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ABSTRACT. Inequalities for the transformation operator kerA¢k:, y) in terms of F-function

are given, and vice versa. These inequalities are applied to inverse scattering on the half-line.
Characterization of the scattering data corresponding to the usual scattering.clas$ the
potentials, to the class of compactly supported potentials, and to the class of square integrable
potentials is given. Invertibility of each of the steps in the inversion procedure is proved. The
novel points in this paper include: a) inequalities for the transformation operators in terms of
the functionF', constructed from the scattering data, b) a considerably shorter way to study
the inverse scattering problem on the half-axis and to get necessary and sufficient conditions on
the scattering data for the potential to belong to some class of potentials, for example, to the
classL; 1, to its subclasd.{ ; of potentials vanishing for > a, and for the class of potentials
belonging toL?(R..).
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1. INTRODUCTION
Consider the half-line scattering problem data:
(1.1) S ={5(k), kj,s;,1 <j < J},

whereS(k) = L) is theS-matrix, f (k) is the Jost functionf (ik;) = 0, f(ik;) := YUk 2 0,

k; > 0,s; > 0, J is a positive integer, it is equal to the number of negative eigenvalues of the
Dirichlet operatofu := —u”+q(x)u on the half-line. The potentialis real-valued throughout,

q € Ly = {q: [, z|q|dz < co}. In[4] the classL,; := {q: [, (1 + 2)|g|dz < 0o} was
defined in the way, which is convenient for the usage in the problems on the whole line. The
definition of L, ; in this paper allows for a larger class of potentials on the half-line: these
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2 A.G. RaMM

potentials may have singularitiesaat= 0 which are not integrable. Fare L, ; the scattering
dataS have the following properties:

A) kj,s; >0, S(—k) = S(k) = S7'(k), k € R, S(0) =1,

B) x :=indS(k) := 5 [°_dlog S(k) is a nonpositive integer,

C) Fel’,p=1andp= oo, zF' € L', LP := LP(0, c0).

Here
1 [~ J
L ikx —kjx
(1.2) F(z):= o /Oo[l — S(k)|e™dk + ]Zl sje T,
and

k==2J if f(0)#0, k=-=2J-—1if f(0)=0.
The Marchenko inversion method is described in the following manner:
(1.3) S = F(x) = Az, y) = q(z),

where the step = F'(z) is done by formulg[(1]2), the stdp(z) = A(z,y) is done by solving
the Marchenko equation:

(1.4) (I +F,)A = A(z,y) + /OO Alx, ) F(t+y)dt = —F(z+y), y>z>0,

and the stepA(x, y) = ¢(z) is done by the formula:

(1.5) ¢(z) = —2A(z, z) = —2M.

dx
Our aim is to study the estimates fdrand F', which give a simple way of finding necessary
and sufficient conditions for the data ([1.1) to correspond tofeom some functional class.
We consider, as examples, the following classes: the usual scatterind.¢lager which the
result was obtained earlier ([2] and [3]) by a more complicated argument, the class of compactly
supported potentials which are locallyin ;, and the class of square integrable potentials. We
also prove that each step in the scheme| (1.3) is invertible. In S¢¢tion 2 the estimdfesior
A are obtained. These estimates and their applications are the main results of the paper. In
Section$ B {6 applications to the inverse scattering problem are givén. In [7] one finds a review
of the author’s results on one-dimensional inverse scattering problems and applications.

2. INEQUALITIES FOR A AND F

If one wants to study the characteristic properties of the scattering data (1.1), that is, a neces-
sary and sufficient condition on these data to guarantee that the corresponding potential belongs
to a prescribed functional class, then conditions A) and B) are always necessary for a real-valued
q to be inL, ;, the usual class in the scattering theory, or other class for which the scattering
theory is constructed, and a condition of the type C) determines actually the class of potentials
g. Conditions A) and B) are consequences of the unitarity of the selfadjointness of the Hamil-
tonian, finiteness of its negative spectrum, and the unitarity ofSthenatrix. Our aim is to
derive from equatior| (I}4) inequalities fér and A. This allows one to describe the setqof

defined by|(1.p).
Let us assume:

(2.1) sup |F(y)| .= or(z) € L', F' € Ly;.

y>z
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The functiono is monotone decreasingy'(z)| < op(z). Equation|(1.4) is of Fredholm type
in Lt := LP(z, 00) Vo > 0 andp = 1. The norm of the operator ifi (1.4) can be estimated:

(2.2) |F.|| < / or(x+y)dy < o1p(22), o1p(x) = / or(y)dy.
Therefore[(144) is uniquely solvable it} for anyz > z if
(23) O'IF(QZL’()) < 1.

This conclusion is valid for any” satisfying [2.8), and conditions A), B), and C) are not used.
Assuming[(2.B) and (21) and taking> =, let us derive inequalities foft = A(x,y). Define

oa(x) :=sup |A(z,y)| == [|A]l.

y>z

From (1.4) one gets:

oa(x) < op(22) + oa(z) sup /OO or(s+y)ds < op(2x) + oa(x)o1p(22).

y>z

Thus, if (2.3) holds, then

(2.4) oa(z) < cop(2z), == 2o

By ¢ > 0 different constants depending op are denoted. Let
ruale) = Al = [ |Gz, 9)lds

Then [1.4) yieldsr4(z) < 017(2z) + 01a(x)o1p(22). SO

(2.5) o1a(x) < coyp(2x), x> x.
Differentiate (1.4) with respect to andy to obtain:
(2.6) (I +F)A(2,y) = A(z,2)F(x +y) — Fllz +y), y>z2>0,
and
(2.7) Ay(z,y) + /OO Alx,s)F'(s+y)ds=—F'(z+y), y>x>0.
Denote )
2.8) rar(a) = [Py, oar(o) € L
Then, using[(2]7) andl (4.4), one getxs
29 Al < [ 1P+ oy + o) sup [ 1+ ldy
< oor(0)[1 +cop(22)]
< coap(27),

and using[(2)6) one gets:

[Aally < A2, 2)017(27) 4+ 02p(22) + || Azl 017 (22),
SO
(2.10) | Azll; < cloar(22) + o1p(22)0p(22)).
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Lety = x in (1.4), then differentiaté (1.4) with respectt@nd get:

(2.11) Az, x) = —2F'(2z) + A(z,z)F(2z) — /OO Ay(x,8)F(x + s)ds

_ /:O Az, )F'(s + z)ds.

From (2.4),[(2.5).[(2.10) anfl (2]11) one gets:

(2.12) |A(x,z)| < 2|F'(22)| + co%(2x) + cop(22)[02r(27) + 017 (22)0p (22)]
+ cop(2z)oor (22).

Thus,
(2.13) x| Az, 2)| € LY,

provided thatr F'(2z) € L', z0%(2x) € L', andwop(2z)oer(22) € L'. Assumption|[(2.]1)
implies zF’'(2x) € L'. If op(22) € L', andop(2z) > 0 decreases monotonically, then
zop(z) — 0asz — oo. Thuszo#(2z) € L', andoyr(22) € L' because

/OOO dw/:o [F'(y)ldy = /OOO |F'(y)]ydy < oo,
due to [2.1). Thus](2}1) implie§ (2.4), (2.5), (2.8), [2.9), dnd (2.12), while](2.12)[and (1.5)

imply ¢ € L, whereL, ; = {q q=7, [ xlq(z)|dr < oo}, andz, > 0 satisfies).

Let us assume now that (2.4), (2.%), (2.9), dnd (2.10) hold, where L' ando,r € L' are
some positive monotone decaying functions (which have nothing to do now with the function

F, solving equatior (1]4)), and derive estimates for this funciohet us rewrite[(1.4) as:
(2.14) Flx+y)+ /OO Az, s)F(s+y)ds = —A(z,y), y>x>0.
Letx +y =2, s+y=wv. Then,

(2.15) F(z)+ /OO Az, v+ 2z —2)F(v)dv = —A(z, z — x), z > 2.

From (2.1%) one gets:

or(2z) < oa(z) + op(22) sup / |A(z, v+ 2 — 2)|dv < o4(z) + op(22) ||A]; -
z2>2x J »

Thus, using[(2]5) andl (3.3), one obtains:

(2.16) or(2x) < coa(x).

Also from (2.1%) it follows that:

[e.9]

217)  oup(20) = || = / F())dv

2x

§/ |A(x,z—x)|dz+/ / |A(z, v + 2z — 2)||F(v)|dvdz
2z 2z z

< (1Al + 1E[ (1AL,

SO
o17(22) < copa().
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From (2.6) one gets:

(2.18) /oo |F'(z + y)|dy = 02p(22) < coa(z)ora(z) + [[Aall + ¢ | Aall; o14(2).

Let us summarize the results:
Theorem 2.1.1f z > z, and [2.]1) holds, then one has:

(219)  oa(x) <cop(2z), o1a(x) < cop(2z), ||Aylh < o2r(22)(1 + co1p(22)),
| Azl < cloar(22) + o1p(22)0 R (22)).

Conversely, ifc > x4 and

(2.20) oa(x) +o1a(@) + | Azl + [|Ay[[1 < o0,
then
(2.22) or(2x) < coax), o01p(2x) < copa(z),

o2p(2) < cloa(@)ora(@) + [|Au]ly (1 + o1a(2))].

In Sectior] B we replace the assumptiorr =, > 0 by z > 0. The argument in this case is
based on the Fredholm alternative.lh [5] and [6] a characterization of the class of bounded and
unbounded Fredholm operators of index zero is given.

3. APPLICATIONS

First, let us givenecessary and sufficient conditions &rfor ¢ to belong to the clasg; ;
of potentials These conditions are knownl [2],/ [3] ard [4], but we give a short new argument
using some ideas from![4]. We assume throughout that conditions A), B), and C) hold. These
conditions are known to be necessary §of L, ;. Indeed, conditions A) and B) are obvious,
and C) is proved in Theorems 2.1 gnd]3.3. Conditions A), B), and C) are also sufficient for
q € L1;. Indeed if they hold, then we prove that equat(1.4) has a unique solutionfor
all z > 0. This is a known fact [2], but we give a (new) proof because it is short. This proof
combines some ideas from [2] and [4].

Theorem 3.1.1f A), B), and C) hold, ther{ (1}4) has a solution i} for anyz > 0 and this
solution is unique.

Proof. SinceF, is compact inL!, Vx > 0, by the Fredholm alternative it is sufficient to prove
that

(3.1) (I+F,)h=0, helLl,

impliesh = 0. Let us prove it forr = 0. The proof is similar forr > 0. If h € L', thenh € L>
becausé h||_ < ||h||: or(0). If h € L' N L, thenh € L? becausdhl|s, < ||| |7 L1
Thus, ifh € L' and solves (3]1), thele L2 N L' N L.

Denoteh = [;° h(z)e***dz, h € L2. Then,

(3.2) /oo h2dk = 0.

—00
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SinceF(x) is real-valued, one can assuiéo be real-valued. One has, using Parseval’s equa-
tion:

J
1 1 [ ~
0= (T +Fo)h ) = oA+ 5 [ (= SEIR Wk + Y st
—0o0 7j=1

h; = / e *iTh(z)dx.
0
Thus, using[(3]2), one gets
hj=0,1<j<J  (hh)=(S(k)h, h(=k)),
where we have used the real-valuedness, a. (—k) = h(k),Vk € R.
Thus,(h, h) = (h, S(—k)h(—k)), where A) was used. Sindgs(—k)| = 1, one hag|h|* =
(h, S(—k)ﬁ(—k))‘ < ||h)?, so the equality sign is attained in the Cauchy inequality. Therefore,

h(k) = S(=k)h(—k).

By condition B), the theory of Riemann problem (see [1]) guarantees existence and unique-
ness of an analytic i€, := {k : Sk > 0} function f(k) := f.(k), f(ik;) = 0, f(ik;) #
0,1<j<J f(oco) =1, such that
(3.3) fe(k) = S(~k)f_(k), keR,
and f_(k) = f(—k) is analytic inC_ := {k : Imk < 0}, f_(c0) = 1in C_, f_(—ik;) =
0, f_(—ik;) # 0. Here the property(—k) = S~*(k), Vk € R is used.

One has

__h(k) _ h(—k) R .
P(k) = R TR keR, h;=h(ik;)=0, 1<j<.J
The functiony (k) is analytic inC, and«(—k) is analytic inC_, they agree oiR, sov (k) is
analytic inC. Sincef(co) = 1 andh(co) = 0, it follows thaty = 0.
Thus,h = 0 and, consequently,(z) = 0, as claimed. Theore@.l is proved. O

The unique solution to equatioh (IL.4) satisfies the estimates given in Theorem 2.1. In the
proof of Theorel the estimaigA(x, )| € L'(zo,00) was established. So, b.5),
zq € L'(xg,00).

The method developed in Section 2 gives accurate information about the behayioearf
infinity. An immediate consequence of Theorgms 2.1[and 3.1 is:

Theorem 3.2.If A), B), and C) hold, then, obtained by the schene (IL.3), belong&{g(x, ).

Investigation of the behavior af ) on (0, z() requires additional argument. Instead of using
the contraction mapping principle and inequalities, as in Section 2, one has to use the Fredholm
theorem, which says thg{7 + F,)~!|| < cfor anyz > 0, where the operator norm is fat,
acting inL2, p = 1 andp = oo, and the constantdoes not depend on> 0.

Such an analysis yields:

Theorem 3.3.If and only if A), B), and C) hold, thepe L, ;.

Proof. It is sufficient to check that Theorem 2.1 holds with> 0 replacingz > z,. To get
(2.4) withzy = 0, one useq (1]4) and the estimate:

(3.4) [AG, I < (T +Fo) [ 1F (@ +y)ll < cop(22), ||| =sup|-|, = >0,

y=>
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where the constant> 0 does not depend an Similarly:

(3.5) 1A(z, y)|l, < csup/ |F(s+y)ldy < co1p(22), x >0.

From (2.6) one gets: )

(3.6) 1Az (@, y)l|1 < c[[|[F(z + y)lh + Az, 2)|[F(z + y)|[1]
< coop(2x) + cop(22)o1p(22), x> 0.

From (2.7) one gets:

(3.7) |Ay(x,y)|l1 < cloar(22) 4+ 017 (22)02r (22)] < 02p(22).

Similarly, from (2.11) and (3]3) 4 (3.6) one ge€its (2.12). Then one chgckg (2.13) as in the proof
of Theorenj 2.1. Consequently Theorem 2.1 holds witk= 0. Theoren 3.3 is proved. O

4. COMPACTLY SUPPORTED POTENTIALS

In this sectionnecessary and sufficient conditions are givengftw belong to the class
Li, = {q:q—q,q:()if x> a, /ax|q|dx<oo}.
Recall that the Jost solution is: 0
(4.2) flz, k) =™ + /OO Az, y)e™dy,  f(0,k) = f(k).

Lemma 4.1.1f ¢ € LY, then f(x, k) = ™ for x > a, A(z,y) = Ofory > = > q,
F(z+vy)=0fory >z > a(cf. (1.4)), andF(z) = 0 for z > 2a.

Thus, (1.4) withe = 0 yields A(0, y) := A(y) = 0 for z > 2a. The Jost function

4.2) k) =1+ / CAW)eRdy,  Ay) € WH0,a),

is an entire function of exponential type 2a, that is,|f(k)| < ce??*, k € C, andS(k) =
f(=k)/f(k) is a meromorphic function it€. In (4.3) W' is the Sobolev space, and the
inclusion [4.2) follows from Theorefn 2.1.

Let us formulate the assumption D):

D) the Jost functiory (k) is an entire function of exponential type2a.

Theorem 4.2. Assume A),B), C) and D). There L{,. Conversely, iff € L{ ;, then A),B), C)
and D) hold.

Proof. Necessitylf ¢ € L, then A), B) and C) hold by Theorem 8.3, and D) is proved in
Lemmg4.1. The necessity is proved.
Sufficiencylf A), B) and C) hold, thery € L, ;. One has to prove thagt= 0 for z > a. If D)
holds, then from the proof of Lemma 4.1 it follows théty) = 0 for y > 2a.

We claim thatt'(z) = 0 for z > 2a.

If this is proved, then[(1]4) yieldd(z,y) = 0 fory > = > a, and sog = 0 for z > a by
T3).

Let us prove the claim.

Takez > 2a in (1.2). The functionl — S(k) is analytic inC. except for.J simple poles at
the pointsik;. If z > 2a then one can use the Jordan lemma and residue theorem to obtain:

o I
43)  Fyx) = % /_ 1= SJetat =~y %e—kﬂ, > 2.
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Sincef (k) is entire, the Wronskian formula
FO, k) f(=k) = [0, k) f (k) = 2ik
is valid onC, and atk = ik; it yields:
£1(0,ik;) f(—ik;) = —2k;;,
becausef (ik;) = 0. This and[(4.B) yield

J

2ik; !
F.(x) = = e kit = — s;e i = _Fy(x), x> 2a.
)= 2 T i) 2 i

Thus,F(z) = Fs(x) + Fy4(xz) = 0 for x > 2a. The sufficiency is proved.
Theorenj 4.2 is proved. O

Jj=1

In [2] a condition onS, which guarantees that= 0 for = > a, is given under the assumption
that there is no discrete spectrum, thak'is= F..

5. SQUARE INTEGRABLE POTENTIALS
Let us introduce condition§ (3.1) E (5.3):

(5.1) 2k {f(k;) —1+ %] € L*(Ry) =L Q:= /Ooo qds,
Q

(5.2) k {1 — S(k) + E] e L?

(5.3) K[|f(k))> —1] € L%

Theorem 5.1.1f A), B), C), and any one of the conditiofis (5.1) —[5.3) hold, thenZ2.
Proof. We refer to [3] for the proof. O

6. INVERTIBILITY OF THE STEPS IN THE INVERSION PROCEDURE
We assume A), B), and C) and prove:
Theorem 6.1. The steps irf (1]3) are invertible:
(6.1) S F <<= A<=q.
Proof.

(1) StepS = F'is done by formula[(1]2). Step = S is done by takinge — —oo in
(1.9). The asymptotics of'(z), asz — —o0, yieldsJ,s;,k;, 1 < j < J, thatis,
Fy(x). ThenF, = F — F, is calculated, andl — S(k) is calculated by taking the inverse
Fourier transform of’;(x). Thus,

(2) StepF = A is done by soIving4), which has one and only one solutiohlirior
anyz > 0 by Theoren 3]1. Sted = F'is done by solving equation (1.4) féf. Let
r+y=zands +y = v. Write (1.4) as

(6.2) (I+B)F:=F(z)+ /00 Alz,v+z —2)F(v)dv = —A(z,z —x), z2>2x>0.
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The norm of the integral operatét in L} is estimated as follows:

6.3) 13| gsup/ A, 0+ o — 2)|dz
v>0 Jo

v v — 2z
< csup/ o (x + ) dz
v>0 Jo 2
< 2/ o(x +w)dw = 2/ o(t)dt,
0 T

where the known estimatgl[2] was usedi(z,y)| < co (F2), o(x) = [ |q|dt.
It follows from (6.3) that||B|| < 1if > =z,, wherexz, is large enough. Indeed,
[ o(s)ds — 0 asz — oo if ¢ € Ly,1. Therefore, for: > x, equation|(6.2) is uniquely
solvable inLj, by the contraction mapping principle.

(3) StepA = ¢ is done by formulg (1]5). Step=- A is done by solving the known Volterra
equation (see [2] or [3]):

y—

(6.4) A(m,y):%/: q(t)dt+/:; ds/O 2

2

Thus, Theorer 6]1 is proved.

dtq(s —t)A(s —t,s + t).

O

Note that Theorern 6.1 implies that if one starts with@ L, ;, computes the scattering data
(1.7) corresponding to thig and uses the inversion scherpe(1.3), then the potential obtained
by the formula|(1.b) is equal to the original potental

If F(z)is known forz > 2z, then [6.2) can be written as a Volterra equation with a finite
region of integration.

(6.5) F(z)+ / v Alz,v+x —2)F(v)dv = —A(z, 2z — x) — /200 A(z,v+x — 2)F(v)dv,

0
where the right-hand side in (6.5) is known. This Volterra integral equation on the interval
z € (0,2z) is uniquely solvable by iterations. Thus(z) is uniquely determined of0, 2z),
and, consequently, af, co).
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