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ABSTRACT. New families of sharp inequalities between elementary symmetric polynomials
are proven. We estimaie,_, above and below by the elementary symmetric polynomials
On—k+1,---,0p IN the case, wheny, ..., z, are non-negative real numbers with sum equal
to one.
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1. INTRODUCTION

Letn > 2 be an integer. As usual, we denotedy o4, ..., 0, the elementary symmetric
polynomials of the variables,, . . ., z,.
In other wordsgy = o¢(z1,...,2,) =landforl <k <n

o = op(T1,...,T) = Z Tiy - .. Ty,

1<i <-<ip<n

The differentoy, 0y, ...,0,, are not comparable between them, but they are connected by
nonlinear inequalities. To state them, it is more convenient to consider their averages
Uk/(Z),k:(),l,...,n.

There are three basic types of inequalities between the symmetric functions with respect to
the range of the variables, . .., z,.

For arbitrary realr, . . ., z,, the following inequalities are known:

(1.1) E}> By 1By, 1<k<n-1, (Newton-Maclaurin)

A Epi1Eris — Ep o) (BxBryo — Efyy) = (Eri1Ervo — EpEjys)’,
k=0,...,n—3, (Rosset[4])
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2 TODORP. MITEV

as well as the inequalities of Niculescu [2]. A complete description about their historical and
contemporary stage of development can be found, for examplé, in [1] and [2].

Suppose now that alt;, j = 1,...,n, are positive. Then the following general result (see
[1, Theorem 77, p. 64]) is known:

Theorem 1.1(Hardy, Littlewood, Polya) For any positiver, . . ., z, and positivex, . . ., ay,,
Bi, - .., B, the inequality

Eo ... o SEl’gl---Eﬁn
holds if and only if

O+ 201+ F(n—m+1Day, > B+ 28m1+--+(n—m+1)5,
for eachl <m <n.

For other results in this direction see [1].

The aim of this paper is to obtain new inequalities between. ., o, in the case when
x1,...,%, are non-negative, (Theorem P.6 and Theofem]2.10 below). More precisely, we
obtain the best possible estimatesogtr, . from below and above by linear functions of
o—fflan_kﬂ, ...,0%0,. Since all these functions are homogeneous with respéet to. . , z,,)
of the same order, we can set = x; + --- + z, = 1, then our inequalities give the best
possible estimates af,_, by linear functions ot,,_1,...,0,fork =1,...,n — 1in this
case (Theorein 3.1 and Theorem| 3.2 below). Inequalities of this tygefon — 2 have been

recently obtained by Satbl[4], which can be obtained as a consequence of Theollem 2.10 below.

2. NEW INEQUALITIES (THEOREM [2.§ AND THEOREM [2.10Q)

For the sake of completeness we give a straightforward proof of the following proposi-
tion, which is a consequence of Theorem 1.1, cited in the introduction. Here we suppose that
x1,...,x, are non-negative.

Proposition 2.1. Letzy, ..., z, be non-negative real numbers> 2. Thenforl <p<n-—1
we have
nip+1
(2.1) o10p > M%H.
n—p

Proof. Denoteo;, = >, o..o;<p TiyTip -~ Ty, 1 <1 < n. Note, that) is equivalent to

n(p +1
(2.2) O1nOpn > <p—)ap+1,n.
n—p
First we shall checK (2]2) fg5 = 1 and forp = n — 1.

(i) Forp = 1the inequality[(2.R) reads

n 2
<;$> an—n1 D i,

1<i<j<n

which is equivalent to

hencetoy ., (z; — x;)* > 0.
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(i) For p = n — 1 (@2.9) is equivalent t@; ,,0,,_1, > ncy,. If 0,,, = 0, then [2.2) is
obvious. Leto,, # 0, then ) is equivalent to* < (3°7 | x;) (2? > > which
follow from AM-GM inequality.

We are going to prove (2.2) by recurrence with respeet to 2.

(iif) We already proved thaf (2.2) is true for= 2

(iv) Let (2.2) be true fom > 2 and foreactp, 1 <p <n-—1. Fixp,2<p<n-1. We
will prove, that

(n+1)(p+1)
n+1—p
Since [2.B) is homogeneous, excluding the case- --- = z,, = z,,4; = 0, we may
assume, that; , 1 = 1.
Letz; <ap <--- < uz,41. The foIIowing cases are possible:

1) Letz,,1 = 1. Thenxl =z, = 0 and [2.8) becomes an equality.
2) Letz, = Thenxl =2, = Tni = HLH and we obtain

(2.3) O1n410pnt1 = Optintl-

<n+n@+n
n+1—p

(n+1 1 p+1l n+1 1 .
B p (n+1)p n+l—-p\p+tl ) (n+1)p
hence|(Z.B) becomes again an equality.
3) Letx, 1 € ( Pl ) Substitutery+- - -+x, = 1—2,41 = 01, = 5, Withs € (0; ﬁ)

Theno, 11 = opn + (1 — 5)0p_1,, ANAOp11 i1 = Opy1n + (1 — 5)0,,,. Hence|(2.8)
is equivalent to

Opn+l — Op+1,n+1

(n+1)(p+1)

n+l—p [0p+1,0 + (1 = 8)opal,

Opn + (1 —8)op_1, >
which is equivalent to
n+l—p
L (1—-5)| 0oyt
ey )
Erom (iv) we obtaino, .1, < r=hs
(if true):

n—op n+1—p
n@+1f%“—[ou4xp+n‘*1_ﬁ}%“+

which is equivalent to

(1-s)(n+1—p)
Op-1,
(n+1)(p+1)
50pq- Then |2.] .1) follows from the next inequality

(2.4)

n Z Jp+1,n-

(I—=s)(n+1—0p)
(n+1)(p+1)

(2.5)

Up—l,m

pln(n+2) — (n+1)2s]
O-PJI'
nn+1—p)(1—s)
It follows from (iv) thato,_ ,, > ﬁ%n.

Hence[(2.6), and consequentily (2.5) gnd](2.4), follow from
np pln(n+2) — (n+1)%] pl(n+1)s —n]?
—Upm — Crp,n =
(n+1—p)s n(n+1-p)(1—ys) ns(n+1—p)(1—s
Since [(2.2) is true fop = 1 andp = n according to (i) and (ii), therj (2.2) is fulfilled for,
n > 2. Hence the proposition is proved. O

(26) Up—l,n 2

)Gpvn > 0.

Remark 2.2. It follows from the proof, that equality is achieved in the following two cases:
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Doy=w=--=x,=0a>0.
2)n—p+1ofux,..., z, are equal t® and the rest of them are arbitrary non-negative
real numbers.

Remark 2.3. (2.1) can be proven using Lemina]2.4 below, but in this way it will be difficult to
see when[(2]1) turns into an equality.

From now onn will be a fixed positive integer. It will be assumed that at least one of the

non-negative numbers, . . ., z,, differs from zero.

Lemma2.4.Letus assumethat, ..., x, are non-negative real numbers & 2) andz;+- - -+

x, = o1 = 1. Thenthe functiotf (x4, . .., z,) = a;+aso9+- - -+a,0, (a1, . . ., a, are real nUM-
bers), achieves its maximum and minimum at least in some of the ﬁ@j,n(%, ey %, 0,..., O),

1 < k < n (the firstk coordinates of’; ,, are equal to%, and the rest of them are equal to zero).

Proof. The setd,, = {(z1,...,z,)/z; > 0, 1 +---+x, = 1} is compact and is continuous
in it, hencef achieves its minimum and maximum values. We rewfites follows:

[, wn) = mimag(ws, .. ) Fo1ha (23, .. ) F 2R (03, . 2) (3, .. 2) a0
As f is symmetric, them; = h, and therefore:
2.7)  f(z1,.. ., m0) = 21229(x3, - ) + (@1 + 22) P (23, 20) + (@3, -0, 20) + an

Let P(2?,...,2%) be a point in whichf achieves its minimum value. We consider the function
F(x) = f(z,s —x,23,...,2%), s = 20 + 29, for z € [0; s] (we assume, that > 0). Obviously
the minimum values of” and f are equal and” achieves its minimum value far = 2. From
(2.7) we obtain tha#(z) = az(s — z) + s8 +v = az(s — z) + §, wherea, § depend on
29,29, 29,...,2%, ai,...,a,.

1542543 1 y Un

Y n’

The following three cases are possible:

(i) a = 0. ThenF(z) = const and we may assume thafn F' = F'(0) ormin F = F (£).
(i) « > 0. Thenmin F' = F(0).
(i) a < 0. Thenmin F = F (%)
Hence, as:{ andz§ were arbitrarily chosen then, fofi # j we may assume thaf = z{ or,
at least one of them is equal to zero.
Let us choose a poin?(z?, ..., 2%), for which the number of coordinateswhich equal to
zero is the highest possible anfi > 25 > --- > 22, If p = n — 1, then Lemma 2]4 is proven.
Let0 < p < n-—2,ie P, .z ,,0,...,0),20---2)_ # 0. Then for the pairgz}, z9),

n—p? 9 1%
1 <1< j <n—ponly case (iii) is valid, from which Lemnja 2.4 follows. Lemina]2.4 is true
also for the maximum value df, sincemax f = min(—f). O

Remark 2.5. A result similar to Lemma 2]4 is proved by Satolin [4].

Theorem 2.6.Letn, k£ be integer numberg, < £ < n — 1. Then for arbitrary non-negative
x1,...,Z,, the following inequality is true:

]

k .
2.8)  ofo. =) () ( n—k—l ) (n—k+i)2(n— k) 20", 4
=1

Proof. Since[(2.8) is homogenous we may assumedthat: - - +z,, = 0; = 1. Then, according
to Lemmg 2.4 it suffices to prove, thAtP,,,) > 0 for 1 < m < n, where

k .
Foneso) =awet 3 (TETIE ) b - )

]
=1

J. Inequal. Pure and Appl. Math4(2) Art. ??, 2003 http://jipam.vu.edu.au/
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Atthe P, , point we haver, ;= (. . .) —, hence

n—k+i/ mn—k+i?
(2.9) On_kei 70 ifandonlyif i <m—n+k.
We consider the following three possible casesifior
) m<n—k—1,k <n-—2. Then obviously,,_, = 0, 11 = --- = 0, = 0, hence
f(Pnn) =0.
(i) m=n—Fk k <n—1. From ) we obtaim, ; = m ando,_j4q = -+ =
o, =0, hencef(P,,.,.) = m > (.

(i) m=n—k+p 1<p<kk<n-—1 From[2.9) andn = n — k + p we obtain

k

f(Pm,n)z(n;pr> (n—kip)”—’“jLZ(n_k;lﬂ)

=1

X (n—k+1i)*(k—n) (n_k+i)<n_k+p)nk+i

()am ()

=1

. i— m 1
<tmp - ()

Now from equality

(") (Y= () ()

we obtain

This implies

mm—p—H

——f(Pn)
(")

m — p—m < —
:m(l—p)+g(p)(m—p)(]%)z_:g(f)z ]%)1_2
—m(1—p) + K1+p;m)p_p(pn—lm)_1}

J. Inequal. Pure and Appl. Math4(2) Art. ??, 2003 http://jipam.vu.edu.au/
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Substituting: = j + 1 we obtain:
mm—p+l

)

Pm,n)

=m(l—p)+

e
m—p \m m-—p p—m\m

From (i) — (iii) it follows that Theorem 2]6 is true.

Remark 2.7. Theoreni 2.6 fok: = 1 is equivalent to Propositign 2.1 in the case whea n—1.
Remark 2.8. It is easy to verify, tha{ (2]8) is equivalent to

1 F k E—n\""
k L _ . - k—i A
EfE, > - E_l < ; ) (n—Fk+1) ( " ) EfT B k.

We define the sequence of real numbgts,;}, m € N, [ € N as follows:

1
(2.10) =7 for Vi € N,

(2.11) Qg =0 for m>1>2 or m>1,1=1,

(212) < 7711 ) m = llO{Ll_m + Z ( m l_] ) lm_jOél_;'_j’l_m_;'_j for 1 S m S [—1.
j=1

More precisely, the numbets,,; can be defined recurrently (excluding the cases when: 1,
l=1o0rm > 1> 2)as follows:
1) We getay; for [ > 1 from (2.10).
2) Then we determina,, for [ > 3 from (i
3) Then we determinas,; for I > 4 from (})
4) Then we determine,,; for [ > 5 from (é)
and so on.
For example, the values of,,; for m < 5,1 < 6 are given in Tabl@l.
The sequencéo,,,,; } has interesting properties. For example one can prove, that in the case
whena,,,; # 0: sgn o, = 1 for m even andgn v, ; = —1 for m odd,m > 3.
We are going to prove the following property of the sequefice; }:

= lla1’1_1 + a9 .
2= llal,l72 + (i) lag 1 + agy.
P=la, s+ (;) Pagy o+ (i) lag 14y

[
l

Proposition 2.9. For each integer numbet, n > 2 we have:

(213) Upnyl = (_1)n (n;— 1) :

Proof. We will prove (2.12) by induction.

J. Inequal. Pure and Appl. Math4(2) Art. ??, 2003 http://jipam.vu.edu.au/
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(i) We show, that, 3 = (~1)2 (2£1)?, (see Tablf 3]1).
(i) Let (2.13) hold true forvy s, . . an Ln-
(i) Using (2.12) forl =n + 1 andm =n — 1, (2.10) forl = 2 and (ii) we obtain

(n;l)(n—l—l)"_1

7’L+1n+1 n—2 n+1 . 49 2 o
= %#LZ 42 (—1)*1 jT (n+1)"""7 + apn.
j=1

Substituting; = 7 — 1, this implies

n+1 e
Qpntl1 = < 2 ) (TL + ]‘) !

- % —}1 3 ( N ) (=)' + 1) (n+ 1)

Now from the equalitieg”|) (i + 1) = () (n+ 1) and(7}) i = (7~} ) n we obtain:

n+1 . n+ 1)t

1n:<?) V(i + 1)(n + 1)

)

=<”*4””“ S (e ()

1=

SRR () ) S0 ()

=2

4

Substituting: = k +1we obtaln

(n+1)" [n—1 n -1 n+1+ -1 N -1 \"
(07°%) = - n
ntl 4 n+1 n+1 n+1 n+1
n 1 1\ Ft!
=S (") ()
~ (n4 1)t n n n+ -1\"
N 4 n+1 n+1 n+1
_1 n—1 _1 n—1
1 —1-
—I—l (+n+1) (n+1> ]}
n—l—l"Jrl n " -1 \"
= +
n+1 n+1 n+1
n n n 1 \"!
n+1 n—l—l n+1 n+1

:(n+1"H' [n+1 n:iw}:(_mn<n;1>2

J. Inequal. Pure and Appl. Math4(2) Art. ??, 2003 http://jipam.vu.edu.au/
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From (i), (ii) and (iii) it follows that [2.1B) is true for each > 2.
O
Theorem 2.10.Letn and k be fixed integer numbers for whidh< & < n — 2. Then for
arbitrary non-negativer,, . . . , z,,, the following inequality is fulfilled:

k

k n k—1i
(2.14) O10n—k < 01 k0] + E M4in—k+i01 On—k4i,
i=1

where{,,,} are defined fron (2.10)-(2.1.2).

Proof. (2.14) is homogenous, therefore we may assumeathat--- + z, = oy = 1. Then
according to Lemmfa 2.4 it is sufficient to prove, that

(2.15) f(Pmn) >0, foreachm, 1 <m <n,

where
k
f1, .., 2n) = 01—k + Z Q1 in—k+iOn—kti — On—k-
=1
Obviously at the poinf,, ,, we haver, = ("Z) - for 1 < ¢ < n, hence

(2.16) o, # 0 ifand only if ¢ < m.

We consider the following three possible casesifior
(i) m<n-—k—1.Then from|(2.1F>) anm# (2.}0) we obtaf0P,, ) = a1k = W >
0.
(||) m = n— k. Then from|(2. 1'5) ancF (2. }O) we obtafiiP, ,) = a1 nr— W = 0.
(iily m =n —k+ p, wherel < p < k. From [2.18) it follows

k
B ‘ ([ n—k+p 1
f(Pm,n) = Q1 n—k + ZAleél+z,n—k:—&-z < n—k +i ) (TL K +p)n—k+i

[ n—k+p 1
n—=k (n—k+pn*
1

- (n — k + p)n—ktr [(n — k4 p) T

k
+Z(n—k+i>(n—k+p)p Oz1+z‘,n—k:+z‘—( n— k )(n—k}—l—p)p},

However, ("~ %*7) + 0 for i < p, and;
we get

= a1 n—k+p according to|(2.10), and

1
(n—k+p)n—ktp

217) F(Pon) = i {m k) P,
~ht .
+ Z ( " b ) (n—k+p)P " 01—t

- ("_k+p>(n—k+p)f“].

D
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Obviously oy ,,— = 1, (n—ktp)—p ANA Q11 n—kri = Q1 (n—k+p)—p+i- THEN the right hand
side of [2.1F) is equal to zero according (2.12)ffer n — k + p andm = p.

Thereforef (P, ,,) = 0 in this case.

It follows from (i), (i) and (iii) that (2.15%) is true, and hende (2/14) is also true. O

Remark 2.11. Theorem 2.10 is true as well fér= n — 1, since both sides of (2.14) are equal
in this case, which follows fron (2.11).

Remark 2.12. An analogue of Theorem 2.110 fér= 0 is the inequality between the arithmetic
and geometric means.

Corollary 2.13. Let A,,, G,,, H, be the classical averages of the positive real numbers. . , z,,
(n > 2). Then the following inequality is true:

TlA n—1 1 1 n—1
2.1 S LA — — 11
(2.18) {(n—l)GJ G, " ( +n—1>
nGy 1 9 n"

Proof. (2.18) follows from:
T n — Gn; n—1=— 7 N _1> n — T N1
Tz e P s T e P T

and from Theorem 2.10 fdr = 1. O

Corollary 2.14 (Explicit expression of Theorem 2[10 fbr= n — 2). For each integer number
n (n > 3) we have:

n—2 . 2
n— 1 n 7 Uy 2 n—2—1i
ol 20y < o1t E (—1)*1 <T) o oy,

n

+ Fn.

1
—_— >
A, T

o1 = nAnv Op-1 =

Proof. It follows from Propositiof 29 and from Theor¢m 2.10 foe= n — 2. O
Remark 2.15. Corollary[2.14 is the principle result inl[4].
Remark 2.16. Corollary[2.14 shows that Theor¢m 2.10 for= n — 2 is equivalent to Theorem
[2.6 in the case wheh = n — 1.

3. THE SHARPNESS OF THE INEQUALITIES (2.8)AND (2.14)

The following two theorems prove that the estimates in Thegrem 2.6 and Thgorgm 2.10 are,
in a certain sense, the best possible.

Theorem 3.1.Letn andk, 1 < k < n—1 be integers. Let the real numbets ..., 5, have the
property [3.1). We say that the real numbgis. . ., 5, have the property (3]1) if for any non-

negative real numbers,, ..., z, with a sum equal to one the following inequality is fulfilled:
k

(3.1) Opn—k = Zﬁilfn—kﬂ.
=1

Then for arbitrary non-negative real numbers, . . ., x,, with sum equal to one the following
inequality is fulfilled:

k k :
(3.2) Zﬁianfk+i < Z(—l)”l ( n—k R ) (n—k+i)?(n—k) 20,
i=1 i=1

]

J. Inequal. Pure and Appl. Math4(2) Art. ??, 2003 http://jipam.vu.edu.au/
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Proof. Setf, = fi(z1,...,2n) = Onp — Zf:l Bion—r+: and

k
—k+1
f2:f2($17"'axn):0—n—k+z<n i !
=1
Then [3.2) is equivalent tgy, — f> > 0. On the other hand, according to Lemma) 2.4, it is
sufficient to verify this inequality at the point3, ,,. We have at these points:

() Fort <m<n-k-—1,k<n-—2apparentlyf; = f, =0, hencef; — fo = 0.
(i) Form =n —k, k <n —1we obtainf, = f, = m hencef, — f» = 0.

(iif) For 1 < n—Fk < m < n from the proof of Theorern 2.6 it follows, thgt = 0. As
f1 > 0 according to[(3]1), hencA — f, > 0.

From (i), (ii) and (iii) it follows thatf; — fo > 0 in each pointP,, ,, and we complete the
proof of the theorem. O

) (n— & +0)2(k — n) 200k

Theorem 3.2. Letn and k be integers, < k < n — 2. Let the real numbersy, ... V1
have the property (3|3). We say that the real numbers. ., ;.1 have the property (3]3) if
for any non-negative real numbers, . . . , z,, with sum equal to one, the following inequality is
fulfilled:

k
(3.3) On—k <7 + Z’Yi+10n—k+i-

=1

Then for any non-negative real numbers ..., x, with sum equal to one the following in-
equality is fulfilled:

k k
(3.4) Q1 p—k + Z O ik iOn—k4i < Y1+ Z Y1+iOn—k+i-
i=1 i=1
Proof. Set
k
f=filz,...,z0) =+ Z%+z‘%—k+z‘ — On—k
i=1
and

k
f2 = fz(Il, . 7xn) =Q1p-k t Z A1 4in—k+iOn—k+i — On—k-
=1
Then [3.4) is equivalent tf — f, > 0. We are going to check this inequality at the poiRfs,,.
From (3.3) atP, ., it follows, that

1

(3.5) gt m = Q1 n—k-

Y

We consider the possible cases for

() 1<m<n—k-1Thenf, — fo = v — a1, > 0 at P, , according to[(3]5).
(i) n—k <m <n.Thenf, > 0ath,,, according to[(3]3) and from the proof of Theorem
it follows thatf, = 0, thereforef; — f, > 0.
From (i) and (ii) we obtain, thaf; — f» > 0 in each point?P,,,, (1 < m < n). Applying
Lemmd 2.4 we complete the proof of Theorem 3.2. O
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Table 3.1:
l 5 (00N a3 Qg1 | 05
1 1 0 0 0 0
2 1/4 0 0 0 0
3| 1/27 9/4 0 0 0
4| 1/256 176/27 -4 0 0
5| 1/3125| 3275/256 | -775/27 | 25/4 | O
6 | 1/46656| 65844/3125 -6579/64| 316/3| -9
REFERENCES

11

[1] G. HARDY, J.E. LITTLEWOOD AND G.POLYA Inequalities Cambridge Mathematical Library

2nd ed., 1952.

[2] C.P. NICULESCU, A new look at Newton’s inequalitie, Inequal. Pure and Appl. Math1(2)
(2000), Article 17. [ONLINE/http://jipam.vu.edu.au/vln2/014 99.html ]

[3] S. ROSSET, Normalized symmetric functions, Newton inequalities and a new set of stronger in-
equalitiesAmer. Math. So¢96 (1989), 815-820.

[4] N. SATO, Symmetric polynomial inequalitie§rux Mathematicorum with Mathematical Mayhem,

27(2001), 529-533.

J. Inequal. Pure and Appl. Math4(2) Art. ??, 2003

http://jipam.vu.edu.au/


http://jipam.vu.edu.au/v1n2/014_99.html
http://jipam.vu.edu.au/

	1. Introduction
	2. New Inequalities (Theorem 2.6 and Theorem 2.10)
	3. The Sharpness of the Inequalities (2.8) and (2.14)
	References

