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Abstract

New families of sharp inequalities between elementary symmetric polynomials
are proven. We estimate σn−k above and below by the elementary symmetric
polynomials σn−k+1, . . . , σn in the case, when x1, . . . , xn are non-negative real
numbers with sum equal to one.
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1. Introduction
Let n ≥ 2 be an integer. As usual, we denote byσ0, σ1, . . . , σn the elementary
symmetric polynomials of the variablesx1, . . . , xn.

In other words,σ0 = σ0(x1, . . . , xn) = 1 and for1 ≤ k ≤ n

σk = σk(x1, . . . , xn) =
∑

1≤i1≤···≤ik≤n

xi1 . . . xik .

The differentσ0, σ1, . . . , σn, are not comparable between them, but they are
connected by nonlinear inequalities. To state them, it is more convenient to
consider their averagesEk = σk

/(
n
k

)
, k = 0, 1, . . . , n.

There are three basic types of inequalities between the symmetric functions
with respect to the range of the variablesx1, . . . , xn.

For arbitrary realx1, . . . , xn the following inequalities are known:

(1.1) E2
k ≥ Ek−1Ek+1, 1 ≤ k ≤ n− 1, (Newton-Maclaurin),

4(Ek+1Ek+3 − E2
k+2)(EkEk+2 − E2

k+1) ≥ (Ek+1Ek+2 − EkEk+3)
2,

k = 0, . . . , n− 3, (Rosset [4]),

as well as the inequalities of Niculescu [2]. A complete description about their
historical and contemporary stage of development can be found, for example,
in [1] and [2].

Suppose now that allxj, j = 1, . . . , n, are positive. Then the following
general result (see [1, Theorem 77, p. 64]) is known:
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Theorem 1.1 ( Hardy, Littlewood, Pólya). For any positivex1, . . . , xn and
positiveα1, . . . , αn, β1, . . . , βn the inequality

Eα1
1 · · ·Eαn

n ≤ E
β1
1 · · ·Eβn

n

holds if and only if

αm + 2αm+1 + · · ·+ (n−m + 1)αn ≥ βm + 2βm+1 + · · ·+ (n−m + 1)βn

for each1 ≤ m ≤ n.

For other results in this direction see [1].
The aim of this paper is to obtain new inequalities betweenσ1, . . . , σn in the

case whenx1, . . . , xn are non-negative, (Theorem2.3and Theorem2.5below).
More precisely, we obtain the best possible estimates ofσk

1σn−k from below and
above by linear functions ofσk−1

1 σn−k+1, . . . , σ
0
1σn. Since all these functions

are homogeneous with respect to(x1, . . . , xn) of the same order, we can set
σ1 = x1 + · · · + xn = 1, then our inequalities give the best possible estimates
of σn−k by linear functions ofσn−k+1, . . . , σn for k = 1, . . . , n − 1 in this
case (Theorem3.1 and Theorem3.2 below). Inequalities of this type fork =
n − 2 have been recently obtained by Sato [4], which can be obtained as a
consequence of Theorem2.5below.
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2. New Inequalities (Theorem2.3and Theorem2.5)
For the sake of completeness we give a straightforward proof of the following
proposition, which is a consequence of Theorem1.1, cited in the introduction.
Here we suppose thatx1, . . . , xn are non-negative.

Proposition 2.1. Letx1, . . . , xn be non-negative real numbers,n ≥ 2. Then for
1 ≤ p ≤ n− 1 we have

(2.1) σ1σp ≥
n(p + 1)

n− p
σp+1.

Proof. Denoteσl,n =
∑

1≤i1<···<il≤n xi1xi2 · · ·xil , 1 ≤ l ≤ n. Note, that (2.1)
is equivalent to

(2.2) σ1,nσp,n ≥
n(p + 1)

n− p
σp+1,n.

First we shall check (2.2) for p = 1 and forp = n− 1.

(i) Forp = 1 the inequality (2.2) reads(
n∑

i=1

xi

)2

≥ 2n

n− 1

∑
1≤i<j≤n

xixj,

which is equivalent to

(n− 1)

(
n∑

i=1

xi

)2

≥ 2n

n− 1

∑
1≤i<j≤n

xixj,

hence to
∑

1≤i<j≤n(xi − xj)
2 ≥ 0.

http://jipam.vu.edu.au/
mailto:mitev@ami.ru.acad.bg
http://jipam.vu.edu.au/


New Inequalities Between
Elementary Symmetric

Polynomials

Todor P. Mitev

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 25

J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003

http://jipam.vu.edu.au

(ii) For p = n − 1 (2.2) is equivalent toσ1,nσn−1,n ≥ n2σn,n. If σn,n = 0,
then (2.2) is obvious. Letσn,n 6= 0, then (2.2) is equivalent ton2 ≤
(
∑n

i=1 xi)
(∑n

i=1
1
xi

)
, which follow from AM-GM inequality.

We are going to prove (2.2) by recurrence with respect ton ≥ 2.

(iii) We already proved that (2.2) is true forn = 2.

(iv) Let (2.2) be true forn ≥ 2 and for eachp, 1 ≤ p ≤ n− 1. Fix p,
2 ≤ p ≤ n− 1. We will prove, that

(2.3) σ1,n+1σp,n+1 ≥
(n + 1)(p + 1)

n + 1− p
σp+1,n+1.

Since (2.3) is homogeneous, excluding the casex1 = · · · = xn = xn+1 =
0, we may assume, thatσ1,n+1 = 1.

Let x1 ≤ x2 ≤ · · · ≤ xn+1. The following cases are possible:

1) Let xn+1 = 1. Thenx1 = · · · = xn = 0 and (2.3) becomes an equality.

2) Let xn+1 = 1
n+1

. Thenx1 = · · · = xn = xn+1 = 1
n+1

and we obtain

σp,n+1 −
(n + 1)(p + 1)

n + 1− p
σp+1,n+1

=

(
n + 1

p

)
1

(n + 1)p
− p + 1

n + 1− p

(
n + 1
p + 1

)
1

(n + 1)p
= 0,

hence (2.3) becomes again an equality.
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3) Let xn+1 ∈
(

1
n+1

; 1
)
. Substitutex1 + · · · + xn = 1 − xn+1 = σ1,n = s,

with s ∈
(
0; n

n+1

)
. Thenσp,n+1 = σp,n + (1 − s)σp−1,n andσp+1,n+1 =

σp+1,n + (1− s)σp,n. Hence (2.3) is equivalent to

σp,n + (1− s)σp−1,n ≥
(n + 1)(p + 1)

n + 1− p
[σp+1,n + (1− s)σp,n] ,

which is equivalent to

(2.4)

[
n + 1− p

(n + 1)(p + 1)
− (1− s)

]
σp,n +

(1− s)(n + 1− p)

(n + 1)(p + 1)
σp−1,n

≥ σp+1,n.

From (iv) we obtainσp+1,n ≤ n−p
n(p+1)

sσp,n. Then (2.4) follows from the
next inequality (if true):

(2.5)
n− p

n(p + 1)
sσp,n

≤
[

n + 1− p

(n + 1)(p + 1)
− (1− s)

]
σp,n +

(1− s)(n + 1− p)

(n + 1)(p + 1)
σp−1,n,

which is equivalent to

(2.6) σp−1,n ≥
p[n(n + 2)− (n + 1)2s]

n(n + 1− p)(1− s)
σp,n.

It follows from (iv) thatσp−1,n ≥ np
(n+1−p)s

σp,n.
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Hence (2.6), and consequently (2.5) and (2.4), follow from

np

(n + 1− p)s
σp,n −

p[n(n + 2)− (n + 1)2s]

n(n + 1− p)(1− s)
σp,n

=
p[(n + 1)s− n]2

ns(n + 1− p)(1− s)
σp,n ≥ 0.

Since (2.2) is true forp = 1 andp = n according to (i) and (ii), then (2.2) is
fulfilled for n, n ≥ 2. Hence the proposition is proved.

Remark 2.1. It follows from the proof, that equality is achieved in the following
two cases:

1) x1 = x2 = · · · = xn = a ≥ 0.

2) n − p + 1 of x1, . . . , xn are equal to0 and the rest of them are arbitrary
non-negative real numbers.

Remark 2.2. (2.1) can be proven using Lemma2.2below, but in this way it will
be difficult to see when (2.1) turns into an equality.

From now onn will be a fixed positive integer. It will be assumed that at
least one of the non-negative numbersx1, . . . , xn differs from zero.

Lemma 2.2. Let us assume thatx1, . . . , xn are non-negative real numbers (n ≥
2) andx1 + · · ·+xn = σ1 = 1. Then the functionf(x1, . . . , xn) = a1 + a2σ2 +
· · · + anσn (a1, . . . , an are real numbers), achieves its maximum and minimum
at least in some of the pointsPk,n

(
1
k
, . . . , 1

k
, 0, . . . , 0

)
, 1 ≤ k ≤ n (the firstk

coordinates ofPk,n are equal to1
k
, and the rest of them are equal to zero).
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Proof. The setAn = {(x1, . . . , xn)/xi ≥ 0, x1 + · · ·+xn = 1} is compact and
f is continuous in it, hencef achieves its minimum and maximum values. We
rewritef as follows:

f(x1, . . . , xn) = x1x2g(x3, . . . xn) + x1h1(x3, . . . , xn)

+ x2h2(x3, . . . , xn) + t(x3, . . . , xn) + a1.

As f is symmetric, thenh1 ≡ h2 and therefore:

(2.7) f(x1, . . . , xn)

= x1x2g(x3, . . . xn) + (x1 + x2)h1(x3, . . . , xn) + t(x3, . . . , xn) + a1.

Let P (x0
1, . . . , x

0
n) be a point in whichf achieves its minimum value. We con-

sider the functionF (x) = f(x, s − x, x0
3, . . . , x

0
n), s = x0

1 + x0
2, for x ∈ [0; s]

(we assume, thats > 0). Obviously the minimum values ofF and f are
equal andF achieves its minimum value forx = x0

1. From (2.7) we obtain
that F (x) = αx(s − x) + sβ + γ = αx(s − x) + δ, whereα, δ depend on
x0

1, x
0
2, x

0
3, . . . , x

0
n, a1, . . . , an.

The following three cases are possible:

(i) α = 0. ThenF (x) = const and we may assume thatmin F = F (0) or
min F = F

(
s
2

)
.

(ii) α > 0. Thenmin F = F (0).

(iii) α < 0. Thenmin F = F
(

s
2

)
.
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Hence, asx0
1 andx0

2 were arbitrarily chosen then, for∀i 6= j we may assume
thatx0

i = x0
j or, at least one of them is equal to zero.

Let us choose a pointP (x0
1, . . . , x

0
n), for which the number of coordinatesp

which equal to zero is the highest possible andx0
1 ≥ x0

2 ≥ · · · ≥ x0
n. If p = n−

1, then Lemma2.2 is proven. Let0 ≤ p ≤ n− 2, i.e. P (x0
1, ..x

0
n−p, 0, . . . , 0),

x0
1 · · ·x0

n−p 6= 0. Then for the pairs(x0
i , x

0
j), 1 ≤ i < j ≤ n− p only case

(iii) is valid, from which Lemma2.2 follows. Lemma2.2 is true also for the
maximum value off , sincemax f = min(−f).

Remark 2.3. A result similar to Lemma2.2 is proved by Sato in [4].

Theorem 2.3.Letn, k be integer numbers,1 ≤ k ≤ n− 1. Then for arbitrary
non-negativex1, . . . , xn, the following inequality is true:

(2.8) σk
1σn−k

≥
k∑

i=1

(−1)i+1

(
n− k − 1 + i

i

)
(n− k + i)2(n− k)i−2σk−i

1 σn−k+i.

Proof. Since (2.8) is homogenous we may assume thatx1 + · · ·+xn = σ1 = 1.
Then, according to Lemma2.2 it suffices to prove, thatf(Pm,n) ≥ 0 for 1 ≤
m ≤ n, where

f(x1, . . . , xn) = σn−k +
k∑

i=1

(
n− k − 1 + i

i

)
(n− k + i)2(k−n)i−2σn−k+i.

At thePm,n point we haveσn−k+i =
(

m
n−k+i

)
1

mn−k+i , hence

(2.9) σn−k+i 6= 0 if and only if i ≤ m− n + k.
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mailto:mitev@ami.ru.acad.bg
http://jipam.vu.edu.au/


New Inequalities Between
Elementary Symmetric

Polynomials

Todor P. Mitev

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 11 of 25

J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003

http://jipam.vu.edu.au

We consider the following three possible cases form:

(i) m ≤ n− k − 1, k ≤ n− 2. Then obviouslyσn−k = σn−k+1 = · · · =
σn = 0, hencef(Pm,n) = 0.

(ii) m = n − k, k ≤ n− 1. From (2.9) we obtainσn−k = 1
(n−k)n−k and

σn−k+1 = · · · = σn = 0, hencef(Pm,n) = 1
(n−k)n−k > 0.

(iii) m = n− k + p, 1 ≤ p ≤ k, k ≤ n− 1. From (2.9) andm = n− k + p we
obtain

f(Pm,n) =

(
n− k + p

n− k

)
1

(n− k + p)n−k
+

k∑
i=1

(
n− k − 1 + i

i

)
× (n− k + i)2(k − n)i−2

(
n− k + p
n− k + i

)
1

(n− k + p)n−k+i

=

(
m
p

)
1

mm−p
+

p∑
i=1

(
m− p− 1 + i

i

)
× (m− p + i)2(p−m)i−2

(
m

m− p + i

)
1

mm−p+i
.

Now from equality(
m− p− 1 + i

i

)(
m

m− p + i

)
(m−p+ i) =

(
m− 1

p

)(
p
i

)
m

http://jipam.vu.edu.au/
mailto:mitev@ami.ru.acad.bg
http://jipam.vu.edu.au/


New Inequalities Between
Elementary Symmetric

Polynomials

Todor P. Mitev

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 25

J. Ineq. Pure and Appl. Math. 4(2) Art. 48, 2003

http://jipam.vu.edu.au

we obtain

f(Pm,n) =

(
m
p

)
1

mm−p

+

p∑
i=1

(
m− 1

p

)(
p
i

)
(m− p + i)2(p−m)i−2 1

mm−p−1+i
.

This implies

mm−p+1(
m− 1

p

)f(Pm,n)

=
m2

m− p
+ p(m− p + 1)

m

p−m
+

p∑
i=2

(
p
i

)
(m− p + i)

(
p−m

m

)i−2

= m(1− p) +

p∑
i=2

(
p
i

)
(m− p)

(
p−m

m

)i−2

+

p∑
i=2

(
p
i

)
i

(
p−m

m

)i−2

= m(1− p) +
m2

m− p

[(
1 +

p−m

m

)p

− p(p−m)

m
− 1

]
+

mp

p−m

p∑
i=2

(
p− 1
i− 1

)(
p−m

m

)i−1

.
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Substitutingi = j + 1 we obtain:

mm−p+1(
m− 1

p

)f(Pm,n)

= m(1− p) +
m2

m− p

[( p

m

)p

+
p(m− p)

m
− 1

]
+

mp

p−m

p−1∑
j=1

(
p− 1

j

)(
p−m

m

)j

= m(1− p) +
m2

m− p

( p

m

)p

+ mp− m2

m− p

+
mp

p−m

[(
1 +

p−m

m

)p−1

− 1

]

= m +
m2

m− p

( p

m

)p

− m2

m− p
+

mp

p−m

( p

m

)p−1

− mp

p−m
= 0.

From (i) – (iii) it follows that Theorem2.3 is true.

Remark 2.4. Theorem2.3for k = 1 is equivalent to Proposition2.1in the case
whenp = n− 1.

Remark 2.5. It is easy to verify, that (2.8) is equivalent to

Ek
1En−k ≥

1

n

k∑
i=1

(
k
i

)
(n− k + i)

(
k − n

n

)i−1

Ek−i
1 En−k+i.
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We define the sequence of real numbers{αm,l}, m ∈ N, l ∈ N as follows:

α1,l =
1

ll
for ∀l ∈ N,(2.10)

αm,l = 0 for m ≥ l ≥ 2 or m > 1, l = 1,(2.11) (
l
m

)
lm = llα1,l−m +

m∑
j=1

(
l

m− j

)
lm−jα1+j,l−m+j(2.12)

for 1 ≤ m ≤ l − 1.

More precisely, the numbersαm,l can be defined recurrently (excluding the
cases when:m > 1, l = 1 or m ≥ l ≥ 2) as follows:

1) We getα1,l for l ≥ 1 from (2.10).

2) Then we determineα2,l for l ≥ 3 from
(

l
1

)
l = llα1,l−1 + α2,l.

3) Then we determineα3,l for l ≥ 4 from
(

l
2

)
l2 = llα1,l−2+

(
l
1

)
lα2,l−1+α3,l.

4) Then we determineα4,l for l ≥ 5 from
(

l
3

)
l3 = llα1,l−3 +

(
l
2

)
l2α2,l−2 +(

l
1

)
lα3,l−1 + α4,l and so on.

For example, the values ofαm,l for m ≤ 5, l ≤ 6 are given in Table1.
The sequence{αm,l} has interesting properties. For example one can prove,

that in the case whenαm,l 6= 0: sgn αm,l = 1 for m even andsgn αm,l = −1 for
m odd,m ≥ 3.

We are going to prove the following property of the sequence{αm,l}:
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Proposition 2.4. For each integer numbern, n ≥ 2 we have:

(2.13) αn,n+1 = (−1)n

(
n + 1

2

)2

.

Proof. We will prove (2.12) by induction.

(i) We show, thatα2,3 = (−1)2
(

2+1
2

)2
, (see Table1).

(ii) Let (2.13) hold true forα2,3, . . . , αn−1,n.

(iii) Using (2.12) for l = n + 1 andm = n − 1, (2.10) for l = 2 and (ii) we
obtain(

n + 1
2

)
(n + 1)n−1

=
(n + 1)n+1

4
+

n−2∑
j=1

(
n + 1
j + 2

)
(−1)j+1

(
j + 2

2

)2

(n+1)n−1−j+αn,n+1.

Substitutingj = i− 1, this implies

αn,n+1 =

(
n + 1

2

)
(n + 1)n−1

− (n + 1)n+1

4
− 1

4

n−1∑
i=2

(
n + 1
i + 1

)
(−1)i(i + 1)2(n + 1)n−i.
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Now from the equalities
(

n+1
i+1

)
(i+1) =

(
n
i

)
(n+1) and

(
n
i

)
i =

(
n−1
i−1

)
n

we obtain:

αn,n+1 =

(
n + 1

2

)
(n + 1)n−1 − (n + 1)n−1

4

− n + 1

4

n−1∑
i=2

(
n
i

)
(−1)i(i + 1)(n + 1)n−i

=
(n + 1)n+1

4

[
2n

n + 1
− 1−

n−1∑
i=2

(
n
i

)
(i + 1)

(
−1

n + 1

)i
]

=
(n + 1)n+1

4

[
n− 1

n + 1
−

n−1∑
i=2

(
n
i

)(
−1

n + 1

)i

−n
n−1∑
i=2

(
n− 1
i− 1

)(
−1

n + 1

)i
]

.

Substitutingi = k + 1 we obtain

αn,n+1 =
(n + 1)n+1

4

[
n− 1

n + 1
−
(

1 +
−1

n + 1

)n

+ 1 + n

(
−1

n + 1

)
+

(
−1

n + 1

)n

− n
n−2∑
k=1

(
n− 1

k

)(
−1

n + 1

)k+1
]

=
(n + 1)n+1

4

{
n

n + 1
−
(

n

n + 1

)n

+

(
−1

n + 1

)n
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+
n

n + 1

[(
1 +

−1

n + 1

)n−1

− 1−
(

−1

n + 1

)n−1
]}

=
(n + 1)n+1

4

[
n

n + 1
−
(

n

n + 1

)n

+

(
−1

n + 1

)n

+
n

n + 1

(
n

n + 1

)n−1

− n

n + 1
− n

n + 1

(
−1

n + 1

)n−1
]

=
(n + 1)n+1

4
(−1)n

[
1

(n + 1)n
+

n

(n + 1)n

]
= (−1)n

(
n + 1

2

)2

.

From (i), (ii) and (iii) it follows that (2.13) is true for eachn ≥ 2.

Theorem 2.5. Let n andk be fixed integer numbers for which1 ≤ k ≤ n − 2.
Then for arbitrary non-negativex1, . . . , xn, the following inequality is fulfilled:

(2.14) σk
1σn−k ≤ α1,n−kσ

n
1 +

k∑
i=1

α1+i,n−k+iσ
k−i
1 σn−k+i,

where{αm,l} are defined from (2.10)-(2.12).

Proof. (2.14) is homogenous, therefore we may assume, thatx1 + · · · + xn =
σ1 = 1. Then according to Lemma2.2 it is sufficient to prove, that

(2.15) f(Pm,n) ≥ 0, for eachm, 1 ≤ m ≤ n,
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where

f(x1, . . . , xn) = α1,n−k +
k∑

i=1

α1+i,n−k+iσn−k+i − σn−k.

Obviously at the pointPm,n we haveσq =
(

m
q

)
1

mq for 1 ≤ q ≤ n, hence

(2.16) σq 6= 0 if and only if q ≤ m.

We consider the following three possible cases form:

(i) m ≤ n− k − 1. Then from (2.16) and (2.10) we obtainf(Pm,n) =
α1,n−k = 1

(n−k)n−k > 0.

(ii) m = n− k. Then from (2.16) and (2.10) we obtainf(Pn−k,n) = α1,n−k −
1

(n−k)n−k = 0.

(iii) m = n− k + p, where1 ≤ p ≤ k. From (2.16) it follows

f(Pm,n) = α1,n−k +
k∑

i=1

α1+i,n−k+i

(
n− k + p
n− k + i

)
1

(n− k + p)n−k+i

−
(

n− k + p
n− k

)
1

(n− k + p)n−k

=
1

(n− k + p)n−k+p

[
(n− k + p)n−k+pα1,n−k

+
k∑

i=1

(
n− k + p
n− k + i

)
(n− k + p)p−iα1+i,n−k+i
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−
(

n− k + p
n− k

)
(n− k + p)p

]
.

However,
(

n−k+p
n−k+i

)
6= 0 for i ≤ p, and 1

(n−k+p)n−k+p = α1,n−k+p according
to (2.10), and we get

(2.17) f(Pm,n) = α1,n−k+p

[
(n− k + p)n−k+pα1,n−k

+

p∑
i=1

(
n− k + p

p− i

)
(n− k + p)p−iα1+i,n−k+i

−
(

n− k + p
p

)
(n− k + p)p

]
.

Obviouslyα1,n−k = α1,(n−k+p)−p andα1+i,n−k+i = α1+i,(n−k+p)−p+i. Then
the right hand side of (2.17) is equal to zero according (2.12) for l = n− k + p
andm = p.

Thereforef(Pm,n) = 0 in this case.
It follows from (i), (ii) and (iii) that (2.15) is true, and hence (2.14) is also

true.

Remark 2.6. Theorem2.5 is true as well fork = n − 1, since both sides of
(2.14) are equal in this case, which follows from (2.11).

Remark 2.7. An analogue of Theorem2.5 for k = 0 is the inequality between
the arithmetic and geometric means.
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Corollary 2.6. Let An, Gn, Hn be the classical averages of the positive real
numbersx1, . . . , xn (n ≥ 2). Then the following inequality is true:

(2.18)

[
nAn

(n− 1)Gn

]n−1
1

Gn

+

[
n−

(
1 +

1

n− 1

)n−1
]

1

An

≥ n

Hn

.

Proof. (2.18) follows from:

σ1 = nAn, σn−1 =
nGn

n

Hn

, σn = Gn
n,

α1,n−1 =
1

(n− 1)n−1
, α2,n = n2 − nn

(n− 1)n−1

and from Theorem2.5for k = 1.

Corollary 2.7 (Explicit expression of Theorem2.5 for k = n− 2). For each
integer numbern (n ≥ 3) we have:

σn−2
1 σ2 ≤

1

4
σn

1 +
n−2∑
i=1

(−1)i+1

(
i + 2

2

)2

σn−2−i
1 σ2+i.

Proof. It follows from Proposition2.4and from Theorem2.5for k = n− 2.

Remark 2.8. Corollary 2.7 is the principle result in [4].

Remark 2.9. Corollary 2.7shows that Theorem2.5for k = n− 2 is equivalent
to Theorem2.3 in the case whenk = n− 1.
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3. The Sharpness of the Inequalities (2.8) and (2.14)
The following two theorems prove that the estimates in Theorem2.3and Theo-
rem2.5are, in a certain sense, the best possible.

Theorem 3.1. Let n andk, 1 ≤ k ≤ n − 1 be integers. Let the real numbers
β1, . . . , βk have the property (3.1). We say that the real numbersβ1, . . . , βk

have the property (3.1) if for any non-negative real numbersx1, . . . , xn with a
sum equal to one the following inequality is fulfilled:

(3.1) σn−k ≥
k∑

i=1

βiσn−k+i.

Then for arbitrary non-negative real numbersx1, . . . , xn with sum equal to one
the following inequality is fulfilled:

(3.2)
k∑

i=1

βiσn−k+i

≤
k∑

i=1

(−1)i+1

(
n− k − 1 + i

i

)
(n− k + i)2(n− k)i−2σn−k+i

Proof. Setf1 = f1(x1, . . . , xn) = σn−k −
∑k

i=1 βiσn−k+i and

f2 = f2(x1, . . . , xn) = σn−k+
k∑

i=1

(
n− k + i

i

)
(n−k+i)2(k−n)i−2σn−k+i.
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Then (3.2) is equivalent tof1−f2 ≥ 0. On the other hand, according to Lemma
2.2, it is sufficient to verify this inequality at the pointsPm,n. We have at these
points:

(i) For 1 ≤ m ≤ n− k − 1, k ≤ n− 2 apparentlyf1 = f2 = 0, hence
f1 − f2 = 0.

(ii) Form = n−k, k ≤ n− 1 we obtainf1 = f2 = 1
(n−k)n−k , hencef1−f2 =

0.

(iii) For 1 ≤ n− k < m ≤ n from the proof of Theorem2.3 it follows, that
f2 = 0. As f1 ≥ 0 according to (3.1), hencef1 − f2 ≥ 0.

From (i), (ii) and (iii) it follows thatf1 − f2 ≥ 0 in each pointPm,n and we
complete the proof of the theorem.

Theorem 3.2. Let n andk be integers,1 ≤ k ≤ n − 2. Let the real numbers
γ1, . . . , γk+1 have the property (3.3). We say that the real numbersγ1, . . . , γk+1

have the property (3.3) if for any non-negative real numbersx1, . . . , xn with
sum equal to one, the following inequality is fulfilled:

(3.3) σn−k ≤ γ1 +
k∑

i=1

γi+1σn−k+i.

Then for any non-negative real numbersx1, . . . , xn with sum equal to one the
following inequality is fulfilled:

(3.4) α1,n−k +
k∑

i=1

α1+i,n−k+iσn−k+i ≤ γ1 +
k∑

i=1

γ1+iσn−k+i.
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Proof. Set

f1 = f1(x1, . . . , xn) = γ1 +
k∑

i=1

γ1+iσn−k+i − σn−k

and

f2 = f2(x1, . . . , xn) = α1,n−k +
k∑

i=1

α1+i,n−k+iσn−k+i − σn−k.

Then (3.4) is equivalent tof1 − f2 ≥ 0. We are going to check this inequality
at the pointsPm,n. From (3.3) atPn−k,n it follows, that

(3.5) γ1 ≥
1

(n− k)n−k
= α1,n−k.

We consider the possible cases form:

(i) 1 ≤ m ≤ n− k − 1. Thenf1 − f2 = γ1 − α1,n−k ≥ 0 at Pm,n according
to (3.5).

(ii) n − k ≤ m ≤ n. Thenf1 ≥ 0 at Pm,n according to (3.3) and from the
proof of Theorem2.5 it follows thatf2 = 0, thereforef1 − f2 ≥ 0.

From (i) and (ii) we obtain, thatf1−f2 ≥ 0 in each pointPm,n (1 ≤ m ≤ n).
Applying Lemma2.2we complete the proof of Theorem3.2.
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Table 1:

l α1,l α2,l α3,l α4,l α5,l

1 1 0 0 0 0
2 1/4 0 0 0 0
3 1/27 9/4 0 0 0
4 1/256 176/27 -4 0 0
5 1/3125 3275/256 -775/27 25/4 0
6 1/46656 65844/3125 -6579/64 316/3 - 9
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