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Abstract

We show that certain properties of positive solutions of disconjugate second
order differential expressions M [y] = −(py′)′ + qy imply the separation of the
minimal and maximal operators determined by M in L2(Ia) where Ia = [a,∞),
a > −∞, i.e., the property that M [y] ∈ L2(Ia) ⇒ qy ∈ L2(Ia). This result
will allow the development of several new sufficient conditions for separation
and various inequalities associated with separation. Some of these allow for
rapidly oscillating q. It is shown in particular that expressions M with WKB
solutions are separated, a property leading to a new proof and generalization
of a 1971 separation criterion due to Everitt and Giertz. A final result shows
that the disconjugacy of M − λq2 for some λ > 0 implies the separation of M .

2000 Mathematics Subject Classification: Primary: 26D10, 34C10; Secondary
34L99, 47E05
Key words: Separation, Symmetric second order differential operator, Disconjugacy,

Limit-point.
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1. Introduction
Consider the symmetric second order differential expression

(1.1) M [y] := −(py′)′ + qy

wherep > 0, p′ andq are continuous on the intervalIa = [a,∞), a > −∞. M
is said to be disconjugate if every nontrivial real solution has at most one zero
in Ia . A sufficient condition (from Sturm’s comparison theorem) for discon-
jugacy is thatq ≥ 0, and in this case one can show existence of two positive
solutionsu1 andu2 of M [y] = 0 on Ia, called theprincipal andnonprincipal
solution respectively, such thatu′1 ≤ 0 andu′2 > 0 on Ia. More generally,M
is disconjugate onIa if and only if there exists a positive solutionu on the inte-
rior of Ia. For proofs of these facts and additional discussion see Hartman [15,
Corollaries 6.1 and 6.4].

Recall also thatM determines several differential operators in the Hilbert
spaceL2(Ia). In particular the “preminimal” and “maximal” operatorsL′0 and
L are given byM [y] for y in the domainsD′0 ≡ C∞

0 (Ia), the space of infinitely
differentiable functions with compact support in the interior ofIa and

D = {y ∈ L2(Ia) ∩ ACloc(Ia) : py′ ∈ ACloc(Ia); M [y] ∈ L2(Ia)},

whereACloc stands for the real locally absolutely continuous functions onIa

andL2(Ia) denotes the usual Hilbert space associated with equivalence classes
of Lebesgue square integrable functionsf, g having norm and inner product

‖f‖ =

(∫
Ia

|f |2
) 1

2

, [f, g] :=

∫
Ia

fḡ.
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The “minimal operator”L0 with domainD0 is then defined as the closure ofL′0.
With the above definitions one can show that

(i) C∞
0 (Ia) ⊂ D′0 ⊂ D0 ⊂ D,

(ii) L′ ∗0 = L∗0 = L,

(iii) L∗ = L0,

(iv) D′0,D0, andD are dense inL2(Ia).

The regularity assumptions made in this paper onp andq are stronger than
necessary to properly defineL0, L. In general one needs only to assume the
so-called “minimal conditions" thatp−1 andq are locally integrable on(a,∞).
In this caseC∞

0 (Ia) may not be contained inD′0 but the properties (ii)–(iv) will
still hold. The maximal and minimal operatorsL andL0 can also be defined
relative to an arbitrary interval(a, b) where−∞ ≤ a < b ≤ ∞. If p−1, q
are Lebesgue integrable on some interval(a, c) or (c, b) for a < c < b thena
or b are said to be “regular"; otherwise they are “singular". (Infinite endpoints
however are considered singular even ifp−1, q are integrable on(a, b).) Thus in
our settinga is regular and∞ is singular–we signal this by writingIa = [a,∞)
rather than(a, b).

M is limit-point or LP at∞ if there is at most one solution ofM [y] = 0
which is inL2(Ia), and limit-circle or LC at the point if both solutions are so
integrable. This can be shown equivalent to each of the following properties

(i) {y, z}(∞) := limx→∞(ypz̄′ − py′z̄)(x) = 0 for all y, z ∈ D.
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(ii) D = D0 ⊕ span(φ1, φ2), whereφ1, φ2 ∈ D and have compact support in
Ia. ThusD is a two dimensional extension ofD0.

It is clear that ifM is disconjugate it isLP at ∞ since the nonprincipal
solutionu2 /∈ L2(Ia). A stronger condition at∞ thanLP is strong limit-point
or SLP which means

lim
x→∞

(pyz̄)(x) = 0

∀ y, z ∈ D. For a thorough development of these operator theoretic ideas see
Naimark, [17, §17]. Discussion of the SLP concept may be found in Everitt,
[7].

We turn now to the central concern of this paper.

Definition 1.1. M is said to be separated onD0 or onD—equivalentlyL0 or
L is separated—ifqy ∈ L2(Ia). (Obviously also by application of the triangle
inequality(py′)′ ∈ L2(Ia).)

The following is an exercise in the Closed Graph Theorem (see e.g. [16]).

Proposition 1.1. Separation onD0 or D is equivalent to the inequality

(1.2) A‖(py′)′‖+ C‖qy‖ ≤ K‖M [y]‖+ L‖y‖.

for nonnegative constantsA, C,K andL.

The next result shows some connections betweenLP or SLP at ∞ and
separation. Its proof may be found in [2].

Proposition 1.2. If M is separated onD0 then it is separated onD if M is LP
at∞. On the other hand, ifM is separated onD then it isSLP at∞.
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Remark 1.1. Two immediate consequences of Proposition1.2 are (i) if M is
LC at∞ then it is not separated, (ii) ifM is LP but notSLP at∞ thenM is
not separated onD0.

Several criteria for separation ofM given by Everitt and Giertz in a series of
pioneering papers [8] – [12], also see Everitt, Giertz, and Weidmann [13], and
Atkinson [1]. More recent results (that include weighted cases) may be found
in Brown and Hinton [2],[3]. We quote three typical results.

Theorem A (Brown and Hinton [2]). If p−1 is locally integrable onIa, pq ≥ 0,
q(x) is locally absolutely continuous, and

(1.3)

∣∣∣∣p1/2q′(x)

q3/2(x)

∣∣∣∣ ≤ θ < 2,

on Ia thenM is separated onD.

Remark 1.2. The original version of TheoremA with p = 1 andq > 0 is due
to Everitt and Giertz [11]. The case of nontrivialp but θ < 1 is given in [9].

Theorem B (Brown and Hinton [3]). Suppose thatp−1 is locally integrable
on Ia, pq ≥ 0, andq, p are twice differentiable onIa. ThenM is separated on
D0 if

(1.4) lim sup
x→∞

(pq′)′

q2
≤ θ < 2.

Remark 1.3. Note that in the casep = 1 both TheoremsA and B work for a
wide class of increasingq such asq(x) = exp(x), q(x) = exp(xn) for n > 0,
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q(x) = exp(exp(· · · exp(x)) · · · ), etc. On the other hand, both theorems fail if
q is rapidly oscillatory, e.g.,q(x) = exp(x)(1 + sin(exp(x)). Note also that a
consequence of TheoremB is that ifp = 1 andq′′ ≤ 0 (i.e.,q is concave down)
thenM is separated.

Theorem C (Brown and Hinton [2]). Supposep−1 ∈ L1
loc(Ia), pq ≥ 0, q is

differentiable. ThenM is separated onD0 if either

(1.5) sup
x∈Ia

(x− a)

∫ ∞

x

q′

q2
= K1 <

1

4

or

(1.6) sup
x∈Ia

(x− a)

∫ ∞

x

(q′)2 = K2 < ∞.

Remark 1.4. In this theorem we see that separation holds for anyp satisfying
weak conditions provided thatq is of slow enough growth. For exampleq(x) =
xβ, β < 1

2
, satisfies (1.5) and q(x) = K log(x) satisfies (1.6). These facts

should not be particularly surprising since ifq = 1 thenM would be separated
for anyp; consequently one can conjecture that the same ought to be true ifq
has slow enough growth.

Recently Chernyavskaya and Schuster,[4] have given necessary and suffi-
cient conditions using averaging techniques due to Otelbaev for the inequalities

K‖M [y]‖p,R ≥ ‖y′′‖p,R + ‖qy‖p,R(1.7)

≥ ‖ry‖p,R,(1.8)

http://jipam.vu.edu.au/
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where the norms areLp norms onR, q ≥ 1 and is locally integrable,r > 0 is
locally p integrable,M [y] = −y′′ + qy ∈ Lp(R), and1 ≤ p ≤ ∞. Note that
(1.7) or (1.8) can hold on theLp analog ofD only if M has noLp or r-weighted
Lp solutions. Although the conditions in [4] seem challenging to implement
they can be applied to rapidly oscillating potentials such as

(1.9) q(x) = exp(|x|) + exp(|x|)(1 + sin(exp(|x|))

for which both TheoremsA andB fail.
In this paper we show that certain pointwise properties of a positive solution

of a disconjugate expressionM imply thatM is separated onD. This means
in particular that separation occurs ifM has a fundamental set of solutions,
sometimes calledWKB solutions, with a particular asymptotic behavior at∞.
Since the existence ofWKB solutions follows from certain integral conditions
satisfied byp and q, we are led to a test for separation that includes a well-
known 1971 result of Everitt and Giertz as a special case. We also show that
our approach leads to several other sufficient conditions for separation which
do not require verification of properties of positive solutions ofM . Some of
these will work for rapidly oscillating potentials similar to (1.9). We look also
at conditions that ensure that the mapping associated with the inequality

(1.10)
∥∥∥√hy

∥∥∥ ≤ K‖M [y]‖+ L‖y‖

is compact whereh is a weight, i.e., a positive locally integrable function, which
in turn will lead to a more general inequality (see (2.17) below) than (1.10). We
also investigate “perturbation” results: ifM1[y] = −(py′)′ + q1y is separated,
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when is the same true ofM2[y] = −(py′)′ + q2y when in some senseq2 is
“close” to q1?

Although our tests for separation hold only inL2(Ia) and are sufficient but
not necessary, they are easy to apply. Moreover we consider nontrivialp and on
occasion allowq to be negative or even unbounded below which is a more gen-
eral setting than in [4]. Finally, as already mentioned, the inequalities (such as
(2.17) below) associated with separation may be more complicated than (1.7)–
(1.8).

We use the following notational conventions in the paper. Positive constants
will be denoted by capital letters with or without subscripts such asC, K, K1,
etc. The value of a constant may change from line to line without a change in
the symbol denoting it. Iff andg are functionsf ∼ g denotes the asymptotic
equivalence off andg, i.e., limx→∞ f/g = 1. L2(w; Ia) is the standardw-
weighted Hilbert space with norm and inner product

‖f‖w =

(∫
Ia

w|f |2
) 1

2

, [f, g]w =

∫
Ia

wfḡ,

wherew is a weight. The class of Lebesgue integrable or locally Lebesgue
integrable functions onIa will be denoted byL(Ia) or Lloc(Ia).

Remark 1.5. The Hilbert space theory (see e.g. [17] of the operatorsL0 and
L is usually developed on complex domains. ThusD is the space of locally
absolutely continuous complex valued functionsf on Ia such thatf andM [f ]
belong toL2(Ia) with similar changes in the definitions ofD′0 andD0. All the
standard closure and adjoint properties ofL0 andL remain true in both cases.
Since the chief tool in our development is the concept of disconjugacy which is

http://jipam.vu.edu.au/
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defined only for real-valued solutions ofM , we will derive conditions for the
separation ofM only for realD0 andD. However all our results go over to the
complex case. This is seen from observation that iff = f1 + if2 ∈ D then

‖M [f ]‖2 = ‖M [f1]‖2 + ‖M [f2]‖2,

‖qf‖2 = ‖qf1‖2 + ‖qf2‖2.

ThereforeM(f), qf ∈ L2(Ia) ↔ M [f1], M [f2], qf1, qf2 ∈ L2(Ia).
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2. Main Results
Theorem 2.1.Letp > 0, q beC1 functions. SupposeM [y] = −(py′)′ + qy has
a positive solution on the interior ofIa such that

(pu′)′u ≡ qu2 ≤ 2p(u′)2,(2.1)

(1− δ)(u′)2 ≤ u′′u, δ ∈ [0, 1/3),(2.2)

p′u′ ≥ 0.(2.3)

Thenq ≥ 0 andM is separated onD.

Proof. We need only show thatM is separated onD0. BecauseM is disconju-
gate and as will be seen below (see (2.9)) q ≥ 0, M is LP at∞ and separation
onD will follow by Proposition1.2; in this case by Proposition1.1y will satisfy
an inequality of the form

‖qy‖2 ≤ C‖y‖2 + D‖M [y]‖2

for certain positive constantsC, D.
Let z(t) = −u′/u. Thenz satisfies the Riccati-type equation

(2.4) (pz)′ = pz2 − q.

Since

(2.5) (pz)′ =
−u(pu′)′ + p(u′)2

u2

http://jipam.vu.edu.au/
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(2.1) – (2.3) is equivalent to the properties

−pz2 ≤ (pz)′,(2.6)

z′ ≤ δz2,(2.7)

p′z ≤ 0.(2.8)

To see this, note that from the definition ofz and (2.5)

(2.1) ⇔ −2
p(u′)2

u2
≤ −u(pu′)′

u2

⇔ −p(u′)2

u2
≤ −u(pu′)′ + p(u′)2

u2

⇔ (pz)′ ≥ −pz2.

Also

(2.2) ⇔ −(1− δ)
(u′)2

u2
≥ −uu′′

u2

⇔ δ
(u′)2

u2
≥ −uu′′ + (u′)2

u2

⇔ δz2 ≥ z′.

Finally, the definition ofz and (2.3) clearly implies thatp′z ≤ 0.
Next define the operators

L(y) = y′ + zy,

L∗(y) = −y′ + zy

http://jipam.vu.edu.au/
mailto:dbrown@gp.as.ua.edu
http://jipam.vu.edu.au/


Separation and Disconjugacy

R.C. Brown

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 35

J. Ineq. Pure and Appl. Math. 4(3) Art. 56, 2003

http://jipam.vu.edu.au

wherey ∈ C∞
0 (Ia).

We now derive sufficient conditions for the “separation” ofL∗. We have

‖L∗(y)‖2 = [L∗(y), L∗(y)]

= [LL∗(y), y]

= [−y′′ + (z2 + z′)y, y]

=

∫
Ia

(y′)2 + (z2 + z′)y2.

Sincep′z ≤ 0 we see that

(pz)′ = p′z + pz′ ⇒ pz′ ≥ (pz)′ ≥ −pz2

⇒ z′ ≥ −z2.

Becausez′ + z2 is nonnegative the inequality

‖L∗(y)‖2 ≥ ‖y′‖2

holds. By the triangle inequality it also follows that

‖zy‖2 ≤ 4‖L∗(y)‖2.

The remaining step is use the separation ofL∗ to show thatM restricted to
C∞

0 (Ia) is also separated. We first observe that

L∗(pL(y)) = −(py′ + pzy)′ + z(py′ + pzy)

= −(py′)′ + [−(pz)′ + pz2]y

= −(py′)′ + qy.
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A consequence of (2.7) – (2.8) is that

−(pz)′ + pz2 = −pz′ − p′z + pz2

≥ −pz′ + pz2

≥ pz2(1− δ)

≥ 0.

Therefore both

(2.9) q ≥ 0 and (pz)′ ≤ δpz2.

Now also

‖M [y]‖2 = [L∗(pL)(y), L∗(pL)(y)]

= ‖L∗(pL(y))‖2

≥ 1

4
‖z(pL(y))‖2

=
1

4
[L∗((zp)2L(y)), y]

=
1

4

[
−((zp)2y′)′ + (z4p2 − (z3p2)′y, y

]
=

1

4

∫
Ia

[(zp)2(y′)2 + (z4p2 − (z3p2)′)y2].(2.10)

Hence sincep′z ≤ 0 andz′ ≤ δz2,

z4p2 − (z3p2)′ = z4p2 − 3z2z′p2 − 2z2p(p′z)

≥ (1− 3δ)z4p2.(2.11)
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But (pz)′ ≥ −pz2, so

pz2 = q + (pz)′ ≥ q − pz2.

Hence alsopz2 ≥ q/2. Combining this with (2.10) and (2.11) gives the inequal-
ity

(2.12) ‖M [y]‖2 ≥ 1

8
‖√pqy′‖2

+
1− 3δ

4
‖qy‖2,

which immediately yields the separation inequality

(2.13)
16

1− 3δ
‖M [y]‖2 ≥ ‖qy‖2.

A closure argument (cf. [2, Lemma 1]) shows that the same inequalities are
true on the minimal domainD0.

Remark 2.1.

(i) It is well-known that the existence of a positive solutionu, the existence of
a continuously differentiable solutionz of the inequalityz′ + z2/p + q ≤
0, or the identityM [y] = L∗(pL(y)) for y having a continuous second
derivative are each equivalent to the disconjugacy ofM on I; see e.g.
[15, Corollary 6.1, Theorem 7.2] or Coppel [5, p.6].

(ii) We may require that both the conditionsq ≥ 0 and (2.1) – (2.3) hold
“eventually”, i.e. on Ia′ for sufficiently largea′ > a. In this case the
restriction ofM to Ia′ will be separated on its maximal domain. Sinceq is
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bounded on(a, a′] it is immediate that separation holds also forIa (cf. [2,
Remark 1 and Proposition 2]) although the corresponding inequality may
be of the form (1.1) rather than (2.13).

(iii) If we retrace the proof of Theorem2.1with p = 1 (2.1) – (2.3) becomes

(2.14) (1− δ)(u′)2 ≤ u′′u ≤ 2(u′)2

⇔ (1− δ)(u′)2 ≤ qu2 ≤ 2(u′)2, δ ∈ [0, 1/3) ,

with a corresponding change in (2.6) – (2.8).

(iv) If q is positive andu satisfies (2.1) or (2.2) thenu′ is strictly positive or
negative, for ifu′(x0) = 0 eitheru(x0) = 0 or one of(pu′)′ or u vanishes
at x0. In either caseq > 0 ⇒ u(x0) = 0, implying thatu ≡ 0.

In the remainder of the paper “separated” means separated onD unless the
restriction toD0 is stated. Also, in proving separation inequalities onD0 such
as (1.2) we will generally start withy ∈ C∞

0 (Ia) and omit the routine closure
argument which extends the inequality toD0.

We now show that information about the asymptotic behavior of positive
solutions ofM [y] = 0 can yield criteria for separation based on the stable
conditions ofp andq.

Theorem 2.2. Suppose thatp, q are positive and twice differentiable withp′

nonnegative or nonpositive. Set

t(x) :=

∫ x

a

√
q

p
,

µ(x) := (pq)−1/4,
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and assume thatlimx→∞ t(x) = ∞, µ(pµ′)′ ∈ L1(Ia), andlim supx→∞ |p′|/
√

pq =
δ < 1

3
. ThenM is separated.

Proof. By Coppel [6, Theorem 13],M has fundamental solutionsu such that
for x →∞

u ∼= µ exp(±t(x)), u′ ∼= ±(pµ)−1 exp(±t(x)).

It follows that(pu′)′ ∼ qy1 and so

u(pu′)′ ∼ qu2 ∼
√

p

q
exp(±2t(x)) ∼ p(u′)2.

Clearly (2.1) is satisfied onIa′ for sufficiently largea′ > a. To derive (2.2)
observe that the asymptotic equivalence ofp(u′)2 and(pu′)′ implies that

(u′)2 ∼ u′′u +
p′

p
u′u.

But

(p′/p)(u′u/(u′)2) =
p′u

pu′
∼ p′

u

p
√

q/pu2

∼ p′µ2 ≤ |p′|
√

pq
≤ δ + ε <

1

3

asx → ∞. Thus forε > 0 and on someIa′ with a′ sufficiently large we have
that

(u′)2 ≤ (u′′u + (δ + ε)(1 + ε)(u′)2) ⇒ (1− (δ + ε)(1 + ε))(u′)2 ≤ u′′u
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which obviously implies (2.2) if ε is small enough. Finally, ifp′ ≥ 0 we choose
y1 = µ(x) exp(t(x)) and ifp′ ≤ 0 we choosey1 = µ exp(−t(x)). In either case
(2.3) holds. By Remark2.1(ii), the fact thatM is LP at∞, and Theorem2.1,
separation follows.

In 1970 [8] Everitt and Giertz showed:

Corollary 2.3. If p = 1, q ≥ d > 0, and∫
Ia

q−1/4
∣∣(q−1/4)′′

∣∣ < ∞,

thenM is separated.

Proof. Evidently this condition is a special case of Theorem2.1with p = 1, cf.
[6, Theorem 14].

Remark 2.2. The hypothesis of Corollary2.3can be shown to be equivalent to
(see [6, p. 122] ∫

Ia

∣∣q−3/2q′′
∣∣ < ∞,

unlessq(x) ∼ cx−4 andq′(x) ∼ −4cx−5 for c a positive constant. But in this
caseM is trivially separated onIa if a > 0.

A similar result using the asymptotic properties of solutions but requiring
less smoothness onq is given by:
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Theorem 2.4.Suppose thatp = 1, q ≥ d > 0 is differentiable, and∫
Ia

|q′|
q3r/2−1/2

< ∞

for somer, 1 ≤ r ≤ 2. ThenM is separated.

Proof. By a result of Hartman and Winter [15, p. 320]M has solutionsu such
that

u ∼ q−1/4 exp(±t(x)),

u′ ∼ ±q1/2u,

wheret(x) =
∫ x

a

√
q. Sinceu′′ ∼ q3/4 exp(±

∫ x

a
q1/2), it is clear that (2.14) is

satisfied on someIa′, a′ > a.

In most cases however it is difficult to verify (2.1) – (2.3) or (2.14) directly,
which motivates us to seek an equivalent formulation of Theorem2.1for which
knowledge of properties of positive solutions ofM [y] = 0 is not required.

Theorem 2.5. Let p > 0 andz beC1(I) functions. Then if (2.6) – (2.8) hold
andq = pz2 − (pz)′. M [y] is separated and the inequality (2.13) holds.

Proof. The fact that Theorem2.1 implies Theorem2.5 is clear. On the other
hand, if we setu = e−

∫
z, thenu is a positive solution ofM [y] = 0. z = −u′/u,

and the conditions (2.1) – (2.3) hold as they are equivalent to (2.6) – (2.8). Thus
all the assumptions of Theorem2.1are satisfied.
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Theorem 2.6.Suppose thatM is separated,q ≥ d > 0, and thath is a weight.
Assume further that either

(2.15) lim
x→∞

q2

h
= ∞

or limx→∞ h = ∞, and

(2.16) K ‖√py′‖ ≥
∥∥hθ/2y

∥∥
for someθ > 1 and all y ∈ C∞

0 . Let GM(y) := {(y, M [y]), y ∈ D},
equipped with the graph norm. Then the mappingλ : GM → L2(h; I) given by
λ(GM(y) = y is compact, andM satisfies an inequality of the form

(2.17) ε‖M [y]‖+ K(ε)‖y‖ ≥
∥∥∥√hy

∥∥∥
onD for ε > 0.

Proof. If (2.15) holds andM is separated, then by (1.2) of Proposition1.1there
is an inequality of the form

L

C
‖y‖+

K

C
‖M [y]‖ ≥ ‖qy‖

=

(∫
Ia

(
q2

h

)
hy2

) 1
2

≥ n

(∫ ∞

xn

hy2

) 1
2

.(2.18)
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for any positive integer and where the sequence{xn} → ∞. Let λn : GM →
L2(In

a ) be given by the characteristic function onIn
a composed withλ, where

In
a = [a, xn]. Since the solutions ofM [y] = 0 and q are continuous onIn

a ,
a Green’s function argument shows that the mapsλn : GM → L2(h; In

a ) are
compact. By (2.18) the λn converge in operator norm to a compact limitλ.
Also sinceq ≥ d > 0, q is closed, considered as a multiplication operator
q̃ : L2(Ia) → L2(Ia), and sinceM is separatedD ⊂ D(q̃). In this situation
Corollary V.3.8 of Goldberg [14, p. 123] applies and gives (2.17).

Under the second set of conditions we have from the Cauchy-Schwartz in-
equality, integration by parts, and sincelimx→∞ h = ∞ that on someIa′, a′ > a,
and fory ∈ C∞

0 (Ia′) that

‖(py′)′‖ ‖hθ/2y‖ ≥ ‖(py′)′‖ ‖y‖
≥ [(py′)′, y]

= ‖√py′‖2

≥ K−2‖hθ/2y‖2.

Hence

‖(py′)′‖ ≥ K−2‖hθ/2y‖
≥ K−2‖h(θ−1)/2

√
hy‖

≥ K−2n‖
√

hy‖(xn,∞).

SinceM is separated we obtain from (1.2) the inequality

L

C
‖y‖+

K

C
‖M [y]‖ ≥ ‖(py′)′‖ ≥ K−1n

∥∥∥√hy
∥∥∥

(xn,∞)
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on theC∞
0 (Ia) functions and therefore also onD0; the proof thatλ restricted to

D0 is compact continues as in the first part. But sinceD is a finite dimensional
extension ofD0, λ is also compact.

Remark 2.3. Following Everitt and Giertz [8] we say thatq is in the classP (γ)
or q ∈ P (γ) if whenevery ∈ D then|q|γ ∈ L2(Ia). Thus the separation ofM
onD is equivalent toq ∈ P (1). It is also easy to verify by thinking ofq = q1+q2

whereq1(x) ≤ 1 andq2(x) > 1 that q ∈ P (γ) ⇒ q ∈ P (β) for anyβ ∈ (0, γ].
Suppose nowq ∈ P (1) andlimx→∞ q = ∞. Then from the first part of Theorem
2.6not only will q ∈ P (θ), θ < 1, but the “compactness” inequality (2.17) will
hold if h = qθ. If M is separated,q → ∞, and (2.16) holds for h = q2

and θ > 1 thenq ∈ P (θ), and we have the interesting consequence that the
mappingλ : GM → L2(q; Ia) is compact. In general, ifq ∈ P (γ) andq → ∞
thenλ : GM → L2(qβ; Ia) is compact.

A disadvantage of Theorem2.5 is that althoughq has the formpz2 − (pz)′,
sinceM is disconjugate, it may be difficult to determinez and to verify (2.6)
– (2.8). We attempt to remedy this problem in the next three corollaries and
obtain additional usable tests.

Corollary 2.7. If M1[y] = −(py′)′+q1y whereq1(z1) = (pz2
1−(pz1)

′) satisfies
the hypotheses of Theorem2.5andM1,c[y] = −(py′)′ + q1,cy whereq1,c(z1) =
(pc2z2

1 − (pcz1)
′)y, wherec > 1 thenM1,c[y] is separated. More generally, ifg

is a differentiable function such thatg, g′ ≥ 0 and

(2.19)
g′(x)x2

g(x)2
≤ 1
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then if q2 = z2
2 − z′2 wherez2 = g(z1) M2 is separated. Conversely, ifM2[y]

satisfies the hypotheses of Theorem2.5and

(2.20)
g′(x)x2

g(x)2
≥ 1,

thenM1 is separated.

Proof. Let z2 = cz1. Then sincec > 1, z2 satisfies (2.6) – (2.8) and q2 =
pz2

2 − (pz2)
′. Also p′z2 ≤ 0. Separation follows by Theorem2.5.

For the second part, sincez2 satisfies (2.6) – (2.8) and by (2.19) we have that

z′2 = g′(z1)z
′
1 ≥ −g′(z1)z

2
1 ≥ −g(z1)

2 = −z2
2

≤ δg′(z1)z
2
1 ≤ δg(z1)

2 = δz2
2 .

Thusz2 satisfies (2.6) – (2.8) and we can again apply Theorem2.5. On the other
hand, using (2.20)

z′2 ≥ −z2
2 ⇔ z′1 ≥ −

g(z1)
2

g′(z1)
≥ −z2

1 ,

z′2 ≤ δz2
2 ⇔ z′1 ≤

δg(z1)
2

g′(z1)
≤ δz2

1 .

Example 2.1.Letp = 1, z1(x) =
√

x, andq1(x) = x−
(

1
2

)
x−

1
2 . If a >

(
3
2

) 2
3 ,

then (2.6) – (2.8) is satisfied for someδ < 1
3
. If g(x) = exp(x2), (2.19) is
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satisfied for saya > 2. Takingz2(x) = g(z1) = exp(x) we get thatq2(x) =
exp(2x)− exp(x) and there is an inequality of the form

K‖M2[y]‖ ≥ ‖q2y‖

onD0 defined onIa. ThatM2 is separated onD0 also follows from TheoremA,
but the inequality seems new.

The next two lemmas are useful.

Lemma 2.8. Suppose thatM1[y] = −(py′)′ + q1y is separated onD0. If

lim sup
x→∞

q2

q1

< 1 + γ,

lim inf
x→∞

q2

q1

> 1− γ,

whereγ is sufficiently small, thenM2[y] is also separated onD0.

Proof. Choosea′ large enough so that onIa′∣∣∣∣q2

q1

− 1

∣∣∣∣ < γ.

SinceM2[y] = M1(y) + (q2 − q1)y by the triangle inequality and inequality
(1.2) we have that

L‖y‖+ K‖M2[y]‖+ K

∥∥∥∥q1

(
q2

q1

− 1

)
y

∥∥∥∥ ≥ K‖M1[y]‖+ L‖y‖
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for y ∈ C∞
0 . Hence onIa′

L‖y‖+ K‖M2[y]‖+ Kγ‖q1y‖ ≥ C‖q1y‖
≥ C(1 + γ)−1‖q2y‖.

Thus
L‖y‖+ K‖M2[y]‖ ≥ d‖q2y‖,

whered = (1 + γ)−1(C −Kγ), which is positive for small enoughγ.

Lemma 2.9. Suppose thatM1[y] = −(py′)′ + q1y satisfies the separation in-
equality (2.17) with h = q2

1 for any ε > 0 onD0. If also there are constants
K1, K2 > 0 such thatK1 ≤ |q1/q2| ≤ K2 thenM2[y] = −(py′)′ + q2y satisfies
the same separation inequality onD0 with h = q2

2 for sufficiently smallε > 0.

Proof. Since

M2[y] = M1[y] + q2

(
1− q1

q2

)
y

for y ∈ C∞
0 (Ia), we arrive at the inequality

ε‖M2[y]‖+ ε

∥∥∥∥q2

(
1− q1

q2

)
y

∥∥∥∥+ K(ε)‖y‖ ≥ ε‖M1[y]‖+ K(ε)‖y‖

≥ ‖q1y‖ ≥ K1‖q2y‖

for anyε > 0. Hence also

ε‖M2[y]‖+ K(ε)‖y‖ ≥ d1‖q2y‖,

whered1 = (K1 − (1 + K2)ε > 0 for small enoughε.
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Remark 2.4. Takingq2 = −q1 andK1 = K2 = 1 in Lemma2.9, we see that if
M1 satisfies (2.17) then so doesM2 which means that we can have separation
for a potentialq which is negative and unbounded below provided the expres-
sion constructed with potential|q| satisfies (2.17).

Example 2.2.Supposep(x) = 1 andq1(x) = exp(x). Then by TheoremA or B
M1 is separated. Lettn(x) = exp(exp(· · · exp(x)) · · · ) be an-fold iteration of
exp(x) and setq2(x) = exp(x)(1 + ε sin(tn(x)), ε > 0. Then TheoremsA and
B do not apply because (1.3) and (1.4) are unbounded. However, by Lemma2.8
M2 is separated ifε is sufficiently small. Clearlytn(x) can be replaced by any
other rapidly increasing function.

Example 2.3.Letp1(x) = exp(x) andq1(x) = x1/3 onIa. By TheoremC M1 is
separated. It is easy to verify thatp1 andq1 satisfy the Muckenhoupt condition

sup
x∈Ia

∫ ∞

x

p−1
1

∫ x

a

qθ
1 < ∞, θ > 1,

and therefore (cf. Opić and Kufner [18, Theorem 6.2]) the Hardy inequal-
ity K‖ exp(x/2)y′‖ ≥ ‖qθ/2

1 y‖ holds onC∞
0 . Therefore from the second part

of Theorem2.6 we obtain an inequality of the form (2.17). If now q2(x) =
−q1(x)(2 + sin(exp(xn)) we will have from Lemma2.9 the same kind of in-
equality but with

M2[y] = −(exp(x)y′)′ − x1/3(2 + sin(exp(xn))y.

Theorem 2.10.If p > 0, z is aC1 function,p′z ≤ 0 and

−K1z
2 ≤ z′ ≤ K2z

2
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for positive constantsK1, K2 then the operators

M1,c[y] = −(py′)′ + q1,cy,

M2,c[y] = −(py′)′ + q2,cy,

whereq1,c = c2pz2−c(pz)′ andq2,c = c2pz2 are separated for sufficiently large
c ≥ 1.

Proof. To prove thatM1,c is separated we retrace the proof of Theorem2.1. Let
Lc(y) = y′ + czy andL∗c(y) = −y′ + czy, wherey ∈ C∞

0 (I). Then

‖L∗c(y)‖2 =

∫ ∞

1

(y′)2 + (cz′ + c2z2)y2.

If c ≥ K1, thencz′ + c2z2 ≥ 0 and as before,

‖cz‖2 ≤ 4‖L∗c [y]‖2.

LikewiseL∗c(pLc(y)) = M1,c[y] and

q1,c = −pcz′ − p′cz + pc2z2

≥ −pcz′ + pc2z2

≥ pcz2(c−K2) ≥ 0

if c > K2. From the definition ofq1,c we also have that(pz)′ ≤ K2pz
2. And so

‖M1,c[y]‖2 ≥ 1

4

∫
Ia

[(czp)2(y′)2 + (c4z4p2 − ((cz)3p2)′y2]

≥
∫

Ia

[c4z4p2 − 3c3z2z′p2]y2

http://jipam.vu.edu.au/
mailto:dbrown@gp.as.ua.edu
http://jipam.vu.edu.au/


Separation and Disconjugacy

R.C. Brown

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 35

J. Ineq. Pure and Appl. Math. 4(3) Art. 56, 2003

http://jipam.vu.edu.au

≥
[
1− 3K2

c

] ∫
Ia

c4p2z4y2

for c > 3K2. Now also

‖(pcz)′y‖+ ‖M2,c[y]‖ ≥ ‖M1,c[y]‖ ≥ K3

∥∥c2pz2y
∥∥

whereK3 =
√

1− 3K2/c, so that

‖M2,c[y]‖ ≥ K3

∥∥c2pz2y
∥∥− ‖(pcz)′y‖

≥

(√
1− 3K2

c
−
√

K2

c

)∥∥c2pz2y
∥∥ .

Since the constant is positive for large enoughc the inequality (2.13) for M2,c[y]
is established. Since

q1,c

q2,c

= (1− (pz)′(c2pz2)

≤
(

1 +
K2

c2

)
≥
(

1− K2

c2

)
,

Lemma2.8 may be applied to conclude thatM1,c is separated and satisfies an
inequality like (2.13).
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Example 2.4. If p′ is of constant sign, letz = −sgn(p′)
√

q/p thenp′z ≤ 0 as
required andq2,c = c2q. A calculation shows that the hypothesis of Theorem
2.10becomes

−2K1 ≥
(

p′
√

pq
− p1/2q′

q3/2

)
sgn(p′) ≤ 2K2.

Equivalently we can require that

η = sup
x∈Ia

∣∣∣∣ p′
√

pq
− p1/2q′

q3/2

∣∣∣∣ < ∞

to conclude thatMd[y] = −(py′)′ + dqy is separated for sufficiently larged.
For example, ifp(x) = q(x) = exp(x2) both TheoremA andB fail for any Md

yetη = 0 and so we have an inequality of the form

K‖ − (exp(x2)y′)′ + d exp(x2)y‖ ≥ ‖d exp(x2)y‖

for large enoughd.

Corollary 2.11. Letp, z, h, andg be functions such thatp > 0 andp, z areC1,
p′z ≤ 0, z′ ≤ δz2 for δ ∈ [0, 1/3), h ≥ d > 0, g is bounded, and

(2.21) lim
x→∞

∣∣∣∣h(pz)′

pz2

∣∣∣∣ = 0,

thenM1[y] = −(py′)′ + q1y, whereq1 = pz2 − (pz)′ is separated onD and
M2[y] = −(py′)′+ q2, whereq2 = pz2 +hg(pz)′ is separated on at least onD0.
If we assume additionally that

(2.22) lim
x→∞

pz2 = ∞,
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then the inequalities

ε‖Mi[y]‖+ K(ε)‖y‖ ≥ ‖qθ
j y‖

hold for1 ≤ i, j ≤ 2 andθ < 1 onD if i = 1 and onD0 if i = 2.

Proof. Since ∣∣∣∣h(pz)′

pz2

∣∣∣∣ ≥ d

∣∣∣∣(pz)′

pz2

∣∣∣∣ ,
(pz)′/pz2 → 0 asx → ∞ which implies that forIa′ = [a′,∞) anda′ suffi-
ciently large,−pz2 ≤ (pz)′. Since the assumptions of Theorem2.5are satisfied,
M1[y] is separated onD relativeIa′ and by Remark2.1(ii) also onIa. Since

lim
x→∞

q1

q2

= lim
x→∞

1− (pz)′/pz2

1− hg(pz)′/pz2
= 1

the separation ofM2 andM3 onD0 follows from Lemma2.8.
To prove the second claim, a calculation will show that

lim
x→∞

q2
i

q2θ
j

= lim
x→∞

(pz2)2(1−θ)T (z, p, θ) = ∞, 1 ≤ i, j ≤ 2,

whereT (z, p, θ) is a term going to1 asx →∞. For example,

lim
x→∞

q2
3

q2
2

= lim
x→∞

(pz2)2(1−θ)

[
1 + g(pz)′/pz2

(1 + hg(pz)′/pz2)θ

]2

= ∞.

The inequalities follow from the second part of Theorem2.6.
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Example 2.5. Setp(x) = exp(x/3), z(x) = − exp(x/3), h(x) = exp((1 −
3ε)x/3), andg(x) = − sin(tn(x)), wheretn(x) is as in Example2.3. Then

p′z = −1

3
exp

(
2x

3

)
≤ 0, z′ = −1

3
exp

(x

3

)
≤ δ exp

(
2x

3

)
= z2,

and (2.21) holds. Then

M [y] := −
(
exp

(x

3

)
y′
)′

+ exp(x)

[
1 +

2

3
exp(−εx) sin(tn(x))

]
y

is separated onD0. SinceM is LP at∞ the separation actually holds onD.

The final result of this paper is quite different from Theorem2.1 but it re-
inforces the connection between disconjugacy and separation. In addition, the
proof is quite elementary.

Theorem 2.12.Letp > 0 andq ≥ d > 0 be continuous. Suppose thatMλ[y] =
−(py′)′ + (q − λq2)y is disconjugate onIa for someλ > 0. ThenM [y] =
−(py′)′ + qy is separated.

Proof. It is well known (see e.g. [15, Theorem 6.2]) that the disconjugacy of
Mλ is equivalent to the positive definiteness of the functional

Qλ[y] =

∫
Ia

(
p|y′|2 + (q − λq2)|y|2

)
for y ∈ C∞

0 (Ia).

In other words, we must have the inequality

(2.23) Q0[y] ≡
∫

Ia

(
p|y′|2 + qy2

)
≥ λ

∫
Ia

q2|y|2
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with equality holding if and only ify = 0. Now consider the expressionMq2 =
q−2[−py′)′+qy], wherey is an appropriate function inL2(q2; Ia). If y ∈ C∞

0 (Ia)
then the Cauchy-Schwartz inequality and (2.23) yields that

‖Mq2 [y]‖q2‖y‖q2 ≥ Q0[y] ≥ λ‖y‖2
q2 ≡ λ‖qy‖2.

It follows that the inequality

d−2‖M [y]‖ ≥ ‖Mq2 [y]‖
q2 ≥ λ‖qy‖

holds on theC∞
0 functions and also therefore onD0. BecauseM is LP at∞

we again conclude that it is separated onD.

Remark 2.5. (i) If p−1 ∈ L(Ia) and

(2.24) sup
x∈Ia

(∫ ∞

x

p−1

)(∫ x

a

λq2 − q

)
<

1

4

then (cf. Example2.4) the Hardy inequality
∥∥p1/2y′

∥∥2 ≥
∥∥(λq2 − q)1/2y

∥∥
holds onC∞

0 (Ia) with equality if and only ify = 0. This inequality implies
the positive definiteness ofQλ.

(ii) If w ≥ d > is a weight and we require that(−py′)′ + (q − λw) be discon-
jugate, then the proof of Theorem2.12will yield the inequality

(2.25) d−1‖M [y]‖ ≥ λ
∥∥√wy

∥∥ .

Substitutingw for q2 in (2.24) will give a sufficient condition for (2.25).
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