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Abstract

The notion the spread of a matrix was first introduced fifty years ago in algebra.
In this article, we define the spread of the shape operator by applying the same
idea to submanifolds of Riemannian manifolds. We prove that the spread of
shape operator is a conformal invariant for any submanifold in a Riemannian
manifold. Then, we prove that, for a compact submanifold of a Riemannian
manifold, the spread of the shape operator is bounded above by a geometric
quantity proportional to the Willmore-Chen functional. For a complete non-
compact submanifold, we establish a relationship between the spread of the
shape operator and the Willmore-Chen functional. In the last section, we ob-
tain a necessary and sufficient condition for a surface of rotation to have finite
integral of the spread of the shape operator.

2000 Mathematics Subject Classification: 53B25, 53B20, 53A30.
Key words: Principal curvatures, Shape operator, Extrinsic scalar curvature, Sur-
faces of rotation
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In the classic matrix theorgpread of a matrixias been defined by Mirsky ini]
and then mentioned in various references, as for examplé¢t A € M, (C),

n > 3,and let\q, ..., \, be the characteristic roots df. The spreadof A is
defined to be(A) = max; ; |\; — \;|. Let us denote by A|| the Euclidean norm
of the matrix4, i.e.: [[A]|*> = 37", |a;;|*. We use also the classical notation
E, for the sum of all 2-square principal subdeterminantsloff A € M, (C)
then we have the following inequalities (se$){

@) s(a) < (24lP - 2jrap),

(12) 5(A) < V3||Al|.

If Ae M,(R), then:

(S

(1.3) S(A) < {2 (1 _ 1) (trA)? — 4E2(A)} ,

n
with equality if and only ifn — 2 of the characteristic roots of are equal to the
arithmetic mean of the remaining two.
Consider now an isometrically immersed submanifold of dimension

n > 2 in a Riemannian manifoldM"**, g). Then the Gauss and Weingarten
formulae are given by

VxY =VxY +h(X,Y),
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Vx&=—A:X + Dx¢,

foreveryX,Y € I'(TM) and¢ € I'(vM). Take a vector) € v, M and con-
sider the linear mapping,, : 7,M — T,M. Let us consider the eigenvalues
Aps -, A of A, We put

(1.4) Ly(p) = sup (X)) = inf (X).

L, is the spread of the shape operator in the directioe definethe spread
of the shape operator at the pointy

(1.5) L(p) = sup Ly(p).
nevpy M
SupposeV/ is a compact submanifold af .
Let us remark that whem/? is a surface we have

L2(p) = (AL(p) — Ao(p))? = 4(|H(p)|* — K(p)),

wherev is the normal vector at, H is the mean curvature, arid is the Gaus-
sian curvature. Inl it is proved that for a surfac#/? in E2** the geometric
quantity(|H|* — K)dV is a conformal invariant. As a corollary, one obtains for
an orientable surface iR?** that L2dV is a conformal invariant.

Let&, 1, ...,&s be an orthonormal frame in the normal fibre bunedle.
Let us recall the definition dhe extrinsic scalar curvaturfom [Z]:

ext = TL _ 1 Z Z )‘n—i-'r n+r:

r=1 i<j
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In [2] it is proved that for a submanifoldl/™ of a Riemannian manifoldh/, g),
the geometric quantity| H|? — ext)g is invariant under any conformal change
of metric. If M is compact (see alsc’]), this result implies that for\/, a
n-dimensional compact submanifold of a Riemannian maniféid g), the ge-
ometric quantity[ (| H|? — ext)zdV is a conformal invariant.

Let us prove the following fact.

Proposition 1.1. Let M™ be a submanifold of the Riemannian manifold, 7).
Then the spread of the shape operator is a conformal invariant.

Proof. The context and the idea of the proof are similar to the one give, in [
pp. 204-203]. Let us considera nowhere vanishing positive function a.
We have the conformal change of metric in the ambient spaggven by

g =r"g

Let us denote by, andh* the second fundamental forms f in (M, g) and
(M, g*), respectively. Then we have (sed)[

g(A;X, Y) = g(‘AﬁX? Y) +g(X7 Y)g<U7£>7

whereU is the vector field defined by = (dp)¥. Letey, ..., e, be the princi-
pal normal directions ofi; with respect tgj. Thenp~'e;, ..., p e, form an
orthonormal frame of\/ with respect tg;*, and they are the principal directions
of A;. Therefore

L*(p) = sup Lg.

£ evp Mi[€*||+=1
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_ sup ( sup (AL)* — inf (Ag)*)

g evp M| [l=1 \i=1,...,n g=Ly.m

=  sup [ sup ()\2 +g(U,¢)) — -,ilnf ()\% +9(U, f))]

Eevp Ml|€]|=1 Li=1,...,n j=1,..., n
~ e [SUp () — inf (Ag)] L),
Eevp Ml|€]|=1 Li=1,...,n Jj=1,..n
This proves the proposition. n

The Spread of the Shape
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When M is a surface, botti, and L2dV" are conformal invariants.
Theshape discriminantf the submanifold/ in M w.r.t. a normal direction
n was discussed irt]. Let A, be the shape operator associated with an arbitrary
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normal vectom atp. The shape discriminant afis defined by Title Page
16 5 AP 2 Ay Contents
(1.6) 7 |[Ay| n(race ) % N
where|[A,[|* = (A})? +--- + (\7)?, at every poinp € M C M. < >
The following pointwise double inequality was proved &: [ Go Back
n Close
(L.7) D, / (2) < Ly, < Dy, |
Quit
We will use this inequality later on. The proof of this fact is algebraically related Page 6 of 16
to the proof of Chen’s fundamental inequality with classical curvature invariants
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In this section, we study the relationship between the spread of the shape oper-
ator’s spectrum and the conformal invariant frozh [The main result is Propo-
sition 2.1 For its proof we need a few preliminary steps.

Proposition 2.1. Let M be a compact submanifold of a Riemannian manifold
M™*s. Then the following inequality holds:

The Spread of the Shape
Operator as Conformal Invariant

2 2
(2.2) (/ LdV) (UOZ(M))TTL*? <2n(n—1) (/ (|H|? — ext)ng) : Bogdan D. Suceava
M M
The equality holds if and only if either = 2 or M is a totally umbilical Title Page
submanifold of dimensiom > 3.
Contents
Before presenting the proof, let us see what this inequality means. For any <« NS
conformal diffeomorphisng of the ambient spac&/, the quantity
< | 2
2 n
(/ LdV¢) (vol(p(M))2n—2 Go Back
(M)
Close
is bounded above by the conformal invariant geometric quantity expressed in Quit
(2.2).
First, let us prove the following. Page 7 of 16
Lemma 2.2. Let M™ C M"** be a compact submanifold anpdan arbitrary B A TR
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be the shape discriminant correspondingéto wherea = 1,...,s. Then we

have

1 S
(2.2) nn 1) ; D, =

Proof. Since

|H|* — ext.

ext = n2_ 5 ZZA;AQ,

- %Z (g A&) £

a=1 i<j

we have

1 S n )
(23)  |HP —ext=—> Y () - ZZAZ A

na:li:l 7’L—1 a12<]
A direct computation yields

2(n — 1) <
(2.4) D, = 2= s o A3

i=1 1<J

Summing froma = 1 to a = s in (2.4) and comparing the result witk2 (3) one
may get 2.2). O

From the cited result in”] and the previous lemma, we have:
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Corollary 2.3. If M is a compact submanifold in the ambient spa¢ethen
s bl
/ > Do | dv
M a=1

Let us remark that fon = 2 this is a well-known fact.

is a conformal invariant.

Lemma 2.4. Let M be a submanifold in the arbitrary ambient spaté With
the previous notations we have

(H|? = ext) <Y Li(p) < 2n(n = 1)(|H| = ext)

at each poinp € M. The equalities holds if and only if p is an umbilical point.

Proof. This is a direct consequence of Lem&a and (L.7). O

Proof. We may prove now Propositich L. Letp be an arbitrary point of/ and
let no be a normal direction such thatp) = L,,(p). Consider the completion
of 9 up to a orthonormal normal bagg = 7, ..., ns. Then we have

(2.5) L?(p) ) < ZL2 < 2n(n —1)(|H|* — ext).

By applying Holder’s inequality, one has:

(/MLdV)2§ (/MLZdV) (vol(M)).
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Applying Hoélder’s inequality one more time yields

n —

/ (|H|? = ext) dV < (/ (|H? = ext)? dV) (vl (M) .
M M
Therefore, by using the inequality established in Len#iawe have

2
< / Ldv> < ( / L?dv) (vol (M)
M M The Spread of the Shape

Operator as Conformal Invariant
<2n(n — 1)v0l(M)/ (|H|? — ext) dV
M Bogdan D. Suceava

2

< 2n(n — 1) (vol(M)) ™ (/M(|H|2—ext)3dv>".

Title Page

Let us discuss when the equality case may occur. We have seen that we get ConEns
an identity ifn = 2. <« >

Now, let us assume > 3. The first inequality in 2.5) is equality atp if P >
there exists — 1 umbilical directions (i.e.L,(p) = 0 for s = 2,...,n). The
second inequality inZ.5) is equality if and only ifp is an umbilical point (see Go Back
[9]). Finally, the two Hdlder inequalities are indeed equalities if and only if Close
there exist real numbersand . satisfyingL(p) = 6 and|H|* — ext = p at _
everyp € M. The first equality conditions impose pointwigép) = 0, which Quit
yieldsf = p = 0. This means that/ is totally umbilical. O Page 10 of 16
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Let M be ann-dimensional noncompact submanifold of(ant-d)-dimensional
Riemannian manifold}/, g).

Proposition 3.1. Let A" C M"*? be a complete noncompact submanifold and
n1,- . .,1nq an orthonormal basis of the normal bundle. Suppose ¥hat’, \/, >
0OandL, € L*(M). Then

/ (|H|? — ext)dV < oo.
M

Proof. We use the inequalityl(7). It is sufficient to prove locally the inequality:

d
]H]Q—e:ctSZDi

i=1

This is true since, elementary, the following inequality holds:

P () 2{2@3)}.

2n Z)\ZA]<2

1<j

(A2 (N2

This is equivalent to
d

d
n(n—l)Z(Al — 2n? Z)\’/\]<2n 122
i=1

=1 1<j

d
(n* —3n+2) {Z(A;f} +2(n* —2n +2) Z AN >0,

i=1 i<j

2—d(n—1) Y AN,

i<j

or
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which holds by using the hypothesis and that 2.

The inequality is thev-component of the invariant inequality we are going
to prove. By adding upl such inequalities and by considering the improper
integral onM of the appropriate functions, the conclusion follows. This is due

to
d d
H2—exth§/ DidV§<n) /Lfdv
| P —etiav < [ > 2 )2,
by the first inequality irlL.7. ] The Spread of the Shape
. . . Operator as Conformal Invariant
In the next proposition we establish a relation betwgefl(p)]*dV and the )
Willmore-Chen integral,, (|H| — ext)dV, studied in P]. Bogdan D. Suceava
Proposition 3.2. Let M c M™*? be a complete noncompact orientable sub- _
manifold. If L(p) € L2(M), then [, (|H|> — ext)dV < oo. Title Page
Contents
Proof. By direct computation, we have:
44 44
d
1 _
(3.1) / (|H|? = ext)dV = 2—/ SN L - N)xav 4 d
M n(n—l) M —1i<j
a=L7 Go Back
d
1 / Close
S ) 22 PV
S
n?(n—1) M o—1 i<y Quit
= Zi L*(p)dV. Page 12 of 16
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Let us discuss now two examples. First, let us consttiercatenoidiefined
by

fe(u,v) = (ccosu cosh 2, ¢ sinu cosh E,U) .
¢ c
Using the classical formulas for example frot pne finds:

1
A = —)\g = — cosh™2 E.
c

Therefore, we have
o0 © 2 v * eldt
L(p)dv = Zcosh™ —dv =4 ——— =471 < 0.
/oo (p)dv /OOCCOS ¢ /w62t+1 T
Let us considerthe pseudospherghose profile functions are given by (see,

for example {]):

c(v) = aev/e

ca(v) = / V1 — e 2t/adt
0

for 0 < v < oo. For simplicity, let us consider just the “upper” part of the
pseudosphere. We have

v/a

)\1 = v1-— 6—21}/@’

a

1

Ay = — (ae”/“\/ 1— 6—2”/‘1)_ )
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Remark that:

/ LdV / et ] / Ty
_— B — - — = Q.
M 0o aV1l—e 2/ 2/ Vy—1

A natural question is to find a characterization for surfaces of rotation that
have finite integral of the spread of shape operator.

Consider surfaces of revolution whose profile curves are describéd)as
(y(s), s) (see, for exampley]). Then we have the following.

The Spread of the Shape
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Proposition 3.3. Let M be a surface of rotation in Euclideadispace defined

by Bogdan D. Suceava
f(s,t) = (y(s) cost,y(s)sint,s).
Then the integral of the spread of the shape operatofbrs finite if and only Title Page
if there exists an integrable>(R) functionf > 0 which satisfies the following Contents
second order differential equation:
, 44 44
—yy" =1+ ()" £ f(s)y(1+ (¥)?)z. P >
Proof. For the proof, we use the classical formulas framg. 228]. We have Go Back
for Ay = Kyeridian, and respectively fok, = kpraier Close
— // .
)\1 — %7 Qu|t
[T+ (y)2]> Page 14 of 16
1
Ao = T
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Then, the condition that the integral is finite means that there exists an integrable

function f > 0 such that

/R!/\1—>@|d8=/Rf(s)ds.

If we assume thaf € C*°, then the equality between the function under the
integral holds everywhere and a straightforward computation yields the claimed

equality.

For example, for the catenojf(s) = 0.

]
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