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Abstract

New families of sharp inequalities between elementary symmetric polynomials
are proven. We estimate o,,_;, above and below by the elementary symmetric
polynomials ¢,,_g+1,...,0, in the case, when zy, ..., r, are non-negative real
numbers with sum equal to one.
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Letn > 2 be an integer. As usual, we denotedyy o4, ..., o, the elementary
symmetric polynomials of the variables, . .., z,,.
In other wordsgy = o¢(z1,...,2,) =1landforl <k <n

or = 0Ty, ..., x,) = E Tiy oo Ty -
1<ii <-<ig<n

The differentoy, 04, ...,0,, are not comparable between them, but they are Ngmmggtﬂtgysrfgmgn
connected by nonlinear inequalities. To state them, it is more convenient to Polynomials
consider their averagds, = oy, /(). k=0,1,...,n. odor B ey
There are three basic types of inequalities between the symmetric functions '
with respect to the range of the variables. . ., z,,. _
For arbitrary realk, . .., z,, the following inequalities are known: e P
Contents
(1.1) E!>E, 1By, 1<k<n-1, (Newton-Maclaurin)
44 44
< >
A(Br1Erys — B} o) (ErEryo — BR ) > (Br1 Brpo — ExErys)?,
k=0,...,n—3, (Rosset[4]) Go Back
Close
as well as the inequalities of Niculesct].[ A complete description about their Quit
historical and contemporary stage of development can be found, for example,
in[1] and [2]. Page 3 of 25
Suppose now that alt;, j = 1,...,n, are positive. Then the following
general result (se€ [ Theorem 77, p. 64]) is known: . Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003
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Theorem 1.1 (Hardy, Littlewood, Pdlya). For any positivex, ..., z, and
positiveas, ..., ay,, 3q,..., 03, the inequality

Eflu-Eg‘"gEfl---Egn
holds if and only if
U+ 20+ +n—m+1)o, > 6, +268,.+ - +n—m+1)5,

for eachl <m <n.

For other results in this direction sed.[

The aim of this paper is to obtain new inequalities betwegn. . , o, in the
case whemn, ..., z, are non-negative, (Theorem3and Theoren2.5below).
More precisely, we obtain the best possible estimate$®f_, from below and
above by linear functions of’f‘lan_kH, ...,000,. Since all these functions
are homogeneous with respect(ta, ..., z,) of the same order, we can set
o, =x1+ -+ x, = 1, then our inequalities give the best possible estimates
of o,_; by linear functions ofr,, y,1,...,0, for k = 1,...,n — 1 in this
case (Theorem3.1 and TheorenB.2 below). Inequalities of this type far =
n — 2 have been recently obtained by Sat9, [which can be obtained as a
consequence of Theoredt below.
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2.3 2.5

For the sake of completeness we give a straightforward proof of the following
proposition, which is a consequence of Theork cited in the introduction.
Here we suppose that, . . ., z,, are non-negative.

Proposition 2.1. Letz,, ..., x,, be non-negative real numbers> 2. Then for

1 <p<n-—1wehave
(2.1)
Proof. Denoteo; ,, = Zl§i1<~~-<il§n T, Ty, - x;, , 1 <1 < n. Note, that .1)

is equivalent to

n(p+1
01n0p.n 2 ( )Up+1,n-
n—p

(2.2)

First we shall checkA.2) for p = 1 and forp = n — 1.
(i) Forp = 1the inequality 2.2) reads

2
- 2
(z) S

1<i<j<n

which is equivalent to

n 2
(n— 1) (Z‘T%> > n2111 Z Tikj,
i=1

1<i<j<n

hence toy ;. (z; — x;)* > 0.
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(i) Forp = n —1 (2.2 is equivalent tory ,0,, 1, > n0,,. If 0, = 0,
then @.2) is obvious. Leto,, # 0, then @.2) is equivalent ton* <
Oor, @) (Z?zl %) which follow from AM-GM inequality.

We are going to prove2(2) by recurrence with respect to> 2.

(i) We already proved thaP(?) is true forn = 2.

(iv) Let (2.2) be true forn > 2 and for eaclp, 1 < p < n—1. Fix p,
2 < p<n—1. We will prove, that

(n+1L(p+1)
n+1—p

(23) O1n+10pn+1 = Op+1n+1-

Since @.3) is homogeneous, excluding the case=--- =z, = z,.1 =
0, we may assume, that ,,,; = 1.

Letz; <uzy <--- < uz,,1. The following cases are possible:
1) Letz,.; = 1. Thenz; = --- =z, = 0 and @.3) becomes an equality.

2) Letx,,, = #1 Thenz, = =2, = 2,11 = #1 and we obtain

(n+1)(p+1)
n+1—p

[ n+1 1 _ ptl n+1 1 _0
“\ p Jn+lp n+l-p\p+l ) (n+1p

hence 2.3) becomes again an equality.

Opntl — Tp+1n+1
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3) Letz,,; € (nfl, 1). Substituter; + -+ 2, = 1 — T4 = 01, = S,
with s € (O; n%l) Theno, 11 = 0pn + (1 — 5)0p_1n @ANA0o, 11yt =
Opt1n + (1 —s)o,,. Hence R.3) is equivalent to

(n+1)(p+1)

Opn + (1= 8)0p 10 > [Up+1,n + (1 — 5>Up,n] 5

- n+1l-p
which is equivalent to
n+1l—p (1-s)(n+1—-p)
24) |————% __(1- o+ im
9 ey "I ey
Z Op+in-

From (iv) we obtaino, ., < %saw. Then @.4) follows from the
next inequality (if true):

n—p
2.5) ——so,,
SRS

n+1—p
S(n+D@+D

(I1—=s)(n+1-—p)
(n+1)(p+1)

—(1=s)|opn +

Op—1,n,

which is equivalent to

pln(n+2) — (n+1)2s] .
nn+1-p)(l—-s "

(26) O'pflm Z

It follows from (iv) thato, 1, > =75 0p.n-
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Hence £.6), and consequenth2(5) and @.4), follow from

o pln(n+2) — (17
(n+1-p)s ™ nn+l-p)(l-s
_ pl(n+1)s — n]? .
ns(n+1—p)(1—s) ™"

> 0.

Since @.2) is true forp = 1 andp = n according to (i) and (i), then2(2) is
fulfilled for n, n > 2. Hence the proposition is provesl.

Remark 2.1. It follows from the proof, that equality is achieved in the following
two cases:

Dry=x=---=z,=0a>0.

2) n—p+1ofxy, ... x, are equal to0 and the rest of them are arbitrary
non-negative real numbers.

Remark 2.2. (2.1) can be proven using Lemn2a2 below, but in this way it will
be difficult to see wher2(1) turns into an equality.

From now onn will be a fixed positive integer. It will be assumed that at
least one of the non-negative numbers. . . , z,, differs from zero.

Lemma 2.2. Let us assume that, . . ., x,, are non-negative real numbers ¢
2)andzy +- - -+ z, = 01 = 1. Then the functiotf (z1, ..., z,) = a1 + asos +
<o+ ayo, (a1, ..., a, are real numbers), achieves its maximum and minimum
at least in some of the poinf3, , (+,...,+,0,...,0), 1 < k < n (the firstk
coordinates of;, ,, are equal to%, and the rest of them are equal to zero).
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Proof. The setd,, = {(z1,...,z,)/z; > 0, x1+---+x, = 1} is compact and
f is continuous in it, hencg achieves its minimum and maximum values. We
rewrite f as follows:

flze, ... x,) = x120g(23, . .. ) + xRy (T3, ..., 2p)
+ I'th(l'g, s 7$n) + t(.fl?g, s 7xn) + ay.

As f is symmetric, therk; = h, and therefore:

(27) f(xla s 7xn)
= 11299(x3, ... Tn) + (X1 + 22) 1 (23, ..., 2n) + (T3, ..., 2,) + ay.

Let P(z9,...,2%) be a point in whichf achieves its minimum value. We con-
sider the function?(z) = f(x,s — z,2%,...,20), s = 29 + 2, for x € [0; ]
(we assume, that > 0). Obviously the minimum values of’ and f are
equal andF achieves its minimum value far = z%. From @.7) we obtain
that F'(z) = ax(s — z) + s + v = ax(s — x) + I, wherea, § depend on
2029 2%, .20 ay, .. an.

) n’

The following three cases are possible:

(i) @« = 0. ThenF(z) = const and we may assume thatin F' = F(0) or
min F = F (£).

(i) a > 0. Thenmin F' = F(0).
(i) a <0. Thenmin F' = F (%).
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Hence, as{ andz$ were arbitrarily chosen then, foti # j we may assume
thatz) = 2 or, at least one of them is equal to zero.

Let us choose a poire(z!, . .., zY), for which the number of coordinates
which equal to zero is the highest possible afid> 25 > --- > 20 If p=n —
1, then Lemma.2is proven. Let) < p < n — 2, i.e. P(zY, ..xg_p,o, ...,0),
af---x)_, # 0. Then for the pairgz{,27), 1 < i < j < n—p only case
(iii) is valid, from which Lemma2.2 follows. Lemmaz2.2 is true also for the

maximum value off, sincemax f = min(—f). B

Remark 2.3. A result similar to Lemma&.2is proved by Sato in/].
Theorem 2.3.Letn, k be integer numberg, < £ < n — 1. Then for arbitrary
non-negativery, .. ., x,, the following inequality is true:

(28) Ulfanfk

k
; —k—1+1 . o i
> i1 [T . 20 1Ni—2 _k—i ,
> Zl( 1) ( ; ) (n—Fk+1i)(n—Fk) "o ' Opnkti
Proof. Since @.8) is homogenous we may assume that-- - - +x,, = 07 = 1.
Then, according to Lemma.2 it suffices to prove, thaf(F,,,) > 0for 1 <
m < n, where

k

k14 | -

Fan ) =onit 3 ( moko L ) (k40 (k = 1) 2oy
=1

l__ hence

Atthe P,,, point we haver, ;i = (,, "1..) =

(2.9) On_kri 70 ifandonlyif 1 <m—n+Ek.
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We consider the following three possible casesor

i) m<n—k—1,k < n-—2. Thenobviouslyo,, , = 0, 41 = -+ =
o, =0, hencef(P,,,,) = 0.

(i) m =n—Fk k < n—1. From Q.9 we obtainan_k:mand
an_kH:---:an:O,hencef(Pm,n):m>0.
@iy m=n—k+p,1<p<kk<n-—1.From@.9andm =n—k+pwe
obtain
k
n—k+p 1 n—k—1+i
P, = .
1t =(" 5 ) e ()
. N . i—2 n—k:-l—p 1
X (n—k+1i)°(k—n) (n—k+i)(n—k+p)nk+i

:<'rg)mip+zp:(m—pi—1+i)

i=1

. i— m 1

Now from equality

(27 (= (%) ()
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we obtain

() o

() () et

This implies
New Inequalities Between
mm—p+l Elementary Symmetric
—f(Pm n) Polynomials
(")
Todor P. Mitev
p
m2 m p D p—m i—2
— +om—p+1)—— + . m—mp-+1 Title Page
g e e () e () g
=2 , Contents
p D p—m i—2
=m(1—p)+'_2<i)(m—p) (T) “ >

< >

p D p—m i—2
+ (Z>Z< m ) Go Back
1=2
m2 1+p—m p_p(p_m)_l Close
Quit
mp < (p—l)(p—my_l Page 12 of 25
+ > .
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Substituting; = j + 1 we obtain:
mm—p—H

mf(

m
—m(l —p) +

Pm;rz)

m <
J
m? P m?
=m(l —p)+ <£> mp —
m—p\m m—p
mp p—m p-l
+ 1+—- —1
p—m m

(B - () -
m—p\m m-—p p—m\m

From (i) — (iii) it follows that Theoren®.3is true.

|

Remark 2.4. Theoren®.3for k = 1 is equivalent to Propositiof.1lin the case
whenp = n — 1.

Remark 2.5. It is easy to verify, that4.8) is equivalent to

1o~/ k k—n\""
EYE, > ; ( ) ) (n—k+1) (T) EV B, .
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We define the sequence of real numbgrs,;}, m € N, [ € N as follows:

(2.10) ) = 7 for VI € N,

(2.11) g =0 for m>0>20or m>1,01=1,
L\ .. = l -

(2.12) ( m ) ™= llOéufm + Z ( m—j ) "™ oy ji-may

fort<m<I[-1.

More precisely, the numbers,,; can be defined recurrently (excluding the
cases whenin > 1,1 =10orm > [ > 2) as follows:

1) We geta, ; for [ > 1 from (2.10).
2) Then we determines; for > 3 from (i) l=1lay; 1+ agy.
3) Then we determina;,; for ! > 4 from (1) 1> = llau_2+(i) lag) 1+as,.

4) Then we determine., for [ > 5 from (:i) P = llal,l—is + (é) l2a2,z—2 +
(1) lasg—1 + cy and so on.

For example, the values of,,, for m < 5,1 < 6 are given in Tabld.

The sequencéa,,,; } has interesting properties. For example one can prove,

that in the case whem,,; # 0: sgn o, ; = 1 for m even andign v, ; = —1 for
m odd,m > 3.
We are going to prove the following property of the sequefieg, }:
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Proposition 2.4. For each integer numbet, n > 2 we have:

(213) Apnt1 = (_1)71 (n i 1) :

2
Proof. We will prove .12 by induction.
(i) We show, thatv, 3 = (—1)2 (%)2 , (see Tabld).
(i) Let(2.13 hold true foras s, . .., cp—1 .

(i) Using .12 fori =n+1andm =n — 1, (2.10 for [ = 2 and (ii) we
obtain

(n—gl)(njtl)”_l

n+1n+1 n—2 n+1 ' +2 2 _—
= %_‘_Z ]+ 2 (_1)]+1 jT (n_l_l) ! ]+an,n+1~
j=1

Substituting; = 7 — 1, this implies

n—+1 e
Apntl = ( ) > (’I’L + 1) !
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Now from the equalitie$” ) (i+1) = (7) (n+ 1) and(?)i= ("7} )n
we obtain:

n+1 L (a1t
Oén,nJrlz( 9 )(n+1) 1_(—)

New Inequalities Between
Elementary Symmetric

L i Polynomials
. (TL + 1)n+1 n—1 nzl n -1 ‘ Todor P. Mitev
N 4 n+l =\ i n+1
n—1 n—1 1 \! Title Page
" ( i—1 ) (n + 1) Contents
i=2
T . 44 44
Substituting; = k£ + 1 we obtain
< >
(n+1)" [n—1 -1 \" -1
nntl = -1+ —- 1 Go Back
Fnintl 1 nAtl Tor) TG 0=ae
Close
n+1 - n+1 Quit
(n+ 1)t n n Page 16 of 25
- 4 {n+1 <n+1> (n—l—l)
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n n
1

(o) - (2]
) < (=)
n+1(n+1) nj—l_nil(n_jl)n_ll
- +41)n+1(_1)n {(n+ o (nfl)”} == (”; 1>2.

From (i), (ii) and (iii) it follows that .13 is true for eacm > 2.

n 4+
(n+1 n+1|:
n

Theorem 2.5.Letn andk be fixed integer numbers for whic¢h< £ < n — 2.
Then for arbitrary non-negative,, . ..

k

k n k—i
(2.14) O10n—k < Q107 + E A1 4in—k+i01 On—k+i,
i=1

where{a,,,} are defined from4.10-(2.12).

Proof. (2.14) is homogenous, therefore we may assume,that - - - + x,, =
o1 = 1. Then according to Lemma2it is sufficient to prove, that

(2.15) f(Pmn) >0, foreachm, 1 <m <n,
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where
k

flze, . 2) = 1k + E Ql4in—k+iOn—k+i — On—k-
i=1

m

Obviously at the poinf,, ,, we haves, = < ;

)%forlgqgn,hence

(2.16) o, #0 ifand only if ¢ < m.

We consider the following three possible casesor

(i) m < n—k—1. Then from .16 and @.10 we obtain f(F,,,) =
Apk = m > 0.

(i) m =n — k. Then from @.16 and .10 we obtainf(P,_x,) = &1 n—k —

e = 0.
@iy m =n — k+ p, wherel < p < k. From .16 it follows
k
B n—Fk+p 1
f(Pm,n) = Q1 n—k + Zal-l-i,n—k—‘ri < n—k +/l ) (TL —k _|_p>n—k+i

i=1

([ n—k+p 1
n—k (n—k+p)n*
1

k
+;(n_k+i)(N—k+p)p Qi n—k+i
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- (n;ﬁ;{:p)(n—kw)p}

However,("~3*7) + 0 for i < p, and

W = 1 n—k+p according
to (2.10), and we get

(217) F(Pa) = arnioy {<n k) M

n—k + » New Inequalities Between
+ Z ( p > (n —k +p)P Ol i kvi Elemepngle;rr)]/o?nyiggnetnc
—k Todor P. Mitev
_(n +p)(n—k+p)p].
p
. Title Page
Obviouslyay 1 = a1, (n—k+p)—p ANA A1 4 ki = Q1ti (n—ktp)—p+i- 1NEN Contents
the right hand side of(17) is equal to zero accordin@ (L2 forl =n—k+p
andm = p. 4« (44
Thereforef (P, ) = 0in this case. < >
It follows from (i), (ii) and (iii) that (2.15 is true, and hence2(14) is also
true. g Go Back
Remark 2.6. Theorem2.5is true as well fork = n — 1, since both sides of Clozz
(2.14) are equal in this case, which follows from. {1). Quit
Remark 2.7. An analogue of Theoret5for k£ = 0 is the inequality between Page 19 of 25
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Corollary 2.6. Let A,,, G,,, H,, be the classical averages of the positive real

numbersey, ..., z, (n > 2). Then the following inequality is true:
nA, 1" 1 1 \"'1 _n

2.18 —_— — — (1 _— >

( ) {(H_UGTJ Gn+ " ( +n_1) A, — H,

Proof. (2.18) follows from:

nG}
n n
01 = nAna Opn—1 = ?7 On = Gn7
n
1 9 n"
dln-1= m, Qop =N — m

and from Theoren2.5for k = 1. g

Corollary 2.7 (Explicit expression of Theorem2.5for k = n — 2). For each
integer numben (n > 3) we have:

— i+2\°
0?+Z(_1)z+1 (T) 0?_2_10—2+i-
=1

Proof. It follows from Propositior2.4 and from Theorem2.5for k =n — 2. 1

U?_Qag <

Ry

Remark 2.8. Corollary 2.7is the principle result in {].

Remark 2.9. Corollary 2.7 shows that Theoret5for k£ = n — 2 is equivalent
to Theoren®.3in the case wheh = n — 1.
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2.8 2.14

The following two theorems prove that the estimates in Thedigland Theo-
rem2.5are, in a certain sense, the best possible.

Theorem 3.1.Letn andk, 1 < k < n — 1 be integers. Let the real numbers
By, ..., 0, have the property3.1). We say that the real numbets, ..., 3,
have the propertyd.1) if for any non-negative real numbess, . .., z, with a
sum equal to one the following inequality is fulfilled:

k
(31) On—k > Zﬁian—kﬂﬂ
i=1

Then for arbitrary non-negative real numbers, . . ., z,, with sum equal to one
the following inequality is fulfilled:

k
(3-2) Z 5i0n—kz+z‘
i=1

k .
< Z<_1)i+1 < n—k - 141 > (n—k+0)2(n — k)20 e
i=1

?

Proof. Setf1 = f1 (371, . ,Sl]n) = Opn—k — Zle BiO'n,kJri and

n—k+1

k
fo=folzy, .. 2,) = Unfk—i-z ( ) (n—k+1)*(k—n)""%0_pii.
i=1
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Then @.2) is equivalent tgf; — f> > 0. On the other hand, according to Lemma
2.2, itis sufficient to verify this inequality at the point3, ,,. We have at these
points:

(i For1 <m <n—k—1,k < n-—2apparentlyf; = f, = 0, hence
Ji—f2=0.

(ii) gorm =n—k, k<n—1weobtainf, = f, = m

hencef; — f; =
(i) Forl < n—k < m < n from the proof of Theorem2.3 it follows, that
f2=0. As f; > 0 according to 8.1), hencef; — f, > 0.

From (i), (ii) and (iii) it follows thatf; — f» > 0 in each point?,, ,, and we
complete the proof of the theorem.

Theorem 3.2. Letn and k be integers,l < k < n — 2. Let the real numbers
Y1, - - -5 Vre1 Nave the propertyd.3). We say that the real numbeys, . . .
have the property3.3) if for any non-negative real numbers;, ..
sum equal to one, the following inequality is fulfilled:

» Vet
., T With

k

On—k <71+ Z Yit10n—k+i-
=1

Then for any non-negative real numbers . .., x,, with sum equal to one the
following inequality is fulfilled:

(3.3)

k k

Q1 p—f + E O tim—ktiOn—kti < Y1 + E V140 n—k+i-
i=1 =1

(3.4)

New Inequalities Between
Elementary Symmetric
Polynomials

Todor P. Mitev

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 22 of 25

J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:mitev@ami.ru.acad.bg
http://jipam.vu.edu.au/

Proof. Set

k
fi=h@n . mn) =Y+ D> Viginkti = Onok
=1
and
k

fo=folz1,...,20) = 1y + Z Q1 tin—k+iOn—kti — On—k-
i=1

Then @.4) is equivalent tof; — f> > 0. We are going to check this inequality

at the points?,, ,,. From @.3) at P,y ,, it follows, that

1

(3.5) gl (R A1k

v

We consider the possible cases for

(i) 1<m<n-—k—1 Thenf, — fo = v, — a1, > 0atp,,, according
to (3.5).

(i) n—k <m <n. Thenf, > 0 at P,,,, according to §.3) and from the
proof of Theoren®.5it follows that f, = 0, thereforef; — f> > 0.

From (i) and (ii) we obtain, thaf, — f» > 0 in each point?,, , (1 < m < n).
Applying Lemma2.2 we complete the proof of Theore®n2. g
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Table 1:
l Q) Qo Qs Qy Qs 1
1 1 0 0 0 0
2 1/4 0 0 0 0
3 1/27 9/4 0 0 0
4| 1/256 176/27 -4 0 0
5| 1/3125 | 3275/256 | -775/27 | 25/4 | O
6 | 1/46656| 65844/3125 -6579/64| 316/3| -9

New Inequalities Between
Elementary Symmetric
Polynomials

Todor P. Mitev

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 24 of 25

J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:mitev@ami.ru.acad.bg
http://jipam.vu.edu.au/

[1] G. HARDY, J.E. LITTLEWOODAND G.POLYA Inequalities Cambridge
Mathematical Library 2nd ed., 1952.

[2] C.P. NICULESCU, A new look at Newton'’s inequalitiek, Inequal. Pure
and Appl. Math. 1(2) (2000), Article 17. [ONLINE:http://jipam.
vu.edu.au/vin2/014 99.html ]

[3] S. ROSSET, Normalized symmetric functions, Newton inequalities and a
new set of stronger inequalitic&mer. Math. So¢96 (1989), 815-820.

[4] N. SATO, Symmetric polynomial inequalitie€rux Mathematicorum with
Mathematical Mayhen®7 (2001), 529-533.

New Inequalities Between
Elementary Symmetric
Polynomials

Todor P. Mitev

Title Page

Contents
44
<
Go Back
Close
Quit
Page 25 of 25

J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:mitev@ami.ru.acad.bg
http://jipam.vu.edu.au/
http://jipam.vu.edu.au/v1n2/014_99.html
http://jipam.vu.edu.au/v1n2/014_99.html

	Introduction
	New Inequalities (Theorem 2.3 and Theorem 2.5)
	The Sharpness of the Inequalities (2.8) and (2.14)

