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1. INTRODUCTION

In this paper we consider one generalization of Hermite-Hadamard inequalities for the class
InR of increasing radiant functions defined on the céitife, = {zr € R" : z; > 0 (i =

1,...,n)}.

Recall that for a functiorf : [a,b] — R, which is convex ona, b], we have the following:

2 b—

These inequalities are well known as the Hermite-Hadamard inequalities. There are many gen-
eralizations of these inequalities for classes of non-convex functions. For more information see
([2], Section 6.5),[[1] and references therein. In this paper we consider generalizations of the
inequalities from both sides df (1.1). Some techniques and notions, which are used here, can be
found in [1].

In Sectior) 2 of this paper we give a definition/ef? functions and recall some results related
to these functions. In Secti¢ph 3 we consider Hermite-Hadamard type inequalities for the class
InR. Some examples of such inequalities for functions defineR ppandR? , are given in
Sectiorl 4.
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2 E.V. SHARIKOV

2. PRELIMINARIES

We assume that the coi® , is equipped with coordinate-wise order relation.
Recall that a functiorf : R}, — R, = [0, +oo] is said to be increasing radiamt(R) if:
(1) fisincreasingr >y = f(z) > f(y);
(2) fisradiant:.f(Azx) < Af(z) forall A € (0,1) andz € R} .
For example, any functiofi of the following form belongs to the clags R:
fla) = Y et ab
|k|>1

wherek = (ky,...,kn), [kl =k + -+ kn, ki >0, ¢, > 0.
For eachf € InR its conjugate function|(J4])

1
(@) = ==
= F
wherel/x = (1/z4,...,1/x,), is also increasing and radiant. Hence any function
1

fz) =

= — —
Z|k|21 Crply ™

is InR. In the more general case we have the following? functions:
S jpga curf ke \|
f(ZE) = <Z|k|>v dk%—kl - -x;kn> )
whereu,v > 0,t > 1/(u + v). Indeed, these functions are increasing and for)agy(0, 1)

Mol bt ke \ 7
o - (St ok

Z\km Akl dpa ™
. ( ¢ Zlklzu ckxlfl .. x’ﬁ" )t
—\ v szv dkxl_kl R
= AT f () < M f(w).
Consider the coupling functiop defined orR” | x RY , :

[0, if (h,z) <1,
(2.1) wU%@-—{<m$% it (h,a) > 1,

where

(h,r) = min{h;z; : 1 =1,...,n}
is the so-called min-type function.

Denote byy,, the function defined oRR”; | by the formula:p,(z) = ¢(h, x).
It is known (seel[4]) that the set

1
H= {Egoh cheRY,, ce (O,—l—oo]}
is the supremal generator of the cldsd? of all increasing radiant functions defined &n _ .
It is known also that for anyn R function f
1
(2.2) f(h)e <E7 x) < f(z) forallz,h e R’ .

Note that forc = 400 we setepy,(x) = sup;.o(lon(z)).
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HERMITE-HADAMARD TYPE INEQUALITIES 3

Formula [Z2.2) implies the following statement.

Proposition 2.1. Let f be anInR function defined ok’ , andA C R’ . Then the function

fale) =sup (ke (5.2

heA
is InR, and it possesses the properties:

1) fa(z) < f(z)forall z € RY
2) fa(x)= f(x)forall z € A.

3. HERMITE -HADAMARD TYPE INEQUALITIES

Let D C R’ be a closed domain (in topology & ), i.e. D is a bounded set such that
clint D = D. Denote byQ(D) the set of all points: € D such that

(3.2) ﬁ /D ; <ix) =1

whereA(D) = [, dx, dx=dx;---dz,

Proposition 3.1. Let f be an/n R function defined o, , . If the setQ)(D) is nonempty ang
is integrable onD then

o2 Py

z€Q(D)

Proof. First, letz € Q(D) andf(z) < +oc. Thenf(f)gp(l/:i,x) < f(z)forallz € D C R} |

(see[(2.R)). By[(3]1), we get

010y () oy | 1053y |

Now, suppose thaf(z) = +oc0. Then for aIIl > Ofunctlonlgol/x( x) is minorant off. Hence
[ < A(D fD x)dz V1> 0, that implies that functiorf is not integrable orD. This contra-
diction shows thaf( ) < +oo foranyz € Q(D). O

As it was done in([1], we may introduce the §gt,(D) of all maximal elements of)(D). It
means that a point € Q(D) belongs tay,, (D) if and only if foranyy € Q(D) : (y > 7) =
(y = z). Suppose that the sét(D) is nonempty. It is easy to see th@{D) is a closed set in
the topology ofR” , . Hence, using the Zorn Lemma we conclude ®at(D) is a nonempty
closed set and for any € Q(D) there existg € Q,.(D), for whichz < g.

So, in assumptions of Propositipn 3.1 we have the following estimate:

(3.3) sup f / flz

ZEQm (D
Sincef is an increasing function then this mequallty implies inequallity|(3.2).

Remark 3.2. Let D C R, be a closed domain and the §5tD) be nonempty. Then for every

z € Q(D) inequality
1
—D) /Df(:v)dx

is sharp. For example, if we sgt= ¢, ; then (se€] (3]1))

f(l’)ZSO(%J) =1=ﬁ/[)¢(i,x>dx:ﬁ/l)f(a:)dx
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4 E.V. SHARIKOV

Note that here we used only the values of functfoon a setD. Therefore we need the
following definition.

Definition 3.1. Let D C R, . Afunction f : D — [0, 4-o0] is said to be increasing radiant on
D if there exists annR function F defined onR”} | such thatF'|p = f, thatisF(z) = f(x)
forallz € D.

We assume here, as above, thatder +oco : cop(z) = sup;o(lgn(x)).

Proposition 3.3. Let f : D — [0, +oc] be a function defined o C R’; . Then the following
assertions are equivalent:
1) fis increasing radiant oD,
2) f(h)p(1/h,z) < f(z) forall h,x € D,
3) fis abstract convex with respect to the set of functidns) (i /n) : D — [0, +-00] with
h e D,ce(0,+o0].

Proof. 1)=>2). By Definition[3.1, there exists am R function " : R}, — [0, +oo] such that
F(z) = f(z) for allz € D. Then Propositioh 2|1 implies that the function

Fofa) = sup e (. )

heD
interpolates!” in all pointsz € D. Hence

sup f(h)p (%,x) = f(z) forallz € D,

heD

that implies the assertion 2)
2)=—>3). Consider the functiorfp defined onD

fol@) = sup (1) (%x) |

First, it is clear thatf, is abstract convex with respect to the set of functions define on
{(1/c)pam) : h € D, ce (0,+00]}. Further, using 2) we get for all € D

fole) < 1(0) = 1(a)e (1) < sup e (7.2 ) = folo)

heD

So, fp(z) = f(z) for all z € D and we have the desired statement 3).
3)=—1). It is obvious since any functiofl/c)y; defined onD can be considered as an
elementary functiofl/c)y, € H defined orR? . O

Remark 3.4. We may require in Propositign 3.1, formufa (3.3) and Rerpark 3.2 only that func-
tion f is increasing radiant and integrable bn

Remark 3.5. We may consider a more general case of Hermite-Hadamard type inequalities for
InR functions. Letf be an increasing radiant function éh Then Propositiop 3|3 implies that
f(h)p(1/h,z) < f(x)forall h,z € D. If f(z) < +oo andf is integrable orD then

(3.4) @ [ o <1x) i< [ jp.
D Z D
This inequality is sharp for any € D since we have the equality in (3.4) fr= o1 /z).

Proposition} 3.3 implies also that the cldss? is broad enough.

Proposition 3.6. Let.S C R}, be a set such that every pointc S is maximal inS. Then for
any functionf : S — [0, +-00] there exists an increasing radiant functiéh: R} | — [0, +o0],
for whichF'|s = f.
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Proof. It is sufficient to check only that(h)p(1/h,z) < f(x) forall h,x € S. If h = z then
o(1/h,z) =1, f(h) = f(x). If h # z then(1/h,x) = min; z;/h; < 1 sinceh is a maximal
pointin S, hencep(1/h,z) = 0andf(h)e(1l/h,z) =0 < f(z). O

In particular, Propositiop 316 holds # = {z € R}, : (z1)P +--- + (z,)’ = 1}, where
p > 0.

Now we present two assertions supported by the definition of fungtioRecall that a set
Q) C R7, is said to be normal if for each € 2 we have(y € Q for all y < z). Thenormal
hull N(Q2) of a set2 is defined as followsN (Q2) = {z € R}, : (Jy € Q) = < y} (see, for
example,[[3]).

Proposition 3.7. Let D, Q2 C R, be closed domains anl C (2. If the set))(2) is nonempty
and

(3.5) (\D) € N(Q(2))
then the se€ (D) consists of all pointg € Q2 such that

R -

Proof. If D =  then the assertion is clear. Assume that# . SinceD, ) are closed
domains and> C (2 then

(3.6) A(D) < A(Q).
Letz € Q and
1 1
(3.7) m/ﬂ(p(;,x) der = 1.

We show thatp(1/z,2) = 0 forall z € Q\D. If € Q\D then, by [(3.5), there exists a
pointy € Q() : y > x; hence(l/z,xz) < (1/z,y). Suppose thaf{l/z,y) > 1. Then
y>z=1/y <1/z. Sincey € Q(Q) then, by [(3.5) and (3]7)

i ()<t [ (b))

So, we have the inequalities’l/z,z) < (1/z,y) < 1. Thereforep(1/z,2) = 0 for all

reQ\D = 1 1 1 1
o f2 (o) e (G)

The equality ¢(1/z,-) = 0 on Q\D) implies also thatt # x for all z € Q\D, hencez ¢
O\D = 7 € D. Thus, we have the established resalt Q(D).

Conversely, lett € Q(D). For anyz € Q\D there existgj € Q(2) such thaty > » —
(1/z,z) < (1/z,y). Moreover, we may assume thais a maximal point inQ)(f2), i.e. y €
Qm (). First, we check that

(3.8) <§,x> <1forallz € Q\D, y € Qn(Q).

Indeed, ifx € Q\D then for somez € Q,,(): = < z = (1/y,z) < (1/y,z). But
(1/g,z) < 1sincey, z € Q,,(2) (otherwise, if(1/y,z) > 1thenz > § = 5 & Q,,()).

Now we verify that(1/z,z) < 1 forallz € Q\D. If z € Q\D then for somej € Q,,(9?) :
(1/z,z) < (1/z,y). Suppose thafl/z,y) > 1. Theny > z and therefore, using inclusion
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6 E.V. SHARIKOV

z € Q(D), we get

69 1o b ()i b o) ()

Let Dy = {z € QO\D : (1/y,z) < 1}, Dy = {z € Q\D : (1/y,z) = 1}. It follows from (3.8)
thatQ\D == D1 U DQ (D1 N DQ - @), hence

1 1 1 1
/ go(j,x)dx:/ gp(j,x)da:—l—/ go(:x)dx:/ gp(:x)d:ﬁ:/ dz.
Q\D Y Dy Y Dy Y Dy ) Dy

But the last integraj.fD2 dz is also equal to zero, since the €& has no interior points. Thus,

by@) 1 1 1 1
e m/ﬂw) d‘f:m/ﬁ(w) b

This inequality contradicts the inclusian € @,,(€2). So, we conclude that the inequality
(1/z,y) > 1is impossible. Hencél/z,z) < (1/z,y) < 1forall z € Q\D andy = gy(x) €
Q. (€2), which implies the required equality:

o () (1)

0
Corollary 3.8. Let D, D, C R}, be a closed domains such that
A(Dy) = A(Dy).
If there exists a closed domaincC R’ ,, for which the se@((2) is nonempty and
D; CQ, (Q\D;) C N(Q(Q)) (i=1,2),
then
Q(D1) = Q(D2).
Proposition 3.9. Let D, Q2 C R, be closed domains and C €. If
(3.10) N(Q\D)NnD =,
then the se@ (D) consists of all pointg € D such that
ﬁ/ﬁ)gp (%,x) dr = 1.
Proof. Formula(3.10) implies that if € D thenz ¢ N(Q\D). It means that for all
mGQ\D:x<x:><é,x><1:>gp<§,x) = 0.
Thus, foranyz € D
1 1 1 1 _
m/ﬂgp(;,x)dmzl@M/Dgo(g,x)dleg)er(D).
0

J. Inequal. Pure and Appl. Math4(2) Art. 47, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HERMITE-HADAMARD TYPE INEQUALITIES 7

Now consider the generalization of the inequality from the right-hand side df (1.1)f Let
be an increasing radiant function defined on a closed doain R’} ,, and f is integrable
onD. Thenf(h)p(1/h,z) < f(x) forall h,z € D. In particular, f(h)(1/h,z) < f(z) if
(1/h,z) > 1. Hence for allz: > h

f(z) 1\*"
h < —-_ ={(h,—
f(h) < (1/h,x) x 1),
whereh(y) = (h,y)™ = max; h;y; is the so-called max-type function. Sogzife D andz > x

forall z € D, thenf(z) < (x,1/z)" f(z) foranyz € D. This reduces to the following
assertion.

Proposition 3.10. Let the functionf be increasing radiant and integrable an. If z € D and
z > xforall z € D, then

(3.11) /Df(a:)d:BS f(x)/D<x,%>+dx.

Inequality [3.11) is sharp since we get equality for) = (z,1/z)".
In the more general case we have the following inequalities:

f(x) <{x,1/z)*sup f(y) forallz > z.
yeD
Hence

+
f(a:)gsupf(y)inf{<x,%> :fo,i:ED} forallz € D

yeD
and therefore

"
(3.12) /Df(x)dx < sggf(y)/Dinf{<x, %> T >x, TE D} dz.

4. EXAMPLES

Here we describe the s€{( D) for some special domains of the cone®R, ; andR? .
Leta,b € R be numbers such that< a < b. We denote bya, b] the segmenfz € R, :
a <z <b}.

Example 4.1.Let D = [a,b] C R, ;, where0 < a < b. By definition, the se€)(D) consists of
all pointsz € D, for which

1 1 1 b 1
S = - - =1.
A(D)é@(f’x)dx b—a/a*”<z’”’”>d”"

We have:

b b
4.2) / go(i,x dx:/ gdx: i_(b2—9_c2).
a z z T 2z
So, a pointt € [a, b] belongs taQ (D) if and only if
1

m(b2—i’2):1<:)>f2+2(b—a)f—b2:o
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http://jipam.vu.edu.au/

8 E.V. SHARIKOV

We get

4.2) T=+/(b—a)?+b—(b—a).

Show that for the poin{ (4}2)

(4.3) a<f<a;—b.

Sinceb > a > 0 thenz = /(b — a)2 + 2 — (b — a) > Vb? — (b — a) = a. Further,
a-+b a+b 3b—a

T < 5 (b—a)2+b<(b—a)+
<= 4(b—a)* + 4b* < (3b — a)?
> 0 < b*+ 2ab — 3a’
The last inequality follows from the same conditidns a > 0.

Thus, Q([a,b]) = { (b—a)?+b?—(b— a)}. Remar implies that for everdnR
function f € L,]a, b]

2 2

f( (b—a)2+b2_(b—a)> < bi&/abf(x)dx

and this inequality is sharp. (Compare it with the corresponding estimate for convex functions

(1.7), see alsa (4.3)).
RemarK 3.p and formulé (4.1) imply the foIIowing inequalities

(4. < [

which are sharp in the class of dlh R functionsf € L,[a,b] and hold for anyu € [a,b). In
particular, we get fof, = (a + b)/2

a+b 4(a + b)
f( 2 )S a+ 3b) b—a/f
4(a+0b) 1

(a+3b)(b—a) “h—a
Further, Propositiop 3.10 implies that

Note that here

hence

/ faydr < 22 r)

for everyInR function f € Ll[a b].

LetD C R,z = (71,%2) € D. We denote byD(z) the set{z € D : a1 > &1, z2 > Zo}.
It is clear that

1 1
/ ¥ (t,x> dr = / <?737> dr = / min <ﬂ7 ﬁ) drydzs.
D Z D) \T D(z) T1 X2

In order to calculate such integrals we represent thé&s$ej as a unionD,(z) U Dy(z), where

Dl(f?)Z{xGD(f) —S_—l}, DQ(i‘):{;CED(j) _g__2}

) X1 X1 X2

J. Inequal. Pure and Appl. Math4(2) Art. 47, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HERMITE-HADAMARD TYPE INEQUALITIES 9

Then
1 1 1
/@(;,x) da:':/ <;,x>d:c—|—/ <j,:1:>d:c
D T Di(z) \7L Do(z) \ T
1 1
= — i) d.fl?ldxz + — T dl’ldl'g.
T2 J Dy () L1 JDs(@)
In the next examples we will use the numlademwhich possesses the properties:
(4.5) 2k —3k* —3k+1=0, 0<k<l.

Let g(k) = 2k — 3k? — 3k + 1. We have:g(0) > 0, g(1) < 0, ¢'(k) = 6k* — 6k — 3 <
6k — 6k — 3 < 0 for all k € (0,1). So, there exists a unique solution of the equation (4.5),
which belongs to the intervél, 1). We denote this solution by the same symhbol

Example 4.2.Let D C R? . be the triangle with vertice®, 0), (a,0) and(0, b), that is
D={rerl :Z+2<1].
If z € D then we get

ab@ T a
Di(Z)=<R2eR?, To<p< ——= g, <z <a-—-x
1( ) { ++ 2 > L2 > afg—f—bjl, jg 2 > 41 = b 2 )

_ _ Clbfl To b
Do) =<RaeR?, 7 < < ————— Zp <ao<b—-x1p.
2( ) { t+ T="1= afz—f—blfl, .’Z’l T="2= a !

1 1 (abZ2)/(aZ2+bT1) a—(a/b)xa
/ <j,$> dr = — dl’g/ l’gdxl.
Di(z) \ &L L2 Jz, (Z1/%2)x2

This reduces to

1 ab i‘Q/b ab ZEQ ab i‘Q .f‘l T
— dr = — - — .= — .= = —= .
/Dl(;i)<j7$> T (Z1/a+Z2/b)2 2 b i 3 b (a N b)

By analogy,

Da(z) \ T 6 (z1/a+ 22/b) 2 a 3 al\a b

Thus, the sum of these quantities is

1 ab 1 ab /T1 Ty ab /T1  To\2
4.6 L L S R o WD L S
(4.6) /f(:z’x) =% @/a+ /b > )5 ()

SinceA(D) = (ab)/2 then forz € D

Therefore

- 1 1 T T 2 /Ty To\?
D)ye—-——— (= 4+=)42(Z24+22) =1
TeQD) 3(Z1/a + T2/b) <a+b)+3<a+b>
S L, L
=2 (2 +2) —3(2 4+ (242 +1-0
a b a b a b

Using inequalitie$) < (z;/a + 72/b) < 1for z € D we get
_rer?, T2 _
Q(D)_{xERH. T k:}

wheretk is the solution of[(4.5).
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In the more general case we have inequality (3.4)and (4.6))

R 6u
J(@1,22) < ab(1 — 3u? + 2u?) /Df(x)dx,

whereu = u(z1,72) = 71 /a + Z2/b < 1, function f is increasing radiant and integrable bn
Consider now inequality (3.12) for our triangle. We show that

+
inf{<x,i> :fo,iGD}z(ﬂ—Fﬁ).
x a b

Letz = (71,Z2) = (21/(x1/a + x2/b),x2/(x1/a + x2/b)). Thenz > z andz € D since
T1/a+ Ty/b = 1. Hence

+ SR T o
inf{<x,l> :fo,feD}gmaX{xl(a+b),xg(“+b)}:ﬂ_i_ﬁ_

T T To a b

Suppose that the converse inequality does not hold, thetyz)™ < x;/a + z2/b for some
T >uz,% € D, hencer/(xy/a+ z2/b) < z. But this implies thatt ¢ D.
Thus, it follows from [(3.1R) that

/Df(fr)dl" < ilelgf(y)/D (% + %) dz.

Calculation gives the quantity
T1 o ab
— 4+ = )dr = —.
/D ( a - b ) * 3

SinceA(D) = ab/2 then the final result is
1 2
—_— r)dr < —su :
A(D)/Df( Jdw < 3y€gf(y)

Example 4.3. Now let(2 be the triangle from Examp|e 4.2:
9 X1 X2
= —+ =< .
Q {x€R++ a+b_1}
Denote byD the subset of2 such that

B bk _m ke _xom | a
Q\D_{xEQ.3< p 3< i + 2 <k}.
Then (Q\D) € N(Q() = {z € R2, : z1/a+ x2/b < k}. Note thatA(Q\D) =
(1/18)k*ab, henceA(D) = (ab)/2 — (1/18)k*ab = ab(1/2 — k*/18). It follows from Propo-
sition[3.7 and formuld (4]6) (witk instead ofD) that a pointz € 2 belongs toQ(D) if and
only if

1 ab 1 _ab (m1+x2)+ab <I1+$2)2 1
ab(1/2 —k2/18) | 6 (Z1/a+Z2/b) 2 \a b 3 \a B

= TNE: = =\ 2 2
=2 () () (%)
It is easy to check that there exists a unique solutiohthe equation:
25 —3s* — (3—k*/3)s+1=0, 0<s<l1.
Hence _ _
T T3

Q(D):{fERi+:;+?:S}.
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We may establish also that> k.

Remark 4.1. For any other closed domaif’ such thatfQ\D’) ¢ N(Q(Q)) = {z € R :
z1/a + x2/b < k} the setQ(D’) has the same form, i.e. it is intersection®f . and a line
(Z1/a + Ty/b) = s with somes”: k < s’ < 1.

Example 4.4. Let Q2 be the same trianglé2 = {z € R% : (z1/a + 22/b) < 1}. LetD C Q
and
Q\D:{xEQ:x1<g, a:2<é}.
2 2

ThenQ\D is the normal set, henc& (2\D) N D = (Q\D) N D is the empty set. Since
A(Q\D) = ab/4 thenA(D) = ab/2 — ab/4 = ab/4. By Propositiof} 3.9, we have fare D

_ 1 ab 1 ab i’l i‘g ab J_Zl i‘g 2

TeQW) = o {E(a‘cl/a—i—ig/b) -SG5 } =1

@2(E+@>3—3(ﬁ+@>2—;<@+x2>+1:0.
a

a b a b b
So,
Q(D):DQ{EER1+:%+%:}?}
_ _ a I To _ _ b T To
:{$€Ri+$1Z§,;+?IP}U{SL’ER1+xQZQ,Z—I—?:p},

where2p® — 3p® — (3/2)p+1=0,0<p < 1.

The following two examples were considered(in [1] for ICAR functions defineRnNote
that the coefficient plays here the same role as the numid¢s) in [1].

Example 4.5. Consider the triangl® with vertices(0, 0), (a,0) and(a, va):
D:{xeRiJr::clga, xo < vy}
If z € D then )
Dy(z) = {xERiJF::Bl < <a, xggzvgg;—jxl},

T
DQ(x):{xeRi+:x1§x1§a, —Zmlgxggvml}.

x
Calculation gives the following quantities

1 1 a (Eg/ij)xl
— Todr1dry = _—/ d:)sl/ TodTs
T2 x1 T2

Ty D1(Z)

Further,
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SinceA(D) = va?/2 then a pointt € D belongs taQ(D) if and only if

—2 3 - =3
a a a a
In particular, ifz, = vz, then we get the equatidi(z, /a)® — 3(z;/a)? — 3(Z1/a) +1 =0

hence(z,/a) = k. So, the poin{ka, vka) belongs toQ (D). This implies that for eacltin R
function f, which is integrable om:

1
f(ka,vka) < M/L;f(x)dx

If z, = vz,/2 then then equation has the foiim, /a)* + 2(7;/a) — 1 = 0. This shows that
(Z1/a) = V2 — 1, therefore((v2 — 1)a, v(v/2 — 1)a/2) € Q(D).
Further, we may set in (3.1%)= (a,va):

)
/f Ydx < f(a, va)/ rnax{— U—}dxldxg
f(a,va /—d:cldxz
_ (a,va / / 1ds

= ?f(a va)
Thus,
i [ f@)e < S5(a.va)
A(D) i x x_s a,va).
Example 4.6. Let D be the square:
D:{xERi_i_:x1§1, .’L'le}

We consider two possible cases foe D : (72/7;) < 1and(zy/z,) > 1.
a) If (z2/71) < 1then we have

1 1 1 T2 /T1
—_— Z’Qdﬂfldl'g = — dwl/ i) dl’z
T2 /Dy (@) 12 Ja 2
To 1 274
e i Tt
2 <3f% 3 ) ’
1 1
—_— .Tldl’ldl‘g = — dl‘l/ T d!EQ
T DQ(CE) 4o (a:g/am 1

1 . 1
— -z =71 —= .
7, ! 3\ 22

Hence
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SinceA(D) = 1 then we get the equation fare (D)
%(xil—m) +€ (43:1—3—%1) =1 <= T (1 +32] —42}) = 32y (1 — 22, — 7).
b) If (zo/z1) > 1 then we get the symmetric equation
Ty (14375 — 473) = 335 (1 — 27, — 73) .
Thus, the sef)(D) can be represented as the union of two sets:
{zeR, 12, <7 <1, T (1+32] —42}) =37, (1 — 27, — 27) }
and
{zeR 3 <7 <1, o, (1+375 —423) =31, (1 — 27, — 73) } .
In particular, ifz, = 7, then
TeQD) = (0<z <1, (14327 —4z}) =3 (1 —21, —77))
— (0<z; <1, 2] - 321 — 37, +1=0).
This implies thatk, k) € Q(D).
At last we investigate inequality (3.]11) with= (1, 1) for the squareD:

/f(x)dx < f(l,l)/ max{y, Te fdrdrs.
SinceA(D) = 1and

/max{xl,mg}dxldxg /dasl/ xldﬂsg—l—/ dzvl/ Todxs

then . 5
- < Z
5 [ flade < Spa.),
and this estimate holds for every increasing radiant and integrablefanction f.
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