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ABSTRACT. In this paper the spatial behaviour of the steady-state solutions for an equation of
Kirchhoff type describing the motion of thin plates is investigated. Growth and decay estimates
are established associating some appropriate cross-sectional line and area integral measures with
the amplitude of the harmonic vibrations, provided the excited frequency is lower than a certain
critical value. The method of proof is based on a second—order differential inequality leading to
an alternative of Phragmén-Lindelof type in terms of an area measure of the amplitude in ques-
tion. The critical frequency is individuated by using some Wirtinger and Knowles inequalities.
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1. INTRODUCTION

The biharmonic equation has essential applications in the static Kirchhoff theory of thin elas-
tic plates. Many studies and various methods have been proposed for researching the spatial
behaviour for the solutions of the biharmonic equation in a semi—infinite stifi¥.inWe men-
tion here the studies by Knowles [11,/12], Flavin [4], Flavin and Knops [5], Horgan [6] and
Payne and Schaefer [16]. Additional references may be found in the review papers by Horgan
and Knowles[[7] and Horgan![8] 9].

There is no information in the literature about the spatial behaviour of dynamical solutions
in the Kirchhoff theory of thin elastic plates. We try to cover this gap by starting in this paper
with the study of the spatial behaviour for the harmonic vibrations of thin elastic plates, while
the transient solutions will be treated in a future study. It has to be outlined that the interest in
the construction of theories of plates grew from the desire to treat vibrations of plates aimed at
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2 CIRO D’A PICE AND STAN CHIRITA

deducing the tones of vibrating bells. Thus, in the present paper we consider a semi—infinite
strip for which the lateral boundary is fixed, while its end is subjected to a given harmonic
vibration of a prescribed frequency Our approach is based on a differential equation proposed
by Lagnese and Lions [13] for modelling thin plates and generalising the Kirchhoff equation
of classical thin plates (see, for example, Naghdi [15]). We associate with the amplitude of
the harmonic oscillation an appropriate cross—sectional line—integral measure. We individuate
a critical frequency in the sense that for all vibration frequencies lower than this one, we can
establish a second—order differential inequality giving information upon the spatial behaviour of
the amplitude. In this aim we use some Wirtinger and Knowles inequalities. Then we establish
an alternative of Phragmen—Lindel6f type: The measure associated with the amplitude of the
oscillation either grows at infinity faster than an increasing exponential or decays toward zero
faster than a decreasing exponential when the distance to the end goes to infinity.

We have to note that some time—dependent problems concerning the biharmonic operator are
considered in the literature, but these are different from those furnished by the theories of plates.
Thus, we mention the papers by Lin [14], Knops and Lupoli [10] and Ghéaitd Ciarlettal[1]
in connection with the spatial behaviour of solutions for a fourth—order transformed problem
associated with the slow flow of an incompressible viscous fluid along a semi—infinite strip, and
a paper by Chird and D’Apice [2] concerning the solutions of a fourth—order initial boundary
value problem describing the flow of heat in a non—simple heat conductor.

2. BAsIC FORMULATION

Throughout this paper Greek and Latin subscripts take the val@esummation is carried
out over repeated indices, = (x1,z2) IS a generic point referred to orthogonal Cartesian
coordinates ifR%. The suffix”, p” denotes— that is, the derivative with respect ig. We
consider a semi—infinite strig in the planexl()x2 defined by

(2.1) S:{mz(xl,xg)E]RQ:O<x2<l,0<x1}, [ >0.
In what follows we will consider the following differential equation
(2.2) o?ii — B2Ai + V¥ AAu = 0,

whereAu = u ,, is the ordinary two—dimensional Laplacian, and~y are positive constants

and a superposed dot denotes the time derivative. If wa’set oh, 3° = @1—’;3 and+? = D,
wherep is the mass density, is the uniform thickness of the plate ahuis the flexural rigidity,
then we obtain the approach of plate proposed by Lagnese and Lians [13]. We recall that the
flexural rigidity is given by the relatio = % whereE > 0 is the Young’s modulus
andv is the Poisson’s ratio ranging ovér-1,1). If we seta® = gh, 5 = 0 andy? = D in
(2.7), then we obtain the equation occurring in the Kirchhoff theory of thin plates/(see [15]).
The reader is referred to [13, Chapter I] for a heuristic derivation of the present plate model.
We further assume that the lateral sides of the plate are fixed, while its end is subjected to an
excited vibration. Then we study the spatial behaviour of the harmonic vibrations of the plate,
that is we study the solution of the equatipn [2.2) of the type t) = v(x)e™!, wherew > 0
is the constant prescribed frequency of the excited vibration on the end of the strip.
More precisely, we consider in the stripthe following boundary value problef defined
by the equation:

(2.3) —wd?v + FAPAY + Y2 AAv =0, inS,
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the lateral boundary conditions:

(2 4) U("Eho) - 07 U,Q('Tlao) - 07
' v(x1,l) =0, vo(x,l)=0, x1 €[0,00),

and the end conditions:
(2.5) v(0,72) = g1(z2), v1(0,22) = ga(x2), 22 € 0,1],

whereg; andg, are prescribed continuous differentiable functions.
For future convenience we introduce the following notations:

(2.6) Dytoy ={y=(y1,12) ER*: 0< ]} <y <z1, 0<yp<l},

(2.7) Dxl:{y:(yl,y2)€R2:0§x1<y1, 0<y2<l}.

3. A SECOND—ORDER DIFFERENTIAL INEQUALITY

Throughout the following we shall assume that the constant coefficieptandy are strictly
positive. A discussion will be made at the end for the limit case whéends to zero, that is
for the Kirchhoff model of thin elastic plates.

We start our analysis by establishing a fundamental identity concerning the sal(tipaf
the considered boundary value probl@mThis identity will give us an idea on the measure to
be introduced.

Thus, in view of the equatiof (3.3), we have

(3.1) —w?a®® + FPu? [(vv’l)’1 — U,Q1 + (UU72)72 — U?Q]

+ ’Yz [(UU,lll),l — V1111 + 2 (UU,112)72 — 2090 112 + (UU,222)72 — V2V 292| =0

from which we obtain
(3.2) —uw? [oz2v2 + 52(v?1 + vé)} + 32u? [(1}071)71 + (UU72)72:|
+9° [(vv,m),l +2(vv112) , + (vv,m)g}

— 7 [<v,1v,11)71 — U+ 2(Vava) ; — 2005 + (Vavz) p — V| =0,
and hence, we get
(3.3) —w? [0+ B2 (v] + )] + 77 (V71 + 207, + %)
+ {ﬁQwQUﬂ,l + Vv — Y vv — 2727}727}712},1
+ {ﬁ2w2vv,2 + 27201),112 + 72?”},222 - 721’72”722},2 =0.

By integrating the relatior{ (3.3) ové®, ] and by using the lateral boundary conditions de-
scribed in[(2.4), we get the following identity

! l
0 0
‘11
+ / [§ﬁ2w2v2 + 7% (vog —v3 —vh)|  dzy=0.
0

11

Before deriving our growth and decay estimates, we proceed to establish a second—order
differential inequality in terms of a cross—sectional line integral measure which is fundamental
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in our analysis on the spatial behaviour. In this aim we associate with the soltipf the
considered boundary value problgnthe following cross—sectional line integral measure

I
1
(3.9) I(z1) = / {72(7],21 +vh —ovn) - 552&121}2} dxs, 1 >0,
0
so that the identity (3]4) furnishes
! I

(3.6) Z'(z1) = 72/ (031 + 207, + vYy) doy — W2/ [0%0® + B*(v] +v3)] dzz, 21> 0.

0 0

Further, we use the lateral boundary conditions described by (2.4) in order to write the fol-
lowing Wirtinger type inequalities

l l2 l
(3.7) / videy < —2/ v3ods,
0 ™ Jo
l l2 l
(3.8) / v?zdmg < ﬂ/ U?Q2d$2,
0 ™ Jo

l ) 2) 4 l4 l )
(3.9 /Ov dry < (§> ﬁ/o Ve dTs.

On the other hand, by using the same lateral boundary conditions in the inequality established
by Knowles [12] (see the Appendix), we deduce that

l 2 l
g
(310) /0v (521}722 + 0521)2) dl’g < m/o U?22dx27
whereA(a, 3) is defined by
O{2

31D) Mo =2 (%)
and\(t) is as defined in the Appendix. Therefore, we have

4 (1) a?l?
(3.12) Ao, B) = Eriam T
andr(7) is the smallest positive root of the equation

T T
tanh ( r , 17>0.
T4+ 1r2 T+ r2

Thus, on the basis of the relatiofs (3.7) dnd (3.10), we can conclude that

(3.13) tanr = —

! 2l
(3.14) / [042112 + 52(17,21 + U,QQ)} dxy < 3—2/ (2U,212 + U,Q22)d$2,
0 m JO
wherew,, = w,,(«a, 3, 7) is defined by
1 1 ZQBQ 52
A — = — — .
329 Rt ST
By taking into account the relatior|s (B.6) and (3.14), we obtain the following estimate
2 l
(3.16) T (z1) > ~* (1 — 5—2) /O (Vi) + 2035 4+ vy) dag, @1 > 0.

J. Inequal. Pure and Appl. Math4(4) Art. 65, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SPATIAL BEHAVIOUR FOR THEHARMONIC VIBRATIONS IN PLATES OF KIRCHHOFFTYPE 5

Throughout in this paper we shall assume that the prescribed frequentyhe excited
vibration is lower than the critical value,, defined by the relatiorj (3.15), that is we assume
that

(3.17) 0<w<wp.
This assumption then implies that
(3.18) Z"(xy) >0 forall x; > 0.

We proceed now to estimate the tefiiz; ) as defined by the relatioh (3.5). We first note that

! 1 !
(3.19) |Z(x1)| < +? / (V3 + v% — vv1)des| + 562w2/ v2dy.
0 0

Further, we use an idea of Payne and Schaéfer [16] for estimating the first integral jn (3.19).
Thus, by means of the Cauchy—Schwarz and arithmetic—geometric mean inequalities and by
using the Wirtinger type inequalities (8.7), (3.8) ahd|(3.9), we deduce

!
/ (’Ui + U?Q — vV 11)dxe
0

! ! ! 3
< / (v% + v3)doy + </ v2dac2/ vzudxg)
o ’ 0 0o’
1
l2 l ) 1 ) 8 l ) l ) 2
K 1 4e

for some positive constaat We now choose = ; and note thaf + & = 15 < 1. With this
choice the relations (3.119) arid (3]20) give

(3.20)

! I
1
(3.21) |Z(x1)] < m%/ v (V31 4 2035 4 vYy) dog + 56%2/ v das,
0 0
where
l2
2

On the basis of the inequality (3.9), we further deduce that

l
(3.23) 1Z(z,)| < mg/ v (V31 + 2035 4+ vY,) dxa, @1 >0,
0
where
2,2 4 94
~ 2 2, Pw® (21
(3.24) my = mg + 27 (5) ot
Finally, the relationg (3.16) and (3]23) lead to the following estimate
(3.25) m? | I(x)| < T (x1), a1 >0,
wherem is defined by
1 2
(3.26) m’ = — (1 - w—2> .
my Win

J. Inequal. Pure and Appl. Math4(4) Art. 65, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 CIRO D’A PICE AND STAN CHIRITA

Consequently, we have established the following two second—order differential inequalities

(3.27) 7' (x1) + m*T(x,) > 0,

11

which will be used in the derivation of the alternatives that we will consider, always under the
condition that[(3.17) holds true.

4. SPATIAL BEHAVIOUR

In this section we will analyse the consequences of the second—order differential inequalities
on the spatial behaviour of the measfie; ). In fact, in view of the relatior (3.18), it follows
that we have only the two cases:

i) there exist a value; € [0, co) such thatZ'(z;) > 0,
i) Z'(z,) <0, VYV €[0,00).

4.1. Discussion of the Case i)Since we hav& " (z;) > 0 for all z; > 0, we deduce that
(4.1) I(zy) > Z(21) +T'(21) (21 — 1) forall o > 2,

and hence it follows that, at least for sufficiently large values,of (z;) must become strictly
positive. That means there exists a valdec [z;,00) so thatZ(z;) > 0. Because we have
T'(x1) > T'(22) > 0 for all x; € [22,00), it results thatZ(z,) is a non—decreasing function on
[22, 00) and therefore, we havg(z,) > Z(z) > 0 for all x; € [22,00). Further, the relation

(3.28) implies

d . /
: — Jem 7 >
(4.2) 1™ [T @) +mZ@)] } 20, o€ o, 00),
(4.3) L [7 (@) — Z(@)] ) 20, 2 € [22,00).
d[[’l
By an integration ovefz, z1], 1 > 29, the relations|(4]2) andl (4.3) give
(4.4) T (1) + mZ(xy) > |:.,ZJ(22> + mZ(ZQ)] em@-2) g > )
(4.5) T'(w1) = mT(en) 2 [T () = () | € "0, 2y 2 2,

and therefore, we get
(4.6) T (21) > T (2) cosh[im(xy — 2)] + mZ(zo) sinh[m(zy — 25)], @1 > 2.

On the other hand, by taking into account the notatjon (2.6) and by integrating the relation
(3.9) over[zy, 1], z; > 2, we obtain

Dzyey

— wz/ [0?v? + 32 (v3 +v%)] da.
D

2271

J. Inequal. Pure and Appl. Math4(4) Art. 65, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SPATIAL BEHAVIOUR FOR THEHARMONIC VIBRATIONS IN PLATES OF KIRCHHOFFTYPE 7

Consequently, the relatioris (4.6) ahd [4.7) give

(4.8) 72/ (U,Qn + 2”,212 + U,222) da

2271

> w2/ [oz2v2 + 52(2}?1 + U?Q)} da +Il(22) {cosh [m(x1 — 25)] — 1}
Dzzfl:l
+ mZ(z2)sinh [m(x; — 22)], @1 > 29,

and hence

(4.9) lim e‘mml/
T1—00 D

Thus, we can conclude that, within the class of amplitude$ for which there exists; > 0
so thatZ’(z;) > 0, the following measure

1 -
72 (U?ll + 21)’212 + U?22> da} Z ée_mZQ |:I/<Z2) + mI(ZQ)] > O

2271

(4.10) 5ngzzt/m (V31 + 207, + %) da, D} =[0,2] x [0,1],
D

*
1

grows to infinity faster than the exponentidl** whenz; goes to infinity.

4.2. Discussion of the Case ii).In this case we have

(4.11) I'(z1) <0 forall z; €[0,00),
and thereforeZ(z,) is a non—-increasing function df, co). We prove then that
(4.12) I(x1) >0 forall x; € [0,00).

To verify this relation we consider somg arbitrary fixed in[0, oc) and note that, by means of
the relation[(4.1]1), we have

(413) I<$1> < I(Zo) for all 1 > 20-
On the other hand, the relatidn (3/27), when integrated yet:], z; > z, gives
0<7T (z)—T ()

<t [ rea

20

(4.14) <t [ Tl = i Tea) o1 - ).

20

and hence it results th#{z,) > 0. This proves that the relatiop (4]12) holds true.
Now, on the basis of the relation (4|12) and by using the relatjons (3.5] and (3.20) (with the
appropriate choice faf), we deduce that

(4.15) 0<Z(x)
l 1 !
= 72/ (U,Ql + U,Qz — Vv g1)dry — §ﬁ2w2/ vidasy
0 0
h
< 72/ (U,Ql + U?Q — UU711)dlE2
0

!
2 2(,.2 2 2
< mo/ Y (U,n + 205, + U,Qz)d372>
0
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and hence, by using the inequality (3.16), we obtain

(4.16) T"(z1) —m*Z(x,) >0, x>0,
where
1 w? 272 w?
— 2 _ _
e (%) -7 ()

To determinate the consequences of the second—order differential inequality (4.16), we write it
in the following form

(4.18) e (T wn) ~ ()]} >0,

and then integrate it ovéd, =] to obtain

(4.19) —T'(x1) +mI(x;) < e ™ [=2(0) + mZ(0)], x; >0.

On the basis of this relation, we further can note that a successive integratioprgver) of
the relation[(3.16) gives

w2

(4.20) ~I'(z1) > (1 - w_2> / 7? (031 + 207, +v) da, @y >0,

1

and

(4.21) Z(zy) > (1 - —) / / V3 + 203, + vy dagdg, xy > 0.
Dy

Further, by using the estimafe (4.19), from the relatipns {4.20)[and| (4.21), we deduce the fol-
lowing spatial estimates

1 _
)

and

(4.23) / / (V31 + 207, + v%y) dagd
T D{

Njw

(1 - ”—2)_ [=Z'(0) + mZ(0)] e ™, x, > 0.

2
W

l
<
Thus, we can conclude that in the class of amplitudes for which Z’(z;) < 0 for all
r1 > 0 the measure

(4.24) F(zy) = / (U,zn + 2”,212 + U,222)da
D

1
decays toward zero faster than the exponeatial** whenz, goes to infinity.
5. CONCLUSION

On the basis of the above analysis we can conclude that, for an amplitugesolution of
the boundary value problefA, we have the following alternative of Phragmén-Lindel6f type:
either the measuré&(x,) grows toward infinity faster than the exponenti&r: whenz, goes
to infinity and then the energy

(5.1) Uv) = /S<U,211 + 2”,212 + 0?22)da
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is unbounded, or the ener@¥(v) is bounded and then the measufér;) decays toward zero
faster than the exponentiat™*!, provided the excited frequency is lower than the critical
valuew,, defined by the relation (3.15).

6. THE KIRCHHOFF THEORY OF THIN PLATES

We consider here as a limit case the Kirchhoff theory of thin elastic plates, that is the case
when /3 tends to zero. It can be seen from the relatjon| (A7) tifaj decreases monotonically
with increasingr, and that

(6.1) r(0%) = lim r(7) =7, r(cc) = lim r(7) = ro,

7—0t T—00

wherer, = 2.365 is the smallest positive root of the equation
(6.2) tanr = — tanhr.

It follows then from the relations (A7) anfl (6.1) the(t) is a decreasing function with respect
tot, and that

(6.3) A0T) = lim \(t) = 4 lim tA(t) = 2 !
. - t*)0+ - l2 9 oo — l .

In view of the relation[(3.1]11) and by using the relatipn {6.3) it follows that
4
(6.4) fjy M2A)_ 1 (%> ,

p—0 3?2 a? \ 1

and hence the relatiop (3]15) furnishes that

(6.5) o (2o EW 4.73\*
' ma2 CI2(1—w2)p \ 1 '

To this end we recall the critical value established by Ciarleita [3] for the model of thin plates
with transverse shear deformation

h2m4

(6.6) i = Q(h%/;wz)’
that is
(6.7) w2 = P (5 —

™ 8(1+wv)o \l 1+7—7r2
Therefore, we have

*2

(6.8) o= Z%: - 0.2919111%7_22;,

and because we hawe< | and; < 1 — v < 2, itresults that
(6.9) d < 0.58382.

This leads to the idea that for the Kirchhoff theory of thin plates we have an interval of fre-
guencies larger than that of the Reissner—Mindlin model for which we can establish the spatial
behaviour of the amplitudes.
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7. APPENDIX

In [12] Knowles has established the following result: for any function C3([0,1]) and for
any real numbet > 0, we have

l t
(A1) / uydzy > )\(t)/ (u% + tu)dxs,
0 0
where
4 4 2
(A2) =20

Eryr2(r)y 4
andr(7) is the smallest positive root of the equation

T tanh (r 7 , T72>0.
T+12 T4+7r?

Moreover,\(t) is the largest possible constant-Al) in the sense that if, for a give(t) is
replaced by a smaller constant, there is@ CZ([0, 1]) for which (AJ) fails to hold.

The proof of the result stated above is based on the fact that the variational problem of finding
the extremals i ([0, {]) of the ratio

(A3) tanr = —

fo 5+ tu2 dmg
for fixedt > 0 leads formally to the eigenvalue problem

(A4) J{up =

(AS) U 2299 + )\u722 —AXtu=0 on [O, l],
(AB) u(0) = u2(0) = u(l) = us(l) = 0.
It can be proved that the eigenvalueare given by

4 4 2
(A7) A =20

Pree(r) T4
wherer is a positive root of either of the equations

2
(A8) tanr = 4/ - rr tanh (r T ) :

T T+7r2

[ T T
(A9) tanr = — T+r2tanh<r T+r2>'

It is shown that the smallest eigenvall@) corresponds to the smallest positive ro@t) of the
equation|[(A9) and the corresponding eigenfunction has no z€fh ihand realize the absolute
minimum of J {u} on C3([0, []).
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