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1. INTRODUCTION

If a function and its second derivative are small, then the first derivative is small too. More
precisely, for eaclp € [1, oc| and each of the intervals = R, or I = R, there is a constant
C,(I) > 0 such thatiff : I — R is a twice differentiable function witlf, D?f € LP(I), then
Df e L*(I)and

1/2
(1.1) IDfllr < CoD NI 1D -

We make the convention to denote ©y(7) the best constant for which the inequality {1.1)

holds.
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2 CONSTANTIN P. NICULESCU AND CONSTANTIN BUSE

The investigation of such inequalities was initiated by E. Landau [17] in 1914. He considered
the case = oo and proved that

Co(R) =2 and Co(R)= 2.
In 1932, G.H. Hardy and J.E. Littlewood [12] provéd (1.1) fo 2, with best constants
Cy(Ry) =+v2 and Cy(R) = 1.
In 1935, G.H. Hardy, E. Landau and J.E. Littlewobd|[13] showed that
Cp(Ry) <2 forpe|l,00)

which yieldsC,(R) < 2 for p € [1,00). Actually, C,(R) < /2. See Theore.l below.
In 1939, A.N. Kolmogorovi[16] showed that

(1.2) ID*f||, < Cooln By R) | FI522™ | D7 FI5E

for functionsf onR and1 < k < n (D* denotes théth derivative off). As above (U (n, k, R)
denote the best constantfin (1.2). Their explicit formula was indicated also by A.N. Kolmogorov
[16]. An excellent account on inequalitigs ([1.1) (and their relatives) are to be found in the
monograph of D. S. Mitrinow, J. E. Péaric, and A. M. Fink [19].

All these results were extended ¢@-semigroups (subject to different restrictions) by R.R.
Kallman and G.-C. Rota [15], E. Hille [14] and Z. Ditzian [5]. We shall consider here the case
of stableC,-semigroups on a Banach spagei.e. of semigroups$7'(t)):>o such that

sup |[T(t)]| = M < .
>0

Theorem 1.1. Let (7'(t)):>o be a stableCy-semigroup or¥, and letA : Dom(A) C E — E
be its infinitesimal generator. Then for each= 2,3, ... and each integer numbér € (0,n)
there exists a constadt (n, k) > 0 such that

(1.3) JASFI] < K (n, k)[[A" FI[*||F1]*" forall f € Dom(A").

Moreover, K (2,1) = 2M in the case of semigroups, ard(2,1) = M+/2 in the case of
groups. The other constanis(n, k) can be estimated by recursion.

The aim of this paper is to prove similar inequalities with less smoothness assumptions, i.e.
outside Dom (A?). See Theore.l below. The idea is to replace twice differentiability by
the membership of the first differential to the Lipschitz class. In the simplest case our result is
equivalent with the following facttet f : R — R be a differentiable bounded function, whose
derivative is LipschitzThenD f is bounded and

(1.4) IDFIIzee < 20 flloe - 1D fIl i -

See Sectionl3 for details.

An important question concerning the above inequalities is their significance. One possible
physical interpretation of the inequality studied by Landau is as follows: Suppose that a mass
m particle moves along a curwe= r(¢), ¢ > 0, under the presence of a continuous fokce
according to Newton’s Law of motion,

mit = F.
If the entire evolution takes place in a balk (0), then the kinetic energy of the patrticle,

(12
m ||E]

E = ,
2
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satisfies an estimate of the form

2R||F||;~ , Iifthe temporal interval iR
E <L

R||F| ;. ifthetemporalinterval iR,

which relates the level of energy and the size of ambient space where motion took place.

The same inequality of Landau reveals an obstruction concerning the extension properties of
smooth functions outside a given compact interkaDoes there exist a constafit > 0 such
that for each functiorf € C?(I) there is a corresponding functidhe C?(R) such that

F=f onIl

and
sup |D¥F(z)| < Csup |D¥f(x)| fork =0,1,27?
zeR zel
By assuming a positive answer, an immediate consequence would be the relation

supl (o) < 20 (supl (01 ) (supl" 1)
zel zel zel

Or, simple examples (such as that one at the end of section 3 below) show the impossibility
of such a universal estimate.

A recent paper by G. Ramm [21] describes still another obstruction derived|from (1.1), con-
cerning the stable approximation gf

2. TAYLOR'S FORMULA AND THE EXTENSION OF THE
HARDY-LANDAU-LITTLEWOOD INEQUALITY

Throughout this section we shall deal wiitiZ', X )-continuous semigroups of linear oper-
ators on a Banach spade where X is a (norm) closed subspace bf which satisfies the
following three technical conditions:

S1) ||lz|| = sup{|a*(x)[; «* € X, [|2*|| = 1}.

S2) Theo(E, X)-closed convex hull of every(E, X)-compact subset of is o(F, X)-

compact as well.

S3) Theo (X, E)-closed convex hull of every (X, E)-compact subset ok is (X, F)-

compact as well.

For example, these conditions are verified whérms the dual space aoF or its predual (if
any), so that our approach will include both the cas€@bemigroups and af’;-semigroups.
See 3], Section 3.1.2, for details.

(A, Dom(A)) will always denote the generator of such a semigréug (7°(t)):>o.

TheLipschitz spacef ordera € (0, 1] attached to4 is defined as the sé&t*(A) of allx € £
such that

|z]| o = sup—HT(S)ma_ I < 00.
s>0 S
This terminology is (partly) motivated by the casedt= d/dt , with domain
Dom(A) = {f € L*(R); f is absolutely continuous antl € L*(R)},
which generates th@}-semigroup of translations air°(R) :
T(t) f(s) = f(s+t), foreveryf e L*(R).

In this case, the elements af(A) are the usual Lipschitz mappings: R — C of ordera
(which are essentially bounded).
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4 CONSTANTIN P. NICULESCU AND CONSTANTIN BUSE

Coming back to the general case, notice that
t
(2.1) T(t)r =x+tAx + / (T'(s) = I)Azxds, forxz € Dom(A)andt >0
0

(possibly, in the weaksense, if the given semigroup @g;-continuous). In the classical ap-
proach, the remainder is estimated via “higher derivatives”, i.e.Avialn the framework of
semigroups, we need the inequality

a+1

/o (T'(s) — I)Axds P

which works for every: € Dom(A) with Az € A*(A) and everyt > 0. Then, from Taylor’s
formula (2.1), we can infer inmediately the relation

L+ 7O
t

for everyz € Dom(A) with Az € A*(A) and everyt > 0. Taking in the right-hand side the
infimum overt > 0, we arrive at the following generalization of the Hardy-Landau-Littlewood
inequality:

= [AZ| o

t(l’

il
A < A a
[Az]] < + o7 1Azl

Theorem 2.1.1f (A, Dom(A)) is the generator of &',-(or of aC{-) semigroup(7T'(¢)):>o such
that

sup | T(8)]| < M < oo,
t>0

then
HA.’L‘H < Msg(A) HxHa/(1+a) . "Ax‘|11\/(x(1+a),
for everyz € Dom(A) with Az € A*(A), where

o 1/(1+a) 1 1+a a/(1+a)
+ . .
14+« 14+« a

In the case of - or Cj-continuous) groups of isometries, again by Taylor’s formulg| (2.1),

Myg(A) = (1+ M)™0

0
(2.2) T(—t)xr =x —tAx + / (T'(s) — I)Azds, forz € Dom(A)andt > 0

—t

so that subtracting (2.2) frorp (2.1) we get

TN+ 1T
2t

which leads to a better constant in the Hardy-Landau-Littlewood inequality, more precisely, the
bound/,, should be replaced by

< o )1/(1+a) 1 (1 + Oé) a/(1+a)]
+ : .
1+ o 1+ o «

The problem of finding the best constants in the Hardy-Landau-Littlewood inequality is left
open. Notice that even the best value§'pf/ ), for 1 < p < oo, are stillunknown; an interesting
conjecture concerning this particular case appeared in a paper by J.A. Goldstein and F. Rébiger
[9], but only a little progress has been made since then.[See [7].

The generalization of Taylor’s formula for higher order of differentiability is straightforward
(and it allows us to extend A.N. Kolmogorov’s interpolating inequalities to the case of semi-
groups).

tOé

€T
| Az] < L R
a-+1

Ao

M9<A) _ Ma/(1+a)
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Theorenj 2.1 outlined th8obolev-Lipschitz space of order- «,
WA*(A) = {z € Dom(A); Az € A*(A)}.
which can be endowed with the norm
[zl ae = Nzl + [[Az] xa -

Clearly,
Dom(A?) ¢ WA (A) € D(A)
and the following example shows that the above inclusions can be strict.

Let X = Cy(R,) be the Banach space of all continuous functignsR, — R such that
lim; ., f(t) = 0 (endowed with the sup-norm). The generator of the translation semigroup on
Xis

d . : :
A= pm with Dom(A) = {f € X; f differentiable and’ € X}.
See[[20]. Then we have
Dom(A?) = {f € Dom(A); f" € X}
and
WAY(A) = {f € Dom(A); f'is a Lipschitz function.
3. THE INEQUALITIES OF HADAMARD

When! isR, or R, the following result (essentially due to J. Hadamard [11]) is a straightfor-
ward consequence of Theorem 2 above, applied to the semigroup gener%ﬁecedrbglf@(]) :

Theorem 3.1.Let I be an interval and leff : I — R" be a differentiable bounded function,
whose derivative is Lipschitz, of ordérThenf’ is bounded and

(4 ~ Y :
Hﬂf D, i) <4 T/ 1Py

1/l e < 2\/HfHLoo T if (1) > 4\/”fHLoo/Hf’HLip and] # R
|20 1 IR

Furthermore, these inequalities are sharp. Héfé) denotes the length dt

Proof. Of course, Theorefn 3.1 admits a direct argument. Notice first that we can restrict our-
selves to the case of real functions.
According to our hypotheseg, satisfies ol an estimate of the form

/() = /()] < Ly 1 = s
where|| f'[| .., = ||.f'l| o+ is the best constant for which this relation holds. As
f@t) = fla) + f(a)(t —a) +/ [f(t) = f'(a)]dt,
we have

F(t) — f(a) — Fla)(t —a)| < / () — f’(a)]dt‘

1 2
< 2 ||f/||Lip |t —al
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6 CONSTANTIN P. NICULESCU AND CONSTANTIN BUSE

for everyt,a € I, t # a. The integrability is meant here in the sense of Henstock-Kurzveil [2],
[10]. Consequently,

t) — 1
< FO=LE g, -
2 fllwe 1.,
< 2l 1y e

for everyt,a € I, t # a. Now, the problem is how much room is left to In the worse case,
i.e., whenI is bounded and(7) < 4\/||f||Lw / I1f'll ;> the infimum overt in the right side

hand is ||f||L°° ( ) Hf/Hsz

(1)
If I'is unbounded, then the infimum is at m@infHLw [f'[| ;> OF €ven
V2 e 170 i
for I = R).

In order to prove that the bounds indicated in Theofem 3.1 above are sharp it suffices to
exhibit some appropriate examples. The critical case is that of bounded intervals, because for
half-lines, as well as foR, the sharpness is already covered by Landau’s work.

Restricting to the case df= |0, 1], we shall consider the following example, borrowed from
[4]. Leta € [0, 4]. The function

2

fa(t):_%+<2+g>t—1, tel=01]

verifies| foll o = 1, [[foll ;o = 2+ a/2 and| f3]l ., = a. As £(I) = 1, the relation given by

Theoreni 3.1 becomes

9.8 a < 2.1 n 1
27 1 2
On the other hand, no estimate of the form

1N e < CV N oo 1151 i

can work for all functionsf € C?(I), because, taking into account the case of the functfpns
we are led to

a 2
<2 + 5) < Ca foreverya € [0, 4]

a fact which contradicts the finiteness@f O

4. THE CASE OF NONLINEAR SEMIGROUPS

We shall discuss here the case of one of the most popular nonlinear semigroup of contractions,
precisely, that generated by thd aplacian(p € (2, >0)),

Au = Apu = div (|Vul[P~?- Vu), (p € (2,00))
acting onH = L*(Q) and having as its domain
Dom(A) = {u e Wy (Q); Ayue H}.

Here() denotes a bounded open subseRdf with sufficiently smooth boundary.
PutV = W, ”(Q) and denote by : V — H andj’ : H — V' the canonical embeddings.
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Clearly, A is a dissipative operator. It is also maximal dissipative i.e., the imadg of A
equalsH. Infact, letf € H. SinceA is dissipative, hemicontinuous and coercive as an operator
from V into V', it follows thatIm A = V| so thatlm(;’j — A) = V’. Therefore the equation

u—Au=f

has a unique solution € V. This shows that. € Dom(A) i.e., A is maximal dissipative and
thus it generates a nonlinear semigroup of contraction§ oSee|[1].
Suppose there exists a positive constarsch that

|Az|[f < C||Ax]|g - ||z||n  for everyz € Dom(A?).
As ||Az||y» = ||z||5", it would follow that
2] [ < Cull A% - o
< Co||A%|n - ||]lv
ie., ||z|[}77° < Oy||A2%x||y for everyz € Dom(A?). Letting z = ey, wheree > 0 and
y € Dom(A?), y # 0, we are led to

eyl < Cos® " || A%y
2p—3

i.e., to|y]|?~* < C,eP=27|| A%y| |z, which constitutes a contradiction fgrfixed ande small
enough.
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