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1. INTRODUCTION AND REVIEW OF SOME RECENT RESULTS

For two measurable function5 g : [a,b] — R, define the functional, which is known in the
literature asCebySev’s functional, by

(1.1) T(f, g):=MI(fg)—M(f)M(g),
where the integral mean is given by

b
(1.2) M(f) = ﬁ/ f(x)dz.

The integrals in[(1]1) are assumed to exist.
Further, the weighte@ebysSev functional is defined by

(1.3) T(f g:p) == M(f,g:p) = M(f;p) M (g;p),
where the weighted integral mean is given by
Jip (@) f (2) do
1.4 M (f;p) ==~ ,
(1.4) (fip) p (@) do
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2 P. GERONE

with 0 < f;p(:c) dr < oo.
We note that,

T(f,9:1)=T(f9)
and
M(f;1) = M(f).

It is worthwhile noting that a number of identities relating to fhebyéev functional already
exist. The reader is referred 10 [17] Chapters IX and X. Korkine’s identity is well known, see
[17, p. 296] and is given by

a5 T = [ [ @) 6w g ey

It is identity (1.5) that is often used to prove an inequality due to Griiss for functions bounded
above and below, [17].
The Gruss inequality is given by

(1.6) T (f,9)| <

whereg; < f (z) < @, forz € [a,b].
If we let S (f) be an operator defined by

(q)f - ébf) ((I)g - ng) )

1 =

(1.7) S(f) () = f(z) = M(f),

which shifts a function by its integral mean, then the following identity holds. Namely,
(1.8) T(f,9)=T(S(f),9)=T(f,5(9)=T(5(f),5(9),

and so

(1.9) T(f,9)=M(S(f)g)=M(fS(g)) =M(S5(f)5(9))

sinceM (S (f)) =M (S(g)) =0.

For the last term in (1]8) of (1.9) only one of the functions needs to be shifted by its integral
mean. If the other were to be shifted by any other quantity, the identities would still hold. A
weighted version of (1]9) related to

(1.10) T(f,g9)=M((f(x)—~)5(9)

for v arbitrary was given by Sonin [19] (see [17, p. 246]).

The interested reader is also referred to Dragomir [12] and Eirk [14] for extensive treatments
of the Griiss and related inequalities. 5

Identity ) may also be used to prove tbebySev inequality which states that fof-) and
g (+) synchronous, namelyf (x) — f (v)) (¢ (z) — g (y)) > 0, a.e.z,y € [a,b], then

(1.11) T(f,g)>0.

There are many identities involving tigebysev functional) or more genera1.3). Re-
cently, Ceronel[2] obtained, fqf, g : [a,b] — R wheref is of bounded variation anglcontin-
uous onla, b] , the identity

1 b
(1.12) T(9) = G [ PO,
where
(1.13) W) = (t—a) G (t,b) — (b—1) G (a,1)
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with

d
(1.14) G(c,d) = / g (z)dx.
The following theorem was proved in![2].

Theorem 1.1.Let f,g : [a,b] — R, wheref is of bounded variation and is continuous on
[a,b] . Then

;

s 16 01V (7).

te(a,b]
1.15 b—a)’|T <
(118  b=af|T(/.9)l = Lf [ (t)] dt, for f L — Lipschitzian,
f [ (t)|df (t) for f monotonic nondecreasing,

where\/’ (f) is the total variation off on [a, b] .

An equivalent identity and theorem were also obtained for the weigbétySev functional
.3).

The bounds for th€ebysev functional were utilised to procure approximations to moments
and moment generating functions.

In [8], bounds were obtained for the approximations of moments although the wark in [2]
places less stringent assumptions on the behaviour of the probability density function.
_ Ina subsequent paper td [2], Cerone and Dragdmir [6] obtained a refinement of the classical
Cebysev inequalit 1).

Theorem 1.2.Let f : [a,b] — R be a monotonic nondecreasing function [enb] and g :
la,b] — R a continuous function ofw, b] so thaty () > 0 for eacht € (a,b). Then one has
the inequality:

(116)  T(f.g)> ﬁ / [(t = @) |G (t:0)] = (b= 1) |G (a, )] df (1)] = 0
where
(1.17) o(t) = G (t,b) B G (a,t)

b—t t—a
andG (c, d) is as defined i (1.14).

Bounds were also found f¢¥" (f, g)| in terms of the Lebesgue normig|[,, p > 1 effectively

utilising (1.1%) and noting that (t) = (t —a) (b—t) ¢ (t) .

_ It should be mentioned here that the authoriin [3] demonstrated relationships between the
Cebysev functiondl” (f, g; a, b) , the generalised trapezoidal functioddl” (f; a, z,b) and the
Ostrowski functionab (f; a, z, b) defined by

T(f,g;a,b) := M (fg;a,b) — M (f;a,b) M (g;a,b)

6 (fiaat) = (=2 ) £+ (=2 ) 10) - M (fia)

and

O(f;a,z,b) := f(x) — M (f;a,b)
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where the integral mean is defined by
b
(1.18) M (fra,b) = / £ (x) da.
—a ),
This was made possible through the fact that bG#i(f; a, z,b) and© (f;a, x,b) satisfy
identities like [1.1R) involving appropriate Peano kernels. Namely,

ot (faet) = [(a@O@ @), an=t"" ey
and
b t—a, tE€]a,x]
GUmwﬁ%j/p@wﬁﬁm, @@p@j){
“ t—b, te(xb
respectively.

The reader is referred t0 [10], [13] and the references therein for applications of these to
numerical quadrature.

For other Gruss type inequalities, see the books [17] and [18], and the papers [9] — [14],
where further references are given.

Recently, Cerone and Dragomnir [7] have pointed out generalisations of the above results for
integrals defined on two different intervais b] and|c, d] .

Define the functional (generalis€zebysev functional)

(1.19) T'(f.g;a,b,c,d) := M (fg;a,b) + M (fg;c,d)
= M (f;a,b) M (g;¢,d) = M (f;c,d) M (g;a,b)
then Cerone and Dragomir [7] proved the following result.

Theorem 1.3.Let f,g : I C R — R be measurable oih and the intervalda, b|, [c,d] C 1.
Assume that the integrals involved [in (1.19) exist. Then we have the inequality

(1.20) |T'(f,g;a,b,c,d)|
<[T(f;a,b) + T (f;c,d)+ (M(f;a,b) — M (f;c,d)’]
x [T (gia,b) + T (g;c,d) + (M (g;a,b) — M (g; ¢,d))]

[N

=

where

1, 1 ?
(1.21) T(f;a,b) izm/a f7 () dx — (m/ﬂ f(f)d90> :
and the integrals involved in the right ¢f (1]20) exist ahd f; a, b) is as defined by (1.18).

They used a generalisation of the classical identity due to Korkine namely,

1 b d
122) T(fgobed = geso— [ [ (@)= 16) 66 -9 w)dis
and the fact that
(1.23) T (f, f;a,b,c,d) =T (f;a,b) + T (fic,d)+ (M (f;a,b) — M (f;c,d))”.

From the Griss inequality (1.6), then from (1.21) we obtainff¢and equivalent expressions
for g)

Ml—ml MQ_m2>2

T(f;a,b)g( )2 andT(f;c,d)g( 5
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wherem; < f < M; a.e. ona,b] andms < f < M, a.e. onc, d] .

Cerone and Dragomif [6] procured bounds for the generaleySev functiona9) in
terms of the integral means and boundsf @indg over the two intervals.

The following result was obtained inl[1] fgirandg of Holder type involving the generalised

Cebysev functiona| (1.19) with (1.18).

Theorem 1.4.Let f,g : I C R — R be measurable oi and the intervalda, b], [c,d] C I.
Further, suppose that and g are of Holder type so that for € [a, 0], y € [c, d]

(1.24) |f(x) = f(y) < Hilz—yl" and [g(z) — g (y)| < Ha |z —y[",

where H,, H, > 0 andr,s € (0,1] are fixed. The following inequality then holds on the
assumption that the integrals involved exist. Namely,

(1.25) (0+1)(0+2)[T(f g:a,b,c,d)
H,H,
<
~(b—a)(d—¢)
whered = r + sandT ([, g; a, b, ¢, d) is as defined by (1.19) and (1]18).

Another generaliseéebyéev functional involving the mean of the product of two functions,
and the product of the means of each of the functions, where one is over a different interval was
examined in[[7]. Namely,

(126) s(fug;aabvcad) = M(fg7aab) - M(f,a,b)M(g,c,d),
which may be demonstrated to to satisfy the Korkine like identity

b pd
a2 T(rgebed = gomo— [ [ 1@ - o) dus

It may be noticed fron{ (1.26) and (1.1) the€ (/. g; a, b;a,b) = T (f, g;a,b).
It may further be noticed thdt (1.[15) is related[to (1.19) by the identity
(1.28) T(f g;a,b,c,d) =% (f,9:a,b,¢,d) + T (g, f;¢,d,a,b).

Theorem 1.5.Letf.g : I C R — R be measurable o and the intervalsa, ], [c,d] C I. In
addition, letm; < f < M; andn; < g < N; a.e. ona,b] withny, < g < N, a.e. onlc,d].
Then the following inequalities hold

(1.29) [%(f,g;a,b,c,d)|
< [T (f;a,b) + M? (f;a,b)]
x {T (g:a,b) + T (g;¢,d) + [M (g;0,b) — M (g; ¢, d)]*}

< [(M%) + M2 (f;a,0)

X {(N1;”1)2+ (N2;”2)2+ [M (g;a,b) —M(g;c,d)]Q} |

whereT (f;a,b) is as given by[ (1.21) and/ (f; a, ) by (1.18).

The generalise@ebysev functional (1.26) and Theorem|1.5 was used in [4] to obtain bounds
for a generalised Steffensen functional. It is also possible as demonstrated in [7] to recapture
the Ostrowski functiona[ (11 7) from (1.26) by using a limiting argument.

|b . 0‘9-"—2 _ |b . d’6+2 + |d . a|9+2 . |C— CL‘9+2

Y

[NIES
[NIES

N|=

N[
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2. THE CEBYSEV FUNCTIONAL INA MEASURABLE SPACE SETTING

Let (€2, A, 1) be a measurable space consisting of &se&to — algebraA of parts of(2 and
a countably additive and positive measpuren 4 with values inR U {oco} .

For ap—measurable functiow : Q — R, with w (x) > 0 for p — a.e.x € 2, consider the
Lebesgue spade, (2, A, i) := {f : @ — R, fisu—measurableanf, w () |f ()| du (z) <
oco}. Assumef, w (z) dp (z) > 0.

If f,g : Q@ — R arep—measurable functions anflg, fg € L, (2, A, 1), then we may
consider the&Cebysev functional

@nyuﬂmzmumﬂyzfw@mmwéw@M@M@MM@
1
— wi(x)dl’L(x)/Qw(x)f(x)dl’l’(l‘)
1
X wi(x)dlL(fE)/Qw(x)g(x)d:u($>.

Remark 2.1. We note that a new measuréx) may be defined such that (z) = w (z) du (z)
however, in the current article the weight ) and measurg (z) are separated.

The following result is known in the literature as the Gruss inequality

22) T (f0)] < 1 (0= 7) (A =4),
provided
(2.3) —co<y< f(r) <T <00, —0<d<g(r) <A<

for y—a.e.x € Q.
The constanﬁ is sharp in the sense that it cannot be replaced by a smaller quantity.
With the above assumptions andfite L, (€2, A, 1) then we may define

(2.4) Dy (f) == Duwa (f)

1
'kw@ﬂM@Aw@)

1
fle) = Jow (y)dp (y)

The following fundamental result was proved|in [5].

X

/QlU(y)f(y)du(y) du (x).

Theorem 2.2. Letw, f, g : 2 — R beu—measurable functions withh > 0 u— a.e. on2 and
Jow @) du(y) >0.1f f,g, fg € L, (2, A, 1) and there exists the constants\ such that

(2.5) —0<d<g(r)<A<oo for p—aexec

then we have the inequality

(A—=0) Dy (f)-

N | —

(2.6) T (f,9)] <

The constang is sharp in the sense that it cannot be replaced by a smaller quantity.
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For f € Ly, (A p) = {f: Q=R [w()|f () du(z) <oc},1 < p < coand
f€ Lo (A ) = {f Q=R | fllge =esssup|f (z)] < oo},WG may also define
’ e

1
N D= [ @

f () =

1
p p

1
Jow (y) du (y)

_ Hf_ mfﬂwfduHQ,p
O [fyw (@) de ()]

where|-|, , is the usuab—norm onL,, ,, (2, A, 1) , namely,

1
hllo, = (/ wrhrpdu) Cl<peoo

|h]lg.o = esssup |h (z)] < 0.
’ TS

()]

/ w(y) f (9) du (9)
Q

and onL., (22, A, )

Cerone and Dragomir [5] produced the following result.

Corollary 2.3. With the assumptions of Theorem|2.2, we have

(2.8) T (f, 9)]
<5 (A=) Du())
g%(A—a)Dw,p(f) if £ € Lo, (A1), 1<p< oo
1 1 :
SE(A—(S) Hf_fgwd,u/gwfd’u . IffELoo(QvAaM>'

Remark 2.4. The inequalities in[(2]8) are in order of increasing coarseness. If we assume that
—00 <y < f(z) <T < ooforpu—a.ex €, then by the Gruss inequality fgr= f we have
forp=2

Jowf?du Jowfdu 2] 2 1
29 e R T
By (2.8), we deduce the following sequence of inequalities
@10) Lol <500 o [l wfdu'du
-2 Jowdp Jo Jo wdp Jq
1 Jo wif2du (f wfdu)2 2
(A=) Q . Q
= 2< ) [ wid,u wid,u
<1(A-8)r )

for f,g : Q& — R, u — measurable functions and so thato < v < f(z) < I' < oo,
—00 < § < g(x) <A < ooforp—a.e.x e Q. Thus the firstinequality iff (2.10) or (2.6) is a
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refinement of the third which is the Griiss inequality (2.2). Further] (2.6) is also a refinement of
the second inequality ifi (2.L0). We note that all the inequalitigs i (2[8) -(2.10) are sharp.

The second inequality i (2.]L0) under a less general setting was termed as a pre-Gruss in-
equality by Mate, P&aric and Ujeve [16]. Bounds for theCebysev functional have been put
to good use by a variety of authors in providing perturbed numerical integration rules (see for
example the book [13]).

3. GENERALISED éEBYéEV FUNCTIONAL INA MEASURABLE SPACE SETTING

Let the conditions of the previous section hold. Furtherylet be two measurable subsets
of andf, g : 2 — R be measurable functions such tifay, fg € L., (2, A, u) then consider
the generalise@ebysSev functional

(B.1) Ty (f,9:x: k) == My (fg;x) + My (fg; ) = My (f; X) - M (95 5)
_Mw(97X) 'Mw<f;/€)7
where
1
Jow (@) dp ()

We note that ify = x = Q then, T} (f,9;Q,Q) = 2T, (f, 9;2) .
The following theorem providing bounds gn (3.1) then holds.

(3.2) Moy (fix) =

[wia) s @dn).

Theorem 3.1. Letw, f, g : 2 — R bepu—measurable functions withh > 0, 1 — a.e. on2 and
Jow (@) dp(z) >0, [ w(z)du(z) > 0forx,x C Q. Further, letf, g, f*,¢° € L, (2, A, 1) ,
then

(33) T2 (F.9:% R < [Bu (£, W% [Bu (g 1)

where

(3.4) By (f;x:5) = T (f;x) + Tw (f3 ) + [Mu (f5x) — My (f; 5))°
which, from [(2.1)

(3.5) T (f3x) = Tu (f, F;x) = Mu (% X) = M (5 X))

and M, (f;x) is as defined by (3.2).

Proof. It is a straight forward matter to demonstrate the following Korkine type identity for
T (f, g; x, k) holds. Namely,

1
dp () f,w (y) dp(y)

/ / £ (@)~ F ) (9 () — g () dn () dps (z).

(3.6) T, (f,9:x;K) = T w(@)

J. Inequal. Pure and Appl. Math4(3) Art. 55, 2003 http://jipam.vu.edu.au/
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Now, using the Cauchy-Buniakowski-Schwartz inequality for double integrals, we have from

@8
1

el S T e L )

/ / F (@) — f ()2 dp () dp ()
x / / w(@)w(y) (g @) — g () du (y) du ()

T (f, f3x8) T (95 95 X5 K) -

However, by the Fubini theorem,

To(f foxen) = 7 ! / w () £ (x) dp (x)

w () du (@)
]‘ 2
T / w(y) £ (v) du (9)
1
_Qfxw(x)du(x)/ ) iuta) [0 W dn o)

=T (f3X) + T (f; £) + Mo (f3 X) = My (f; )]
and a similar expression holds fer
Hence [(3.8) holds where froh (.43, (f; x. x) = Tw (f, f; x. &) andT, (f; x) is as given
by (3.3). O

Corollary 3.2. Let the conditions of Theorgm B.1 persist and in addition let
my < f < My a.e.onyandmy < f < M, a.e. onk,
ny < g < N;a.e.onyandn, < g < N, a.e. onk.

Then we have the inequality

(B.7) Ty (f,9;x, k)|

< [(M%) F (M) s a0 - <fm>>2r

. [(NI;”I)2+ <N22n2>2+(/\4w(9;x)Mw(g;/f))2r~

Proof. The proof follows directly from[(3]3) { (3|5), where by the Griss inequdlity (2.2)

M. — 2
Ty (fix) =Tu (f. fix) < (17”“) .
Similar inequalities fofl’,, (f; <), T\ (g; x) andT,, (g; ) readily produce[(3]7). O

Remark 3.3.If x = k = Qandm; = my = m andM; = My, =: M thenM,, (f;x) =
My (fi). Ifng = ng = nandN; = N, = N with y = x = Q we haveM,, (g;x) =
M, (g; k) . Thus we recapture the Gruss inequality

T3 (f,9:9,9Q)| = 2|T (f,9; Q)] < 2 (M;m> <N2—n)'

J. Inequal. Pure and Appl. Math4(3) Art. 55, 2003 http://jipam.vu.edu.au/
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Following in the same spirit af (1.23) consider the generalay/Sev functional

(3.8) T! (f. g5 x, k) = Moy (fg:X) — M (95 X) M (3 K)

whereM,, (f;x) is as defined by (3|2) and ~ C Q.
TI (f, g; x, k) may be shown to satisfy a Korkine type identity

1

FOF g k) =
3.9 T (%) Jow (@) du (@) [, w(y)du(y)
><//w(x)w(y)g(w)(f(x)—f(y))du(y)du(x)-

The following theorem then provides bounds for [3.8) usjng] (3.9), where the proof mimicks
that used in obtaining bounds f8}; ( f, g; x, <) and will thus be omitted.

Theorem 3.4.Letw, f,g : Q2 — R be u—measurable functions withh > 0, x — a.e. on
Q and fxw(a:) dp(z) > 0and [ w(z)du(x) > 0 wherey,x C Q. Further, letf, g, fg €
L, (Q, A, p) then, form; < g < M; andn; < f < Nj a.e. ony withn, < f < N, a.e. onk,
the following inequalities hold. Namely,

(3.10) [T} (f.9:x. )]
< [Tu (g0) + M2 (: )]

x {T (f3 %) + T (f3 5) + [M (fi %) = Mo (9]}

< [(@)ZW@ (g;x)r

. {(N1;"1)2+ (N2;”2)2+ Mo (f;x) = M, (f;H)JQ}Q,

whereT,, (f;x) andM,, (f; x) are as defined i (3|5) anfl (3.2) respectively.

4. FURTHER GENERALISED éEBYSEV FUNCTIONAL BOUNDS

D=

Let the conditions as described in Secf{ipn 2 continue to holdy Lebe measurable subsets
of Q2 and define

(4.1) Dl (f;x. k) = DL (fix,x)
=M., (If (x) = My (f;8)],X),

whereM,, (f; x) is as defined by (3]9). 5
The following theorem holds providing bounds for the generaliseblysev functiondl| (£, g; x, k)
defined by|[(3.14).

Theorem 4.1. Letw, f,g : Q@ — R be u—measurable functions withh > 0 y—a.e. on
Q. Further, lety,x C Q and fxw(x) dp(z) > 0and [ w(y)du(y) > 0. If f,g.fg €
L, (2, A, 1) and there are constants A such that
—0<di<g(r)<A<oo for p—ae. z €y,
then we have the inequality
A+96 A—9§

(42) TzL(fvg;XW%)_T[Mw<f;X)_Mw<f;H)] < 5

Dl (fix. k),
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whereD}, (f; x, x) is as defined by (4.1).
The constang is sharp in ) in that it cannot be replaced by a smaller quantity.

Proof. From (3.4) we have the identity

1

43 TN = iy | 996 0 @) - Mu ) ),
Consider the measurable subsetsandy_ of x defined by
(4.4) X+ = {z e x|f (z) = My (f; k) = 0}
and
(4.5) xX- =A{zex|f(z) - My (f;r) <0}
so thaty = y, U x_ andy, Nx_ = 0.

If we define
@8 Lifgwi= [ w@gl)(f @) - Ma(fin)du() and

X+

L(fgw) = [ w@)glo)(f (@) - M (fi)) ds(2)

then we have fronj (4] 3)

@.7) 7] (Fgien) [ w@)dile) = L (Ffg.0) + I (Fg.).
Since—co < <g(r) <A< tooru -a.e.r € y andu—a.e.z € {2 we may write
(4.8) L (fgw) 8 [ 0(@) (@) = Ma (f30) di 2)

- .

(4.9) I-(f.g,w) <0 / w (@) (f (@) = My (f: 1) dpt (2).

Now, the identity

(4.10) Mo (Fix) — My (f: )] / w () dy ()

X

holds so that we have frorp (4.9)

(4.11) I_(f.g,w) < —6 / w (@) (f (2) — My, (F;9)) dp (2)

X+

5 [My (f5x) — My (f55) / w(z) dp (z).

X
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That is, combining[(4]8) an{l (4.]11) we have frgm [4.7)
T ) @) = My i) da )
+0 My (f;x) = M (f;5)]-

(4.12) TI(f, 9 x. k) < T

Further, we have
/ w (@) |f (£) — My (f;5) dp (x) = / w (@) (f () — My (f: ) dp (2)
- / w (@) (f (2) — Mu (3 7)) dpt ().

X—

giving, from (4.10),
(4.13) / w () |f () — My (f: )| dps (2)

M (20 = Mo (0] [ (o) di (2)

X

_ /w(x)(f(a:)—/\/lw(f;/f))du@%

X+

Substitution of[(4.13) intd (4.12) produces

o A-5 1
@19 o (g0 m) < == Ty @)

/ w (@) |f () — My (f: )| dp ()

A+6
R

5 (Mo (f5x) = M (f55)] -

Now, we may see fronm (4.14) that
TS (—f.9:x. k) = =T}, (f, g;: X, k)
and so

(415) - TJ) (f7 95 X, K)

/w(as) 1 (@) = My ()| dp ()

_Atd
2

2 Jw(e)du(o)
[Mw (faX) _Mw (f,l{,)]
Combining [4.14) and (4.15) gives the resplt[4.2).

Now for the sharpness of the constgnt

To show this, it is perhaps easiest tolet, (f; x) = M., (f; ) in which instance the result
of Theorenj 2.2, namely], (2.6) is recaptured which was shown to be sharp in [5].

The proof is now complete. 0J

Remark 4.2. It should be noted that the result of Theorem 4.1 is a generalisation of Theorem
[2.7 to involving means over different sgtaindx. If we takey = x = Q in (4.2) then the result
(2.9), which was proven in [5] is regained.

Following in the spirit of Sectiop|2, we may define for~ measurable subsets Qf

(4.16) Dl (fix08) = [Mu (If () = M (F;0)P3x)]7, 1< p < o0
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and
(4.17) D}, . (f;x,K) == esssup | f (z) — My, (f; k)]

TEX
The following corollary then holds.

Corollary 4.3. Let the conditions of Theordm 4.1 persist, then we have

A+6
(4.18) T (f, 9;x, k) — 5 (Mo (f; x) — M (f; K)]
A—90
STDZ)J(JC?X?K)
A-§
< Dl (fix,k), f€Luy(Apn), 1<p<oo,
<A_5Dl,oo(f;x,f-@), fe€Le (AL,

- 2
whereD}, , (f;x,x) andD},  (f;x, ) are as defined in (4.16) and (4/17) respectively.
The constant is sharp in all the above inequalities.

Proof. From the Sonin type identity (4.3) we have

A+0

(4.19) T} (fix: 1) = —5— M (F5x) = Mu (f35)]

1 / ( A+ 5)
= w(x) | g(x) = —— ) (f (2) = M (f; 5)) dp ()
e @0 -=) 0@ (
Now, the first result in[(4.18) was obtained in Theofenj 4.1 in the guise df (4.2). However, it
may be obtained directly from the identify (4]19) since

A496

(4.20) [T} (f;x.%) — 5 (M (f;x) = My (f; K)]
1 A+§ _
< Fawa W)@ - 55 1@ - M
< ess sup g(z) — % D, (fix, k).
Now, for —co < § < g (z) < A < oo for z € x, then
(4.21) €58 Sup g(x)—A;La‘:Agé

and so the first inequality ifi (4.]L7) results.
Further, we have, using Holder’s inequality

1
) dji (@) /X“’(f”) 1 (@) = Mo (f: )| dpt ()

< DI, (fix, k)
< DI . (fix,k),
where we have usefl (4]16) afnd (4.17) producing the remainder of the resiilts in (4.18) from

DTI » X =
wa (f3X k) T ol

(@-20) and[[&21).
The sharpness of the constants follows from Hélder’s inequality and the sharpness of the first
inequality proven earlier. O
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Remark 4.4. We note that

(4.22) T} (1,:8) — S22 (Mo () = Mo (7))
=Tw (f,9%) + | Muw (g X) — % (Mo, (f;x) — M (f; E)]

so that
T! (f.9:x.6) = T (f, 9:X)

if either or bothM,, (g; x) = 222 andM,, (f; x) = M., (f; x) hold.
Thus Theorem 4|1 and Corolldry 4.3 are generalisations of Theorém 2.2 and Cqrollary 2.3
respectively.

Corollary 4.5. Let the conditions in Theorein 4.1 hold and further assumeshigtchosen in
such a way thatM,, (f; x) = 0, then

@23) (M)~ S M ()

A—9)
< TMw(|f|;X)
A—9)

< S ML(IP 0, T € Lup (A ),

O sssup |f (1)), f € Lo (A, ),

reX

<

The constan§ is sharp in the above inequalities.

Proof. TakingM,, (f;x) = 0in (4.18) and , usind (3|8), (4.]L6) arjd (4.17) readily produces the
stated result. O

Remark 4.6. The result ) provides éebyéev-like expression in which the arithmetic
average of the upper and lower bounds of the funggion is in place of the traditional integral
mean. The above formulation may be advantageous if the norrhé péare known or are more
easily calculated than the shifted norms.

Remark 4.7. Similar results as procured f@t (f,g; x, x) may be obtained for the generalised
Cebysev functional® (f, g; x, ) as defined by| (3]1). We note that

(4.24) Ty (f,9:x. k) = T} (f, g:x, &) + T4, (f, 9: 5, X)

=7 wul)du(x)/w(x)g(”(f(“”)_M“’(f;“”d“(x)

1
" J.w(y)du (y)

As an example, we consider a result corresponding td (4.2). Assume that the conditions of
Theoreni 41l hold and let

/ w () g () (f () — Ma (X)) i (3).

—00 <0 <g(x) <Ay <oo forp—aexey
with
—00< ¥ <g(r) <Ay <oo foru—ae.xek.
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Then from [4.24), we have

A2+(52+A1+51
2 2

(4.25)

T ) M (720 = M (i)

Ay —6 Ay — 0
S%DL(]C7X7KV)+ 22 -
whereD}, (f; x, k) is as defined ir] (4]1). We notice frofn (4}25) that

Ts (fy95x:5) — (A +0) Moy (f; x) — Mo (f;5)]]
< A -9
=9

D, (fik,X) -

(DL (f;x. k) + DY, (f: 5, X)]
whered; = 0, = d andA; = Ay, = A.

Similar results fofT: (f, g; x, x) to those expounded in Corolldry #.3 6 (£, g; x, k) may
be obtained, however these will not be considered any further here.

5. SOME SPECIFIC INEQUALITIES

Some particular specialisation of the results in the previous sections will now be examined.
New results are provided by these specialisations.
A. Letw, f,g : I — R be Lebesgue integrable functions with> 0 a.e. on the interval
and [, w(z)dx > 0.1f f, g, fg € Ly, (1), where

Jw@lf @ <o}

Ly, (1) := {f:]—>R
I

and
Lo (1) := esssup | f ()|

zel
and
—00<d<g(r) <A<oo forz € [a,b] C I,
then we have the inequality, for, d] C I,

GO |TL( gl ] fed) — 22 M (o b) — M (: e, )]
< S M (1 0 = M (e D) o, 8)
< 222 M (5 ()~ Mo (e )P [0, BDIF S € Ly 1]
< S5 e s I (@)~ Mo (e d)l, f € Lucll],
where
T3 (.95 [0.8] e, ) = Mo (g, ) = Mo (95l ) Mo (e, )
and
1 b
My (f;la, b)) = ———— w(x) f(z)dx.
Gilat) = g [0 10

The constani is sharp for all the inequalities i (5.1).
To obtain the resulf (5/1), we have identifiedd] with x and[c, ] with « in the preceding
work specifically in[(4.R).
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If we take|a, b] = [c, d] then results obtained inl[5] are captured. Further, takirig) = 1,
x € I produces a result obtained [n [11] from the first inequality in|(5.1).

B. Leta = (aj,...,a,),b=(b1,...,b,), P = (p1,...,pn) ben—tuples of real numbers
with p;, > 0,7 € {1,2,...,n} and withP, = Zlepi, P, = 1. Further, if

bSbZSB, iG{l,Z,...,n}
then form <n

- B+1b
izlpiaibi - T

(5.2)

n 1 m
> ne g
i=1 j=1
B
Eo0S i -
i=1

1 m n

B ijaj : Zpibi
m =1 i=1
1 m

B ijaj
m i1

m

n 1 o
> o= 3o may
i=1 ™ oj=1

1 m
a; — P ija]

1
] , 1 <a< oo

< —max
i€ln

If 3772, pja; = 0, then the above results simplify.
The constani is sharp for all the inequalities i (5.1).

If p, = 1, i € {1,...,n} then the following unweighted inequalities may be stated from
(5.2). Namely,
_ B+b
(53) Zazbz__zaz Z Z_T _Z '__ZGJ]
=1
B-b1 1 &
<Yl 3
= 7j=1
B-b[1 U I
<=5 (;Z 2 )
i=1 7j=1
B—b 1 &
< ——max |a; — — a;
2 iein —
7j=1

Form = n anda; = b; for eachi € {1,2,...,n} then from|[(5.2),

n n 2 n
ogzpibg_@pibi) Bl zp]
=1 =1 =1

providing a counterpart to the Schwartz inequality.

<(5.
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