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Abstract

Characterization of quasiconvexity and pseudoconvexity of lower semicontin-
uous functions on Banach spaces are presented in terms of abstract subdif-
ferentials relying on a Mean Value Theorem. We give some properties of the
normal cone to the lower level set of f. We also obtain necessary and suffi-
cient optimality conditions in quasiconvex and pseudoconvex programming via
variational inequalities.
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It is natural in convex analysis to search for characterizations of generalized
convex functions in terms of some kind of generalized derivatives or subdif-
ferentials. Several contributions to this question has been made recently. The
reader may consult for example, |5, 11, 13, 16, 2(] for quasiconvex functions

and [, 8, 21, 23, 25] for pseudoconvex functions.

In this paper, we shall define an abstract subdifferential as,in=] which
allows us to extend some results in P, 8, 23] and to give some properties of
the normal cone to lower level sets of a given functfon

Notice that the conditiof € df(z) for z € X, is known to be a necessary
but not a sufficient optimality condition in quasiconvex programming for some
subdifferentials. We give, using some variational inequalities, a necessary and
sufficient condition for a point to be either a local or a global minimum.

After the introduction of some notations and definitions in Secfipwe
present in Sectio® some properties of the abstract subdifferential and normal
cone to lower level sets of quasiconvex and pseudoconvex functions. Then, in
Sectior4, we give some optimality conditions involving variational inequalities.
This should extend our previous results stated for quasiconvex lower semicon-
tinuous functions on Banach spaces with the Clarke-Rockafellar subdifferential

in[17).
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Let X be a real Banach spac¥; its dual and-, -) the duality pairing between
X*andX. The segmeniu, b] is the sef{a + t(b —a); t € [0, 1]} while [a, )]
is the sefa, b] \ {b}. The open ball with center and radius- in X is denoted
by B(z,r), and the polar cone of a nonempty subdedf X is

A° ={a" € X7,

(x*;a) <0, Vae A},

For an extended real valued functign X — RU{+oc}, the effective domain
is defined by
dom(f) ={z € X; f(x) < oo}.

We write I.s.c. for lower semicontinuous, ang—;r whenz, — x and

fan) — f(x).

The abstract subdifferential we consider here is defined as follows:

Definition 2.1. An operatorg that associates to any l.s.c. functign: X +—
R U {+0c0} and a pointr € X a subset f(x) of X* is a subdifferential if the
following assertions hold:

(P1) 0f(zx) = {2 € X~
iS convex.

fy) = f(z) +(z*,y—x) Vye X} whenf

(P2) If z € dom f is a local minimum off, then0 € Jf(x).

(P3) df(x) = dg(x), for anyg : X — R U {400} such thatf — g is constant
in a neighborhood of:.

(P4) 0f(x) = 0, for anyx € X such thatf(z) = +oo.
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It is well known that the Clarke-Rockafellar subdifferenti#l? f satisfies
Zagrodny’'s Mean value theoremij]. In order to extend this theorem to our
subdifferential, we shall deal with a particular space associatedonithled
O-reliable.

Definition 2.2. [23]. A Banach space is 0-reliable if for each I.s.c. function
f: X — RU {+o0}, for any Lipschitz convex functignand anyx € dom f
such thatf + g achieves its minimum iX and eacte > 0 we have:

0e 8f (u) + 89(@) + (c;Bi"(())7 On Generalized Monotone

Multifunctions with
Applications to Optimality

_ Conditions in Generalized
for someu,v € B.(x) such thatf(u) — f(v)] < e. oo o

In the case of the Clarke-Rockafellar subdifferentiaf® [2¢] or lofee subd-
ifferential 97 [7], any Banach space &reliable.
In the sequel, we will restrict ourselves to subdifferentials that are included

A. Hassouni and A. Jaddar

in the dag subdifferential Title Page
Contents
ot ={r" e X" (a50) <[l Yo e X
@)= {a" € X" (a"0) < fM(av) WoeX), ——
where < >
fi(a,v) = limsup 7' (f(y +t(v+z—y) = f(y)).
(t,y)—(0+,2) Go Back
This subdifferential was introduced by Penot (sed)] it is large enough to Close
contain the Clarke-Rockafelld@“” and Upper Dinio”+ subdifferentials and Quit
still has good properties.
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Theorem 2.1.[27]. Let X be ao-reliable space and : X — RU {+} a
l.s.c. function. For any. € dom f, b € X \ {a}, 5 < b, there exists a sequence
¢, in X converging to some € [a, b) and a sequence, € Jf(c,) such that for
anyl’ = c+t(b— a), witht > 0 we have:

i) liminf, (ci,b—a) > 5 — f(a),
i) iminf, (¢}, c—c,) >0,
i) T inf, (e, = ~ ) > 6~ fla).

Following the methods ofl, 16, 2(], we get a similar lemma for our abstract
subdifferential, which is immediate by Theoreéhi.

Lemma 2.2. Let X be a Banach)-reliable space,f a l.s.c. function. Let
a,b € X with f(a) < f(b) then there existe € [a,b] and two sequences
cn — ¢, ¢, € 0f(c,) with

(¢, x—cy) >0,

n’

foranyx = c+t(b— a) witht > 0.

Proof. Let a,b € X with f(a) < f(b), then we can find by Theorem1,
¢ € [a,b[ and two sequences — ¢, ¢ € df(c,) with

liminf(c},c—c,) >0,
and
liminf(c;,b—a) > f(b) — f(a) > 0.

n
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Forz = c+t(b—a)witht > 0, we have

(cr,x—cp) = (ch,c—cy) +t{(c,b—a).

It follows that
liminf(c},z — ¢,) > 0.

Hence, fom large enough, we have that

(cq,x—cy) > 0.
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We recall the characterization of quasiconvex functiongaf? ). It will allow

us to extend and generalize some properties of the normal cone to the lower level

setgivenin [2, 17] to a more general setting.

Indeed, forf : X — RU{+o0} al.s.c. functionf is said to be quasiconvex
if for everyz,y € X andX € [0, 1] one has

fQz+ (1= A)y) <max{f(z), f(y)}.

And denoting by
Si(N) ={zeX; fla)<A})

Quasiconvexity is geometrically equivalent to the fact that\) is a convex
set for allA € R. In the above one could use the strict level sets as well.

Recall that a multifunctio : X — X* is said to be quasimonotone if for
every pair of distinct points, y € X:

Jdz* € A(z), suchthat(z*,y — x) > 0 then, Vy* € A(y), (y*,y —x) > 0.

Theorem 3.1.[22, 23] Let X be a Banach space anfl: X — RU {+oc0} a
I.s.c. function. And consider the following assertions

i) fis quasiconvex.
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i) df is quasimonotone.
Theni) impliesii) if 0f c o7 f. Andii) impliesi) if X is d-reliable.
Forxzy € X, set
L(zo) ={z € X; f(z) = f(zo)}-
Then we have

Proposition 3.2. Let X be a Banactd-reliable space, ang a l.s.c. quasicon-
vex function such thatf c o f. If for x, € X there exists > 0 with
0&0f(x), forallze B(xg,r)N L(xo),

then we have
[0f (0)]7° C N(S¢(f(20)); o),

whereN (S¢(f(zo)); zo) is the normal cone to the lower level set( f(z)) at
the pointz,.

Proof. Suppose by contradiction that there exissuch that
v e [0f(x)]° and v ¢& N(S¢(f(z0));xo).

We can check that

Cl(Ryco(Df (w0))) = [0 (0)]*".
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So, we can suppose without loss of generality that z§ € 0f(x). Then, we
can find some:; € Sy(x() such that

(3.1) (@, x1 — x0) > 0.

We claim thatf(zy) = f(x;). Otherwise by Lemm&.2, there exists: €
[z1, zo[ and two sequences— yc andc], € df(c,) with

(¢, w9 — cn) > 0.

On Generalized Monotone

By using the quasimonotonicity off we have: Multifunctions with
Appli(_:gtiong to Optimglity
(25,20 — ) 2 0.
Then, Iettingn — +oo we get A. Hassouni and A. Jaddar
g, ro —c) > 0.
(6, 7o )z Title Page
It follows that Contents
(xg, 29 — x1) > 0.

A contradiction with 8.1), thusf(z¢) = f(x1). 4 dd
Now, set V,, ={r e X : (z{,z —zo) > 0}. 4 >
V;, isan open nelgh_bprhood of and using the same argument as above we Go Back

can check that; is a minimum off onV,,, and that |

Close
xy =20+ Nay —xg) €V, andf(zy) = f(xo) forany €0, 1]. Quit
Then there exists > 0 and) €]0, 1] such thatr; is a global minimum off on Page 10 of 26
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The former proposition extends some already known results for differen-
tiable functions (see for instance]]. If we denote byI'(Sy(f(z); ), the tan-
gent cone of the lower level convex s&t( f(z)) at the pointz € X, then

T(S;(f(@)); ) = [N(Sy(f(2)); 2)]".

A sufficient condition that allows us to obtain the equality in Proposiidhis
stated in the following proposition

Proposition 3.3. Under the hypothesis of Propositi@2 and if
[0f (x)]° C T(Sy(f(x)); ).

Then we have

N(S(f(2)); ) = [0f (x)]*.
Proof. By the bipolar theorem/] one has

[0f (2)]*° D N(S¢(f(2)); z).
And from Propositior8.2, the equality immediately holds.

The following condition

N(Ss(f(x));x) = [0f ()],

is in fact a certain kind of regularity condition, which holds only for a sub-
class of quasiconvex functions. Another abstract aproach was developéedl in [
based on Crouzeix’s representation theorehwho obtained a similar equality
for his quasi-subdifferential.
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Consider the multifunctiof’ from X to X* defined by

P(z) = N(Sp(f(2)); ),

Then by using Propositiod.3, we obtain

forx € X.

Proposition 3.4. Let X be a Banaclo-reliable space,f a l.s.c. quasiconvex
function. If for anyz € X, 0f(x) is nonempty such that

(0f(x))° € T(Sp(f(x)); ).
Then, the multifunctioil is quasimonotone.

Proof. Since f is quasiconvex, by Theore®1 0f is quasimonotone. Using
Proposition 2.8 of 77, it follows easily that the multifunction: — [0 f(z)]°°
is quasimonotone. Then by Propositi®s3, I is also quasimonotone.

It follows thatI" is quasimonotone. O

A particular case of this proposition wheh coincides with the Clarke-
Rockafellar subdifferentiad“?, was treated in13], whose exact statement is
the following.

Proposition 3.5. Let X be a Banach spacg, a |.s.c. function fromX to R U
{400} such that)“% f(x) is nonempty and ¢ 9“% f(x) forall z € X.
If fis quasiconvex then the multifunctibnis quasimonotone.

On Generalized Monotone
Multifunctions with
Applications to Optimality
Conditions in Generalized
Convex Programming

A. Hassouni and A. Jaddar

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 12 of 26

J. Ineq. Pure and Appl. Math. 4(4) Art. 67, 2003

httrn//itinarm vit odir ann


http://jipam.vu.edu.au/
mailto:hassounia@hotmail.com
http://jipam.vu.edu.au/

The original definition of pseudoconvexity was introduced by Mangazarian in
[21] for differentiable functions. This concept was exended later by many au-
thors (see for instance. [, 22, 24]) for arbitrary functions. We will here use the
following form:

A function f is said to be pseudoconvex for the subdifferentia for any
z,y € X:

dzt €0f(z): (" y—2) =20 = f(z) < f(y)

A multifunction A : X — X* is said to be pseudomonotone if for every pair of
distinct pointsr,y € X

dz* € A(z) : (z*,y —x) >0 then, Vy* € A(y), (v",y —x) > 0.

As in the differentiable case, every pseudoconvex function satisfies the funda-

mental properties:

e every local minimum off is global.

e 0 € Of(z) implies thatz is a global minimum off.

Another interesting property extending a result&ffhere it was stated for
the Clarke-Rockafellar subdifferential is the following.

Proposition 3.6. Let X be a Banacho-reliable andf : X — R U {+oc} be
a l.s.c. function and pseudoconvex function suchdifatz o' f, letz,y € X.
Then the existence of € 0f(x) verifying(z*, y—z) > 0impliesf(z) < f(y).
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Proof. Letz,y € X such thatz*,y — ) > 0 for somez* € 0f(z), then there
existse > 0 such that

(x*,y —x) >0, Vy € B(y,e).

By the pseudoconvexity of, we havef (y') > f(x).

In particular,f(y) > f(z). If we suppose by contradiction thaty) = f(x),
theny must be a global minimum. On the other hand, sifiter,y — =) >
then, there exist two sequences— z,t,, — 01 such that

t,~! [f(*Tn + iy — @p) — f(xn))} > 0.

By the quasiconvexity of the functiofi (see for instance the proof of Proposi-
tion 2.2 in []), we getf(y) > f(x,) which is impossible. O

We use this proposition to prove a known result for the Clarke-Rockafellar
subdifferential for bigger subdifferentials

Theorem 3.7.Let X be ao-reliable space andf : X — R U {400} al.s.c.
function such thadf c o7 f. And consider the following assertions

i) fis pseudoconvex.
i) df is pseudomonotone.
Then,i) impliesii). Andii) impliesi) if f is radially continuous.

Proof. The implicationii) = i) isin [23]. Fori) = i), suppose by contradic-
tion that there exist, y € X, such that there exist* € 9f(z) andy* € df(y)
verifying

(z*;y—2) >0 and (y*,y—x) <O0.
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Then, from PropositioB.5and the pseudoconvexity gfwe have

flx) < fly) and f(y) < f(=).

A contradiction. O]

Now, we state a similar result to Propositi®r2 for pseudoconvex functions.

Proposition 3.8. Let X be a Banach-reliable space with) c 91, f al.s.c.
and pseudoconvex function frafhto R U {+oc}. Then we have

[0 ()] € N(Sy(f(2)); )-

Proof. Letz* € 0f(z) and suppose by contradiction thétZ N (S¢(f(x)); ).
Then, there existg € S¢(f(x)) such thatz*,y —z) > 0 for somez* € 0f(x).
It follows then by Propositiod.6that f(y) > f(x), which is impossible. [
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We recall the Minty variational inequality (we use the terminology of Gian-
nessi P]) that we shall use for our subdifferential. It will be exploited to give
some conditions of optimality in nonlinear programming and necessary and suf-

ficient conditions for optimality in quasiconvex programming.
LetI" be a multifunction fromX to X*, S C X andz € S.

A point z is a Minty equilibrium ofT" if the following variational inequality
holds

(D) VeeS, (y(x),z—1z)>0, Vy(z) € T'(x).

Suppose thaf is a l.s.c. function fromX to R U {+o00} and consider the
following minimisation problem

4.1) minimizef(z), subject tar € C.

Then we have

Proposition 4.1. Let X be a Banaclo-reliable space. Ifc is a Minty equilib-
rium point ofd f, then we have

i) If S = X, thenz is a global minimum of.

i) If S = N, whereN is a convex open neighborhood®thenz is a local
minimum off.
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Proof. It is enough to prove (ii). Suppose by contradiction thas not a solu-
tion of the program4.1), then there exists € S such thatf(z) < f(z). By
Lemma2.2, there exists: € [z, z[ and two sequences, —; ¢, ¢, € 0f(c,)
with
(¢ d—cp) >0,
foranyd = ¢+ t(z — x) wheret > 0.
SinceS is a convex open neighborhood othen|x, z] C S. Furthermore,
for n large enough,, € S.
In the particular case wherke= z, we have:
(¢, T —cp) > 0.

n’

A contradiction with the variational inequalit], thusz is a local minimum
of f. ]

This proposition extends Theorem 2.2 of] for nondifferentiable optimiza-
tion problems.

If in the problem ¢.1), the functionf to be minimized is |.s.c. and quasi-
convex, then we have

Theorem 4.2.Let X be a Banacld-reliable, andf be a l.s.c. and quasiconvex
function such thabf c 9'f, andz € S. If S = N, whereN is an open
and convex neighborhood afor S = X, then the following assertions are
equivalent

i) x is an optimal solution of4.1).

i) 7 is a Minty equilibrium point obf.
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Proof. ii) =i) is obtained from Propositiof.1. Let us show that
i) = ii). Assume that is a strict minimum of 4.1), then for allz € S such
thatx # = we havef(x) > f(z).

According to Lemma2.2, there exist € [z, z[, ¢, —f c andc) € df(c,)
such that

(c,d—cy) >0,

forall d = ¢ + t(z — ) wheret > 0.

Whend = x, we obtain that

(¢, —cp) > 0.

n’

f being quasiconvex, by Theoretnl, df is quasimonotone. It follows then
that
forall ™ € 0f(z), (", x —x) > 0.

Hence0f satisfies the variational inequalitip].
Suppose that we are in the case wherg not a strict minimum of4.1) and
let us consider the functiofy defined by

fo(x) = max{f(z), f(2)},
and defineh by

fz(x
(4.2) h(z) = { (@)

forz #£

v forz =1z
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whererv < f(z). We see easily that is |.s.c. and quasiconvex and thats a
strict local minimum ofh. Then, we have

Ve#z (x*,x—2)>0, Vz*e dh(x).
From(P3), we getof(z) = Oh(z). H

In the case whefi is in the interior ofo f(z), i.e. 0 € int(0f(z)), we have
the more precise result

Proposition 4.3. Let X be ao-reliable space and : X — RU {+c0} al.s.c.
and quasiconvex function. 0fe int(0f(z)) thenz is a Minty equilibrium point
of 0f. Moreoverz is a global minimum of.

Proof. Assume that € int(0f(z)) then
there exists > 0 such thatBx-(0,¢) C df(z),

where
Bx+(0,e) ={z" € X"

Letd € X such thatl # 0 and consider the linear mappifigdefined by

la*]] < e}

ly(z™) = (¥, d), forz™ € X*.

By the open mapping Theoreri][one has
(Bx+(0,¢),d) C (0f(x),d).

Sincef is quasiconvex, thefif is quasimonotone.
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We already know by Definition 2.1 ofi{] that the multifunctiorof, ; de-
fined by

Ofr.a(A) = (0f (x + \d),d),
is quasimonotone, and we can see easily that

(A, Of(z + Ad)) C R,

forall A € Randd € X \ {0}, thus ) holds forof. O
On Generalized Monotone
Multifunctions with
Applications to Optimality
Conditions in Genera_lized
For the pseudoconvex functigfy we shall get necessary and sufficient condi- Convex Programming
tions for a pointz to be a global extremum gf over a convex sef'. A. Hassouni and A. Jaddar
First consider the problend (1), with f is pseudoconvex, |.s.c. and radially
continuous, then we have Title Page
Theorem 4.4.Let X be a Banach spacg-reliable, andf a pseudoconvex |.s.c. Contents
such thatof C o' f, and letz € C. Then the following assertions are equiva-
N : . < >
i) x is an optimal solution of4.1).
. Go Back
i) (D) holds.
Close
Proof. Suppose that is a solution of ¢.1), then by PropositioR.6, if f(z) < Quit

f(z), then we must have
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This means that the variational inequality) holds.
Converesly, let: € C such that: # z then for some; € (z, z), we have

vy € 0f(y), (v, z—y) <0.
It follows that
vyt € 0f(y), (¥, x—y) <0.
Sincedf(y) is nonempty and from the pseudoconvexityfofre have
fy) < flx), Vye(z,2).
But sincef is s.c.i., thenf(z) < f(z). O

We now proceed to the maximisation problem
(4.3)

Forz € C, we denote by

C.={zeC; [f(x)=f(2)}

maximizef(x), subject tar € C.

Then we have

Theorem 4.5. Let X be ao-reliable space andg a pseudoconvex, l.s.c. and
radially continuous such that for anyin C, 0f(x) is nonempty and f(z) C
o' f(z). Letz € C such that

—o00 < irc1ff < f(z).
Thenz is a maximum of on C'if and only if

forallz € Cz, Of(x) C N(C,x).
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Proof. Suppose that
fly) < flx); vyedl.
By Proposition3.6 we have:

forallz € C;, 0f(x) C N(C,z).
Conversely, by contradiction assume that there exisgt” such that
f(z) > f(@).

Since by hypothesis, we can find some C with f(z) < f(z).
By the radial continuity off, there exists some, € (z, z) such that

f(xo) = f(2).
It follows then that
forall xj € 0f(x0), (x(,2 — x0) = 0.

Sincef is pseudoconvex therf(xy) < f(z), a contradiction.
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