c∗n, x̄− cn〉 > 0.

A contradiction with the variational inequality (D), thusx̄ is a local minimum
of f .

This proposition extends Theorem 2.2 of [18] for nondifferentiable optimiza-
tion problems.

If in the problem (4.1), the functionf to be minimized is l.s.c. and quasi-
convex, then we have

Theorem 4.2.LetX be a Banach∂-reliable, andf be a l.s.c. and quasiconvex
function such that∂f ⊂ ∂†f , and x̄ ∈ S. If S = N , whereN is an open
and convex neighborhood of̄x or S = X, then the following assertions are
equivalent

i) x̄ is an optimal solution of (4.1).

ii) x̄ is a Minty equilibrium point of∂f .
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Proof. ii) =⇒i) is obtained from Proposition4.1. Let us show that
i) =⇒ ii) . Assume that̄x is a strict minimum of (4.1), then for allx ∈ S such
thatx 6= x̄ we havef(x) > f(x̄).

According to Lemma2.2, there existc ∈ [x̄, x[, cn →f c andc∗n ∈ ∂f(cn)
such that

〈c∗n, d− cn〉 > 0,

for all d = c + t(x− x̄) wheret > 0.
Whend = x, we obtain that

〈c∗n, x− cn〉 > 0.

f being quasiconvex, by Theorem2.1, ∂f is quasimonotone. It follows then
that

for all x∗ ∈ ∂f(x), 〈x∗, x− x̄〉 ≥ 0.

Hence,∂f satisfies the variational inequality (D).
Suppose that we are in the case wherex̄ is not a strict minimum of (4.1) and

let us consider the functionfx̄ defined by

fx̄(x) = max{f(x), f(x̄)},

and defineh by

(4.2) h(x) =

{
fx̄(x) for x 6= x̄

ν for x = x̄
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whereν < f(x̄). We see easily thath is l.s.c. and quasiconvex and thatx̄ is a
strict local minimum ofh. Then, we have

∀x 6= x̄ 〈x∗, x− x̄〉 ≥ 0, ∀x∗ ∈ ∂h(x).

From(P3), we get∂f(x) = ∂h(x).

In the case when0 is in the interior of∂f(x̄), i.e. 0 ∈ int(∂f(x̄)), we have
the more precise result

Proposition 4.3. LetX be a∂-reliable space andf : X 7→ R ∪ {+∞} a l.s.c.
and quasiconvex function. If0 ∈ int(∂f(x̄)) thenx̄ is a Minty equilibrium point
of ∂f . Moreoverx̄ is a global minimum off .

Proof. Assume that0 ∈ int(∂f(x)) then

there existsε > 0 such thatBX∗(0, ε) ⊂ ∂f(x),

where
BX∗(0, ε) = {x∗ ∈ X∗ : ‖x∗‖ < ε}.

Let d ∈ X such thatd 6= 0 and consider the linear mapping`d defined by

`d(x
∗) = 〈x∗, d〉, for x∗ ∈ X∗.

By the open mapping Theorem [4] one has

〈BX∗(0, ε), d〉 ⊂ 〈∂f(x), d〉.

Sincef is quasiconvex, then∂f is quasimonotone.
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We already know by Definition 2.1 of [12] that the multifunction∂fx,d de-
fined by

∂fx,d(λ) = 〈∂f(x + λd), d〉,

is quasimonotone, and we can see easily that

〈λd, ∂f(x + λd)〉 ⊂ R+,

for all λ ∈ R andd ∈ X \ {0}, thus (D) holds for∂f .

4.2. Pseudoconvex Programming

For the pseudoconvex functionf , we shall get necessary and sufficient condi-
tions for a point̄x to be a global extremum off over a convex setC.

First consider the problem (4.1), with f is pseudoconvex, l.s.c. and radially
continuous, then we have

Theorem 4.4.LetX be a Banach space∂-reliable, andf a pseudoconvex l.s.c.
such that∂f ⊂ ∂†f , and letx̄ ∈ C. Then the following assertions are equiva-
lent

i) x̄ is an optimal solution of (4.1).

ii) (D) holds.

Proof. Suppose that̄x is a solution of (4.1), then by Proposition3.6, if f(x̄) ≤
f(x), then we must have

∀x∗ ∈ ∂f(x), 〈x∗, x̄− x〉 ≤ 0.
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This means that the variational inequality(D) holds.
Converesly, letx ∈ C such thatx 6= x̄ then for somey ∈ (x̄, x), we have

∀y∗ ∈ ∂f(y), 〈y∗, x̄− y〉 ≤ 0.

It follows that
∀y∗ ∈ ∂f(y), 〈y∗, x− y〉 ≤ 0.

Since∂f(y) is nonempty and from the pseudoconvexity off we have

f(y) ≤ f(x), ∀y ∈ (x̄, x).

But sincef is s.c.i., thenf(x̄) ≤ f(x).

We now proceed to the maximisation problem

(4.3) maximizef(x), subject tox ∈ C.

For z ∈ C, we denote by

Cz = {x ∈ C; f(x) = f(z)}.

Then we have

Theorem 4.5. Let X be a∂-reliable space andf a pseudoconvex, l.s.c. and
radially continuous such that for anyx in C, ∂f(x) is nonempty and∂f(x) ⊂
∂†f(x). Let x̄ ∈ C such that

−∞ ≤ inf
C

f < f(x̄).

Thenx̄ is a maximum off onC if and only if

for all x ∈ Cx̄, ∂f(x) ⊂ N(C, x).
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Proof. Suppose that
f(y) ≤ f(x̄); ∀y ∈ C.

By Proposition3.6we have:

for all x ∈ Cx̄, ∂f(x) ⊂ N(C, x).

Conversely, by contradiction assume that there existsz̄ ∈ C such that

f(z̄) > f(x̄).

Since by hypothesis, we can find somez ∈ C with f(z) < f(x̄).
By the radial continuity off , there exists somex0 ∈ (z, z̄) such that

f(x0) = f(x̄).

It follows then that

for all x∗0 ∈ ∂f(x0), 〈x∗0, z − x0〉 = 0.

Sincef is pseudoconvex then,f(x0) ≤ f(z), a contradiction.
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