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Abstract

The notion the spread of a matrix was first introduced fifty years ago in algebra.
In this article, we define the spread of the shape operator by applying the same
idea to submanifolds of Riemannian manifolds. We prove that the spread of
shape operator is a conformal invariant for any submanifold in a Riemannian
manifold. Then, we prove that, for a compact submanifold of a Riemannian
manifold, the spread of the shape operator is bounded above by a geometric
quantity proportional to the Willmore-Chen functional. For a complete non-
compact submanifold, we establish a relationship between the spread of the
shape operator and the Willmore-Chen functional. In the last section, we ob-
tain a necessary and sufficient condition for a surface of rotation to have finite
integral of the spread of the shape operator.

2000 Mathematics Subject Classification: 53B25, 53B20, 53A30.
Key words: Principal curvatures, Shape operator, Extrinsic scalar curvature, Sur-
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1. Introduction
In the classic matrix theoryspread of a matrixhas been defined by Mirsky in [7]
and then mentioned in various references, as for example [6]. Let A ∈ Mn(C),
n ≥ 3, and letλ1, . . . , λn be the characteristic roots ofA. The spreadof A is
defined to bes(A) = maxi,j |λi−λj|. Let us denote by||A|| the Euclidean norm
of the matrixA, i.e.: ||A||2 =

∑m,n
i,j=1 |aij|2. We use also the classical notation

E2 for the sum of all 2-square principal subdeterminants ofA. If A ∈ Mn(C)
then we have the following inequalities (see [6]):

(1.1) s(A) ≤
(

2||A||2 − 2

n
|trA|2

) 1
2

,

(1.2) s(A) ≤
√

2||A||.

If A ∈ Mn(R), then:

(1.3) s(A) ≤
[
2

(
1− 1

n

)
(trA)2 − 4E2(A)

] 1
2

,

with equality if and only ifn− 2 of the characteristic roots ofA are equal to the
arithmetic mean of the remaining two.

Consider now an isometrically immersed submanifoldMn of dimension
n ≥ 2 in a Riemannian manifold(M̄n+s, ḡ). Then the Gauss and Weingarten
formulae are given by

∇̄XY = ∇XY + h(X, Y ),
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∇̄Xξ = −AξX + DXξ,

for everyX, Y ∈ Γ(TM) andξ ∈ Γ(νM). Take a vectorη ∈ νpM and con-
sider the linear mappingAη : TpM → TpM. Let us consider the eigenvalues
λ1

η, . . . , λ
n
η of Aη. We put

(1.4) Lη(p) = sup
i=1,...,n

(λi
η)− inf

i=1,...,n
(λi

η).

Lη is the spread of the shape operator in the directionη. We definethe spread
of the shape operator at the pointp by

(1.5) L(p) = sup
η∈νpM

Lη(p).

SupposeM is a compact submanifold of̄M.

Let us remark that whenM2 is a surface we have

L2
ν(p) = (λ1

ν(p)− λ2
ν(p))2 = 4(|H(p)|2 −K(p)),

whereν is the normal vector atp, H is the mean curvature, andK is the Gaus-
sian curvature. In [1] it is proved that for a surfaceM2 in E2+s the geometric
quantity(|H|2−K)dV is a conformal invariant. As a corollary, one obtains for
an orientable surface inE2+s thatL2

νdV is a conformal invariant.
Let ξn+1, . . . , ξn+s be an orthonormal frame in the normal fibre bundleνM.

Let us recall the definition ofthe extrinsic scalar curvaturefrom [2]:

ext =
2

n(n− 1)

s∑
r=1

∑
i<j

λi
n+rλ

j
n+r.
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In [2] it is proved that for a submanifoldMn of a Riemannian manifold(M̄, ḡ),
the geometric quantity(|H|2 − ext)g is invariant under any conformal change
of metric. If M is compact (see also [2]), this result implies that forM , a
n-dimensional compact submanifold of a Riemannian manifold(M̄, ḡ), the ge-
ometric quantity

∫
(|H|2 − ext)

n
2 dV is a conformal invariant.

Let us prove the following fact.

Proposition 1.1. LetMn be a submanifold of the Riemannian manifold(M̄, ḡ).
Then the spread of the shape operator is a conformal invariant.

Proof. The context and the idea of the proof are similar to the one given in [3,
pp. 204-205]. Let us considerρ a nowhere vanishing positive function on̄M.
We have the conformal change of metric in the ambient spaceM̄ given by

ḡ∗ = ρ2ḡ.

Let us denote byh andh∗ the second fundamental forms ofM in (M̄, ḡ) and
(M̄, ḡ∗), respectively. Then we have (see [3]):

g(A∗
ξX, Y ) = g(AξX, Y ) + g(X,Y )ḡ(U, ξ),

whereU is the vector field defined byU = (dρ)#. Let e1, . . . , en be the princi-
pal normal directions ofAξ with respect tog. Thenρ−1e1, . . . , ρ

−1en, form an
orthonormal frame ofM with respect tog∗, and they are the principal directions
of A∗

ξ . Therefore

L∗(p) = sup
ξ∗∈νpM ;||ξ∗||∗=1

L∗
ξ∗
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= sup
ξ∗∈νpM ;||ξ∗||∗=1

(
sup

i=1,...,n
(λi

ξ)
∗ − inf

j=1,...,n
(λj

ξ)
∗
)

= sup
ξ∈νpM ;||ξ||=1

[
sup

i=1,...,n

(
λi

ξ + ḡ(U, ξ)
)
− inf

j=1,...,n

(
λj

ξ + ḡ(U, ξ)
)]

= sup
ξ∈νpM ;||ξ||=1

[
sup

i=1,...,n

(
λi

ξ

)
− inf

j=1,...,n

(
λj

ξ

)]
= L(p).

This proves the proposition.

WhenM is a surface, bothL andL2dV are conformal invariants.
Theshape discriminantof the submanifoldM in M̄ w.r.t. a normal direction

η was discussed in [9]. Let Aη be the shape operator associated with an arbitrary
normal vectorη atp. The shape discriminant ofη is defined by

(1.6) Dη = 2||Aη||2 −
2

n
(trace Aη)

2,

where||Aη||2 = (λ1
η)

2 + · · ·+ (λn
η )2, at every pointp ∈ M ⊂ M̄.

The following pointwise double inequality was proved in [9]:

(1.7) Dη

/(
n

2

)
≤ L2

η ≤ Dη,

We will use this inequality later on. The proof of this fact is algebraically related
to the proof of Chen’s fundamental inequality with classical curvature invariants
(see [4]). The alternate proof of this result is presented in [10].
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2. Geometric Inequalities on Compact
Submanifolds

In this section, we study the relationship between the spread of the shape oper-
ator’s spectrum and the conformal invariant from [2]. The main result is Propo-
sition2.1. For its proof we need a few preliminary steps.

Proposition 2.1. LetMn be a compact submanifold of a Riemannian manifold
M̄n+s. Then the following inequality holds:

(2.1)

(∫
M

LdV

)2

(vol(M))
n

2n−2 ≤ 2n(n− 1)

(∫
M

(|H|2 − ext)
n
2 dV

) 2
n

.

The equality holds if and only if eithern = 2 or M is a totally umbilical
submanifold of dimensionn ≥ 3.

Before presenting the proof, let us see what this inequality means. For any
conformal diffeomorphismφ of the ambient spacēM , the quantity(∫

φ(M)

LdVφ

)2

(vol(φ(M))
n

2n−2

is bounded above by the conformal invariant geometric quantity expressed in
(2.1).

First, let us prove the following.

Lemma 2.2. Let Mn ⊂ M̄n+s be a compact submanifold andp an arbitrary
point in M . Consider an orthonormal normal frameξ1, . . . , ξs at p and letDα

http://jipam.vu.edu.au/
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be the shape discriminant corresponding toξα, whereα = 1, . . . , s. Then we
have

(2.2)
1

2n(n− 1)

s∑
α=1

Dα = |H|2 − ext.

Proof. Since

H =
1

n

s∑
α=1

(
n∑

i=1

λi
α

)
ξα,

ext =
2

n(n− 1)

s∑
α=1

∑
i<j

λi
αλj

α,

we have

(2.3) |H|2 − ext =
1

n2

s∑
α=1

n∑
i=1

(λi
α)2 − 2

n2(n− 1)

s∑
α=1

∑
i<j

λi
αλj

α.

A direct computation yields

(2.4) Dα =
2(n− 1)

n

n∑
i=1

(λi
α)2 − 4

n

∑
i<j

λi
αλj

α.

Summing fromα = 1 to α = s in (2.4) and comparing the result with (2.3) one
may get (2.2).

From the cited result in [2] and the previous lemma, we have:

http://jipam.vu.edu.au/
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Corollary 2.3. If M is a compact submanifold in the ambient spaceM̄ , then∫
M

(
s∑

α=1

Dα

)n
2

dV

is a conformal invariant.

Let us remark that forn = 2 this is a well-known fact.

Lemma 2.4. Let M be a submanifold in the arbitrary ambient spacēM. With
the previous notations we have

4(|H|2 − ext) ≤
s∑
α

L2
α(p) ≤ 2n(n− 1)(|H|2 − ext)

at each pointp ∈ M . The equalities holds if and only if p is an umbilical point.

Proof. This is a direct consequence of Lemma2.2and (1.7).

Proof. We may prove now Proposition2.1. Letp be an arbitrary point ofM and
let η0 be a normal direction such thatL(p) = Lη0(p). Consider the completion
of η0 up to a orthonormal normal baseη0 = η1, . . . , ηs. Then we have

(2.5) L2(p) = L2
η0

(p) ≤
s∑

α=1

L2
α(p) ≤ 2n(n− 1)(|H|2 − ext).

By applying Hölder’s inequality, one has:(∫
M

LdV

)2

≤
(∫

M

L2dV

)
(vol(M)) .

http://jipam.vu.edu.au/
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Applying Hölder’s inequality one more time yields∫
M

(
|H|2 − ext

)
dV ≤

(∫
M

(
|H|2 − ext

)n
2 dV

) 2
n

(vol(M))
n−2

n .

Therefore, by using the inequality established in Lemma2.4, we have(∫
M

LdV

)2

≤
(∫

M

L2dV

)
(vol(M))

≤ 2n(n− 1)vol(M)

∫
M

(
|H|2 − ext

)
dV

≤ 2n(n− 1) (vol(M))
2n−2

n

(∫
M

(
|H|2 − ext

)n
2 dV

) 2
n

.

Let us discuss when the equality case may occur. We have seen that we get
an identity ifn = 2.

Now, let us assumen ≥ 3. The first inequality in (2.5) is equality atp if
there exists − 1 umbilical directions (i.e.Lα(p) = 0 for s = 2, . . . , n). The
second inequality in (2.5) is equality if and only ifp is an umbilical point (see
[9]). Finally, the two Hölder inequalities are indeed equalities if and only if
there exist real numbersθ andµ satisfyingL(p) = θ and |H|2 − ext = µ at
everyp ∈ M. The first equality conditions impose pointwiseL(p) = 0, which
yieldsθ = µ = 0. This means thatM is totally umbilical.
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3. The Noncompact Case
Let M be ann-dimensional noncompact submanifold of an(n+d)-dimensional
Riemannian manifold(M̄, g).

Proposition 3.1. LetMn ⊂ M̄n+d be a complete noncompact submanifold and
η1, . . . , ηd an orthonormal basis of the normal bundle. Suppose that

∑
λi

αλj
α ≥

0 andLα ∈ L2(M). Then∫
M

(|H|2 − ext)dV < ∞.

Proof. We use the inequality (1.7). It is sufficient to prove locally the inequality:

|H|2 − ext ≤
d∑

i=1

Di

This is true since, elementary, the following inequality holds:

(λ1
α)2+· · ·+(λd

α)2− 2n

n− 1

∑
i<j

λi
αλj

α≤2[(λ1
α)2+· · ·+(λd

α)2]− 2

n

{
d∑

i=1

(λi
α)

}2

.

This is equivalent to

n(n−1)
d∑

i=1

(λi
α)2 − 2n2

∑
i<j

λi
αλj

α≤2(n−1)2

d∑
i=1

(λi
α)2−4(n−1)

∑
i<j

λi
αλj

α

or

(n2 − 3n + 2)

{
d∑

i=1

(λi
α)2

}
+ 2(n2 − 2n + 2)

∑
i<j

λi
αλj

α ≥ 0,

http://jipam.vu.edu.au/
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which holds by using the hypothesis and thatn ≥ 2.

The inequality is theα-component of the invariant inequality we are going
to prove. By adding upd such inequalities and by considering the improper
integral onM of the appropriate functions, the conclusion follows. This is due
to ∫

M

(|H|2 − ext)dV ≤
∫

M

d∑
i=1

DidV ≤
(

n
2

) d∑
i=1

∫
M

L2
i dV

by the first inequality in1.7.

In the next proposition we establish a relation between
∫

M
[L(p)]2dV and the

Willmore-Chen integral
∫

M
(|H| − ext)dV, studied in [2].

Proposition 3.2. Let Mn ⊂ M̄n+d be a complete noncompact orientable sub-
manifold. IfL(p) ∈ L2(M), then

∫
M

(|H|2 − ext)dV < ∞.

Proof. By direct computation, we have:∫
M

(|H|2 − ext)dV =
1

n2(n− 1)

∫
M

d∑
α=1

∑
i<j

(λ1
α − λj

α)2dV(3.1)

≤ 1

n2(n− 1)

∫
M

d∑
α=1

∑
i<j

L2(p)dV

=
d

2n

∫
M

L2(p)dV.
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Let us discuss now two examples. First, let us considerthe catenoiddefined
by

fc(u, v) =
(
c cos u cosh

v

c
, c sin u cosh

v

c
, v
)

.

Using the classical formulas for example from [8] one finds:

λ1 = −λ2 =
1

c
cosh−2 v

c
.

Therefore, we have∫ ∞

−∞
L(p)dv =

∫ ∞

−∞

2

c
cosh−2 v

c
dv = 4

∫ ∞

−∞

etdt

e2t + 1
= 4π < ∞.

Let us considerthe pseudospherewhose profile functions are given by (see,
for example [5]):

c1(v) = ae−v/a

c2(v) =

∫ v

0

√
1− e−2t/adt

for 0 ≤ v < ∞. For simplicity, let us consider just the “upper” part of the
pseudosphere. We have

λ1 =
ev/a

a

√
1− e−2v/a,

λ2 = −
(
aev/a

√
1− e−2v/a

)−1

.
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Remark that:∫
M

LdV =

∫ ∞

0

et/a

a
√

1− e−2t/a
dt =

1

2

∫ ∞

1

dy√
y − 1

= ∞.

A natural question is to find a characterization for surfaces of rotation that
have finite integral of the spread of shape operator.

Consider surfaces of revolution whose profile curves are described asc(s) =
(y(s), s) (see, for example, [8]). Then we have the following.

Proposition 3.3. Let M be a surface of rotation in Euclidean3-space defined
by

f(s, t) = (y(s) cos t, y(s) sin t, s) .

Then the integral of the spread of the shape operator onM is finite if and only
if there exists an integrableC∞(R) functionf > 0 which satisfies the following
second order differential equation:

−yy′′ = 1 + (y′)2 ± f(s)y(1 + (y′)2)
3
2 .

Proof. For the proof, we use the classical formulas from [5, p. 228]. We have
for λ1 = kmeridian, and respectively forλ2 = kparallel :

λ1 =
−y′′

[1 + (y′)2]
3
2

,

λ2 =
1

y[1 + (y′)2]
1
2

.
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Then, the condition that the integral is finite means that there exists an integrable
functionf > 0 such that∫

R

|λ1 − λ2|ds =

∫
R

f(s)ds.

If we assume thatf ∈ C∞, then the equality between the function under the
integral holds everywhere and a straightforward computation yields the claimed
equality.

For example, for the catenoidf(s) = 0.
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[9] B. SUCEAVĂ, Some theorems on austere submanifolds,Balkan. J. Geom.
Appl., 2 (1997), 109–115.
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