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ABSTRACT. K—convex, K—midconvex and K, A\)—convex set—valued maps are considered.
Several conditions implying the continuity of such maps are collected.
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It is well known that convex functions defined on an infinite—dimensional space need not be
continuous and midconvex (Jensen convex) functions, they may be discontinuous even if they
are defined on an open intervallth However, their continuity follows from other regularity
assumptions, such as continuity at a point, upper boundedness on a set with non—empty interior,
measurability, lower semicontinuity, closedness of the epigraph, etc. (cf. le.g. [[25], [12]).
The aim of this note is to collect similar results for convex set—valued maps. Such maps arise
naturally from, e.g., the constraints of convex optimization problems and play an important role
in various questions of convex analysis and economic theoryi(cf. [14]/15], [13], [27], [28], [29]
for more information). Conditions implying their continuity can be found, among others, in [3],
[6l, [71, (81, [8], [16], [17], [18], [19], [20], [22], [23], [24], [25], [27], [30], [31].

Let X andY be topological vector spaces (real and Hausdorff in the whole papdrg a
convex subset ok’ and K be a convex cone ilf (i.e. K + K C K andtK C K forallt > 0).

Denote byn(Y), b(Y), ¢(Y) andce(Y') the families of all non—empty, non—empty bounded,
non—empty compact and non—empty compact convex subs&tsregpectively.

A set—valued map (s.v. map for shoft): D — n(Y) is said to beK—convexf

(1) tF(x1) + (1 —t)F(x2) C F(tzy + (1 —t)xs) + K
forall 1,2, € D andt € [0, 1]; F' is calledk—midconveXor K— Jensen convexf
2 Fla) ; Fs) - p (#) 4K,
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for all x1, x5 € D. Equivalently,F is K—convex ({—midconvex) if itsepigraph i.e. the set
epiF = {(z,y) e DxY :y € F(x) + K},
is a convex (midconvex) subset &f x Y.
Note thatF’ is K—convex ({—midconvex) withK' = {0} iff its graph i.e. the set
grF ={(z,y) € DXY 1y € F(x)},

is a convex (midconvex) subset &f x Y.
If Fis single—valued and” is endowed with the relatior:; of partial order defined by
r <k y <=y —z € K, then condition[({1) reduces to the following one

F(txl + (1 - t)l’g) SK tF(l’l) + (1 - t)F(fL’Q)

In particular ifY = R and K = [0, c0), we obtain the standard definition of convex functions.
We say that a set—valued méap: D — n(Y") is K—continuousat a pointr, € D if for every
neighbourhoodV of zero inY there exists a neighbourhoddof zero in X such that

(3) F(xg) CF(x)+ W+ K
and
(4) F(x) C F(zo)+ W+ K

for everyz € (zo + U) N D. Only when condition[(3) (conditior [4)) is fulfilled, we say
that F' is K—lower semicontinuoufK—upper semicontinuoligit z,. The K—continuity in the
case wherdl = {0} means the continuity with respect to the Hausdorff topology:.0ri).
If K is a normal cone (i.e. if there exists a baseof neighbourhoods of zero i such that
W =W — K)n (W + K) for everylW € W) and F' is a single—valued function, thefi—
continuity means continuity. Note also that in the case witére a real-valued function and
K = [0, 00) then conditions (3) and(4) define the classical upper and lower semicontinuity of
F atxg, respectively.

We start with the following result showing that féfi—midconvex s.v. map&—lower semi-
continuity at a point implieg{—continuity on the whole domain.

Theorem 1. ([17, Thm. 3.3] cf. also[6]). Let X andY be topological vector space$) be

a convex open subset &f, and /K be a convex cone ilf. Assume that’ : D — b(Y') and

G : D — n(Y) ares.v. maps such thét(x) C F(z) + K, forall z € D. If F'is K—midconvex
andG is K—lower semicontinuous at a point 6f, thenF' is K—continuous orD.

As an immediate consequence of this theorem (under the same assumpti&nsyonD
and K) we get the following corollaries. Recall that a functign D — Y is aselectionof
F:D—nY)if f(x) € F(z)forallz € D.

Corollary 2. Ifas.v. mapF' : D — b(Y) is K—midconvex and{—lower semicontinuous at a
point of D, then it is K—continuous orD.

Corollary 3. Ifas.v. mapF' : D — b(Y') is K—midconvex and has a selection continuous at a
point of D, then it isK—continuous orD.

In the centre of many results giving conditions under which midconvex (or convex) func-
tions are continuous there are two basic theorems. The first one is the theorem of Bernstein
and Doetsch, stating that midconvex functions bounded above on a set with non-empty inte-
rior are continuous, and the second one is the theorem of B&kipistating that measurable
midconvex functions are continuous (cf. [26], [12]). The next two theorems are far-reaching
generalizations of those results feimidconvex s.v. maps.
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We say that an s.v. map is K—upper boundedan a setA if there exists a bounded set
B C Y suchthatF(z) N (B — K) # (), forall z € A.

Theorem 4. ([17, Thm. 3.4]. LetX andY be topological vector spaces), — an open convex
subset ofX and K’ — a convex cone iv. If an s.v. mapF' : D — b(Y) is K—midconvex and
K—upper bounded on a subsetfwith non—empty interior, theR’ is K—continuous orD.

Remark 5. In the case wher&X = R", it is sufficient to assume that the sétis of positive
Lebesgue measure. IndeedFifis K—upper bounded oA, then, by thelK—midconvexity, it is
also K—upper bounded on the set + A)/2, which, by the classical Steinhaus theorem, has
non-empty interior.

Recall that a set—valued map: R” D> D — n(Y") is Lebesgue measurahblgor every open
setlV C Y the set
Fr(W)={teD:F(x) c W}
is Lebesgue measurable.

Theorem 6. ([17, Thm. 3.8] cf. also[30]). Let D be a convex open subset®f, Y be a

topological vector space, anfl’ be a convex cone ilf. Assume that' : D — b(Y) and

G : D — b(Y) are s.v. maps such thét(z) C F(z) + K, forall z € D. If F'is K—midconvex
andG is Lebesgue measurable, théns K—continuous orD.

Under the same assumptions BnY and K we have the following corollaries.

Corollary 7. Ifas.v. mapF : D — b(Y') is K—midconvex and Lebesgue measurable, then it is
K—continuous orD.

Corollary 8. If as.v. mapF' : D — b(Y) is K—midconvex and has a Lebesgue measurable
selection, then it ig{—continuous orD.

The next result generalizes the well known result stating that convex functions defined on an
open subset of a finite—dimensional space are continuous.

Theorem 9. ([17, Thm. 3.7] cf. also[24]). Let D be a convex open subsetRf, Y be a
topological vector space, anfl’ be a convex cone iv. If as.v. mapF : D — b(Y) is
K—convex, then it ig{—continuous orD.

Now we present a generalization of the classical closed graph theorem.

Theorem 10. ([18, Thm. 1). Let X be a Baire topological vector spacé, be a convex open
subset ofX, Y be a locally convex topological vector space alidbe a convex cone ii.
Assume that there exist compact sBtsC Y, n € N, such that

(5) B, -K)=Y.

neN
If as.v. mapF : D — b(Y) is K—midconvex and its epigraph is closedlinx Y, then it is
K—continuous orD.

Remark 11. The assumptiorj [5) is trivially satisfied¥f is a locally compact space (add is

an arbitrary convex cone ii). It is also fulfilled if there exists an order unit in, i.e. such

an element € Y that for everyy € Y we can find am € N with y € ne — K (we put then

B,, = {ne}). In particular, ifint K # (), then every element ofit K is an order unitirt”. The

above result extends the closed graph theorem proved by Ger [10] for midconvex operators and
crosses with the closed graph theorems due to Borwein [6], Riccéri [25] and Robinson-Ursescu
[27], [31] (cf. also [2]).
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The next result generalizes the known theorem stating that lower semicontinuous convex
functions are continuous. Given a convex cén@ a topological vector spadé we denote by
K™ the set of all continuous linear functionals Brwhich are nonnegative oR, i.e.

K*={y"€Y":y"(y) >0, foreveryy € K}.

Theorem 12. ([19, Thm. 1). Let X be a Baire topological vector spacé), — a convex open
subset ofX, Y — a locally convex topological vector space ahd— a convex cone iry'.
Moreover, assume that there exist bounded égisC Y, n € N, such that condition[(5)
holds. If as.v. mag' : D — cc(Y) is K—midconvex and for every* € K* the functional
x +— fy+(z) = inf y*(F(z)), z € D, is lower semicontinuous af, thenF is K—continuous
onD.

It is easy to check that if a s.v. mdp: D — b(Y) is K—upper semicontinuous at a point,
then for everyy* € K* the functionalf,- defined above is lower semicontinuous at this point.
Therefore, as a consequence of the above theorem, we get the following result.

Corollary 13. Let X, D, Y and K be such as in Theorem [12. If d—midconvex s.v. map
F : D — cc(Y) is K—upper semicontinuous an, then it isK—continuous orD.

Now we will present the Mazur’s criterion for continuity éf—midconvex s.v. maps. It is
related to the following question posed by S. Mazur [15]: In a Banach spdlere is given an
additive functionalf such that, for every continuous functien [0, 1] — E, the superposition
f oz is Lebesgue measurable. fisontinuous?

The answer to that question, in the affirmative, was given by I. Labuda and R.D. Mauldin [14].
R. Ger [11] showed that the same remains true in the case whiera midconvex functional
defined on an open convex subgetof £. More precisely, he proved that each midconvex
functional f : D — FE such that for every continuous functien [0, 1] — D, the superposition
f o x admits a Lebesgue measurable majorant, is continuous. The next theorem is a set-valued
generalization of this result.

Theorem 14. ([20, Thm. 1). Let E be a real Banach spac&} — an open convex subset Bf

Y — alocally convex topological vector space aRd- a convex cone iff. Moreover, assume
that there exist bounded sefs, C Y, n € N, such that conditior {5) holds. If a set-valued
mapF : D — cc(Y') is K—midconvex and for every continuous function [0, 1] — D there
exists a Lebesgue measurable set-valued Ghaff), 1] — ¢(Y") such that

G(t) C F(z(t))+ K, t €[0,1],
thenF' is K—continuous orD.

As an immediate consequence of the above theorem (under the same assumpkioiis, on
Y and K ) we obtain the following corollaries.

Corollary 15. If a set—valued map’ : D — cc(Y') is K—midconvex and for every continuous
functionz : [0, 1] — D the superpositiori'ox is Lebesgue measurable, thEris K'—continuous
onD.

Corollary 16. If a set—valued map’ : D — cc(Y') is K—midconvex and for every continuous
functionz : [0, 1] — D the superpositiorf' o = has a Lebesgue measurable selection, then
is K—continuous orD.

Now assume that : D? — (0, 1) is a fixed function. We say that a set-valued nfapD —
n(Y)is (K, \)-convexf

(6) Mz, y)F (@) + (1= Mz, y))Fy) € F(Mz,y)z + (1= Mz, y))y) + K
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for all z,y € D. Clearly, K-convex set-valued maps afé&’, \)-convex with every function
A; K-midconvex set-valued maps afg, \)-convex with the constant function = 1/2. For
real-valued functions anfl’ = [0, co) condition (6) reduces to

Such functions were introduced and discussed by Zs. Paleslin [21], who obtained a Bernstein—
Doetsch-type theorem for them. The next result is a set-valued generalization of this theorem.

Theorem 17. ([I, Thm. 1). LetD C R™ be an open convex set,, D? — (0, 1) be a function
continuous in each variablé; be a locally convex space arid be a closed convex cone Yh
Ifas.v. mapF : D — ¢(Y) is (K, \)-convex and locally<-upper bounded at a point dp,
then it isK-convex.

Finally we present a Siernpski-type theorem fof K, \)-convex s.v. maps.

Theorem 18. ([1, Thm. 2). LetY, K, and D be such as in Theorem|17 and D* — (0, 1)
be a continuously differentiable function. If as.v. map D — ¢(Y) is (K, A)-convex and
Lebesgue measurable, then it is alseconvex.
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