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ABSTRACT. For astrictly positive functiorf (x), letS(n) = Y32, f(k) andI(z) = [° f(t)dt,
assumed convergent. If’(x)/f(z) is increasing, thenS(n)/I(n) is decreasing and

S(n + 1)/I(n) is increasing. Iff”(z)/f(z) is increasing, ther$(n)/I(n — 1) is decreas-

ing. Under suitable conditions, analogous results are obtained for the “continuous tail” defined
by S(z) = 377, f(z + n): these results apply, in particular, to the Hurwitz zeta function.
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1. INTRODUCTION

Let f be a positive function withf,™ f(¢)d¢ convergent, and let

S =Y 5w, 1@ = [ s

The problem addressed in this article is to determine conditions ensuring that ratios of the type
S(n)/I(n) are either increasing or decreasing. For decreagingne hasl(n) < S(n) <

I(n — 1), and one might expec(n)/I(n) to decrease anfl(n)/I(n — 1) to increase, but, as

we show, the truth is not quite so simple. In genefe(ln — %) IS a much better approximation

to S(n) than eitherl (n) or I(n — 1), so we also consider the ratit{n)/I (n — 1).
Questions of this type arise repeatedly in the context of generalizations of the discrete Hardy
and Hilbert inequalities, often in the form of estimations of the norms and so-called “lower

bounds" of matrix operators on weightégdspaces or Lorentz sequence spaces. These topics
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2 G.J.O. AMESON

have been studied in numerous papers, €.g. ([3],[14],15], 7], [8]). Often, the problem equates
to finding the supremum and infimum of a ratio lik¢n)/I(n) for a suitable functiory. In
many “natural” cases, the ratio is in fact monotonic, so the required bounds are simply the first
term and the limit, one way round or the other.

Sporadic results on monotonicity have appeared for particular cases, espg@iphy 1/¢?,
in some of the papers mentioned, though not for ratios involViig — ). However, the
author is not aware of any previous work formulating general criteria. As we show, such criteria
can, in fact, be given. Though the methods are essentially elementary, the criteria are far from
transparent at the outset, indeed somewhat unexpected.

We show that the kernel of the problem is already contained in the corresponding question
for ratios of integrals (on intervals of fixed length) to single values of the function. Indeed, write

T z+h z+h
wa)= [ g mw= [ swa s = [ s
z—h T x—h
For both types of problem, the outcome is determined by monotonicitff /f or f”/f, as
follows:
(1) If f'(x)/f(x)isincreasing, thed,(z)/f(x) is decreasing and,(z)/f(x) is increasing.
Further,S(n)/1(n) is decreasing anfl(n)/I(n — 1) is increasing.
(2) If f"(z)/f(z) is increasing, theds(z)/ f(x) is increasing, and'(n)/I (n — 1) is de-
creasing. Opposite results apply to a second type of ratio relating to the trapezium rule.
If the hypotheses are reversed, so are the conclusions. When apptiedie statements in (2)
are stronger than those in (1).
By rather different methods, but still as a consequence of the earlier result$0m f (),
we then obtain analogous results for the “continuous tail" defined by

S(x)=>_ f(z+n).

Whenf(t) = 1/t?, this defines the Hurwitz zeta functidiip, =), which has important applica-
tions in analytic number theory![2].

Other studies of tails of series include [S], [10] and further papers cited there. Typically,
these studies describe relationships betwggn— 1), S(n) andS(n + 1), and are specific to
power series, whereas the natural context for our results is the situation $here- 1(n) as
n — oo, wWhich occurs for series likg_ 1/n?.

2. RATIOS BETWEEN INTEGRALS AND FUNCTIONAL VALUES

Let f be a strictly positive, differentiable function on a real interkaland leth > 0, £ > 0.
On the suitably reduced interval, define
z+k
J(x) = f(t)dt
z—h
We shall consider particularly the cases where onk, &fis 0 (so thatr is an end point of the
interval) or whereh = k (so thatr is the mid-point). Our aim is to investigate monotonicity of
G(z), where

J(x)
G(x) = —=.
= Fa)
We shall work with the expression for the derivat/g =) given in the next lemma (we include
the proof, though it is elementary, since this lemma underlies all our further results).
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TAIL OF A SERIES 3

Lemma 2.1. With the above notation, we have

) B L z+k
G'(x) = TP /z_h W (x,t)dt,

where
Wz, t) = f(2)f'(t) — f'(2)f(2).

Proof. We have

@) = J+R) - fa - = [  rwa,

o—
z+k

h
1 . x+k
ol RAC L / r

which is equivalent to the statement. O

and hence
G'(z) =

f'(z)
f(x)?

So our problem, in the various situations considered, will be to establish that
z+k

W (z,t)dt
xz—h

is either positive or negative. The functidh is, of course, a certain kind of Wronskian. Note
that it satisfiesV (z,z) = 0 andW (y, z) = —W (z, y). Further, we have:

Lemma 2.2. Let f be strictly positive and differentiable on an interva| and letWW (z,y) =
f(x)f'(y) — f'(z) f(y). Then the following statements are equivalent:

(1) f'(x)/f(x)isincreasing on¥,
(ii) W(x,y) > 0whenz,y € F andx < y.
Proof. Write f'(z)/f(x) = ¢(x). Then

W(z,y) = f(x)f(y)(a(y) — q(x)).
The stated equivalence follows at once. O

Hence we have, very easily, the following solution of the end-point problems.

Proposition 2.3. Let f be strictly positive and differentiable on an internval Fix ~ > 0, and
define (on suitably reduced intervals)

T z+h
L) = [ fodt,  Ja(x) = / F(t)dt.

z—h
If f'(x)/f(x) isincreasing, then/,(z)/f(z) is decreasing and/y(x)/f(z) is increasing. The
opposite holds iff’'(z)/ f(z) is decreasing.
Proof. Again write f'(z)/f(z) = q(z). If g(x) is increasing, then, by Lemma 2] (z, ¢) is
positive fort in [z, z + h] and negative fot in [z — h, z]. The statements follow, by Lemma
2.1. O

Corollary 2.4. Fix h > 0. Let
T 1 z+h
Gi(x) = —/ trdt, Go(x) = —/ tPdt.
z—h xP T

If p > 0, thenG,(x) is increasing onh, co), andG»(z) is decreasing o0, oo). The opposite
conclusions hold when < 0.

Proof. Theng(z) = p/z, which is decreasing oD, co) whenp > 0, and increasing when
p < 0. ]
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Remark 2.5. Neither the statement of Corolldry 2.4, nor its proof, is improved by writing out
the integrals explicitly.
Remark 2.6. Corollary|2.4 might lead one to suppose that monotonicit(ef) itself is signifi-
cant, but this is not true. If(z) = 2, then Propositioh 2|3 shows that(z)/ f () is increasing
both forz < 0 and forz > h.
Remark 2.7. Clearly, the case wheré,(z)/f(z) and Jy(z)/f(z) are constantis given by
f(z) =e™.
Remark 2.8. Three equivalents to the statement tfiét) / f (x) is increasing (given that(z) >
0) are:
(i) f'(2)* < fz)f" (@),
(11) log f(x) is convex,
(2ii) f(xz+9)/f(z)is increasing for each > 0.
Condition (iii) is implicitly used in[7, Corollary 3.3] to give an alternative proof of Corollary
2.4.
We now consider the symmetric ratios occurring whea k. Let
z+h

J(z) = f(t)dt.
r—h
There are actually two symmetric ratios that arise naturally, both of which have applications
to tails of series. Thenid-pointestimate for the integral (x) (describing the area below the
tangent at the mid-point) & f(x), while thetrapeziumestimate ish f;,(x), where

fu(@) = f(z—h)+ flz+h).
If fisconvexthen itis geometrically obvious (and easily proved) that
2hf(x) < J(x) < hfu(z),

with equality occuring whery is linear. So we consider monotonicity of the mid-point ratio
J(z)/f(z) and the two-end-point ratid(x)/f,(z). The outcome is less transparent than in
the end-point problem. We shall see that it is determined, in the opposite direction for the two
cases, by monotonicity of”(x)/f(x). Both the statements and the proofs can be compared
with Sturm’s comparison theorem on solutions of differential equations of thegoemr(x)y

[11, section 25]. Where Sturm’s theorem requires positivity or negativity(:of, we require
monotonicity, and the proofs share the feature of considering the derivative of a Wronskian.
The key lemma is the following, relating monotonicity 8f(x)/ f (x) to properties ofV (x, y).

Lemma 2.9. Let f be strictly positive and twice differentiable on an interyalb). Then the
following statements are equivalent:

(1) f"(x)/f(x)is increasing on(a,b);
(71) for each fixeds in (0,b — a), the functionlV (x, x 4+ u) is increasing ona, b — u).

Proof. Write f”(z) = r(x)f(x) and
Alx) =W(z,z+u) = f(x)f (z+u) — f(z)f(z+u).

Then
Al(x) = f@)f"(x +u) = f'(2)f(x +u)
= (r(e +u) —r(@)) f(2) f(z +u),
from which the stated equivalence is clear. O
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Lemma 2.10. Letx be fixed and lety be a continuous function such that
w(x 4+ u) +w(x —u) >0

z+h
/ w(t)dt > 0.

—h

for0 < u < h. Then

Proof. Clear, on substituting = = + u on [z, x + h] andt = x — v on[z — h, z]. O

We can now state our result on the mid-point ratio.

Proposition 2.11. Let f be strictly positive and twice differentiable on an intergalFix 2 > 0,

and let
x+

h
J(z) = f(t)dt.
z—h
If f”(x)/f(x)isincreasing (or decreasing) of, then.J(z)/ f(x) is increasing (or decreasing)
on the suitably reduced sub-interval.

Proof. Fix u with 0 < u < h. Assume thaf”(z)/ f(x) is increasing. By Lemma 2.9, if and
x4+ uareink, then

W(z,z+u) > W —u,x)=-W(r,z—u).
The statement follows, by Lemmias .1 @nd P.10. O
Corollary 2.12. Fix b > 0. Let
1 x+h
G(x) = —/ t? dt.

xP —h
If p > 1o0rp <0, thenG(z) is decreasing offh, co). If 0 < p < 1, itis increasing there.
Proof. Let f(z) = 2P. Then

f'(x)  plp—1)

fl@) a2
which is decreasing (for positive) if p(p — 1) > 0. (Alternatively, it is not hard to prove this
corollary directly from Lemmas 2.1 apd 2]10.) O

Note that Corollary 2.72 strengthens one or other statement in Corollary 2.4 in each case. For
example, ifp > 1, then(z/(z—h))" is decreasing, so CoroII12 implies thigt) /(z— h)?
is decreasing (as stated[by]2.4).
Corollary 2.13. If f possesses a third derivative @h then the following scheme applies:

f'/ fl/ f/// J/f'
+ - + incr
- + + incr
+ + - decr
- - - decr

Proof. By differentiation, one sees thgt (x)/f(x) is increasing iff (x) f"(x) > f'(x)f"(x).
In each case, the hypotheses ensure that these two expressions have opposite signsl]

However, the signs of the first three derivatives do not determine monotonidfty/ ¢fin the
other cases. Two specific examples of type- + arex? for z > 0 andz—2 for x < 0. In both
cases,”(x)/f(z) = 6z~2, which is increasing for < 0 and decreasing far > 0.

Clearly, J(x)/ f(z) is constant wherf”(z)/ f () is constant.

For the two-end-point problem, we need the following modification of Lefinma 2.1.
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Lemma 2.14.Let G(x) = J(z)/ fn(x), whereJ(z) and f,(z) are as above. Then

, B 1 x+h B N
G'(z) = IACE /xh (W(z = h,t) + W(z + h,t)) dt,

whereW (z,t) is defined as before.
Proof. Elementary. O

Proposition 2.15. Let f be strictly positive and twice differentiable on an intergalFix 2 > 0.
Let fi(x) = f(z — h) + f(z + h) and
z+h

J(z) = F(t)dt.

z—h

If f”(x)/f(z) is increasing on¥, thenJ(x)/ fr(x) is decreasing on the suitably reduced sub-
interval (and similarly with “increasing” and “decreasing” interchanged).

Proof. By Lemmag 2.10 and 2.1L14, the statement will follow if we can show that
W(x—hx—u)+W(@+hao—u)+W@—-hx+u) +WE+hz+u) <0

for 0 < u < h. With u fixed, let A(z) = W(z + u,z + h). By Lemmd 2.pA(x) is increasing,
hence

0>A(x—u—h)— A(z)
=W(x—h,x—u)—W(@+uz+h)
=W(x —h,x —u)+W(x+ h,z+u).
Similarly, B(z) = W (z — h,x + u) is increasing, hence
0> B(x)— B(x+h—u)
=W(@—-hx+u)—W(x—uz+h)
=W(x—hxz+u)+W(x+hz—u).
These two statements together give the required inequality. O

Corollary 2.16. The expression
(x + )Pt — (x — h)PH!
(x 4+ h)P+ (x —h)P
is increasing ifp > 1 or —1 < p < 0, decreasing in other cases.

3. TAILS OF SERIES: DISCRETE VERSION

Let f be a function satisfying the following conditions:

(A1) f(x) > Oforall x > 0;
(A2) f(x)is decreasing on some intervial,, co);
(A3) [ f(t)dtis convergent.

We will also assume, as appropriate, either
(A4) f is differentiable o0, co)

or
(A4") f is twice differentiable o0, co).
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Clearly, under these assumptiofs,” , f(k) is convergent. Throughout the following, we

write .
=S ), @) = / £(t) dt

By simple integral comparisow,(n+1) < I(n) < S(n)forn > x,. Further, iff(n)/I(n) —
asn — oo, thenS(n)/I(n) tends to 1. From these considerations, one might expiecdt// (n)
to decrease with, andS(n + 1)/1(n) to increase.

Functions of the type now being considered will often be convex, at least for sufficiently large
z. In this case, the mid-point and trapezium estimations mentioned in Sgftion 2 come into play.
Mid-point comparison, on successive intervats— 1, r + 1], shows thatS(n) < I (n —1),
while trapezium comparison on intervaisr + 1] givesS*(n) > I(n), where

S*(n) =1f(n) + S(n+1).
In general, both these estimations give a much closer approximation to the tail of the series than
simple integral comparison. From the stated inequalities, we might exjject / (n — %) to
increase, and*(n)/I(n) to decrease.

We show that statements of this sort do indeed hold, and can be derived from our earlier
theorems. However, the correct hypotheses are those of the earlier theorems, not simply that
f(zx) is decreasing or convex. Indeed, cases of the opposite, “unexpected" type can occur.

The link is provided by the following lemma. Given a convergent SeYi&s | a,,, we write
Ay = > pe,, ai (With similar notation forb,,, etc.).

Lemma 3.1. Suppose that,, > 0, b, > 0 for all n and that)_ >, a, and >~ b, are
convergent. If,, /b, increases (or decreases) far> n,, then so does\,,)/ B(,).

Proof. Write a,, = c,b, and A,y = K, B(,. Assume tha{c,) is increasing. Them, >
cn By, SOK,, > c,. Writing

A(n) = ap + A(n) = cpby + Kn+1B(n+1);
one deduces easily thdt,,) < K, 5,), so thatk,, < K, ;. O

Theorem 3.2. Suppose thaf satisfies (Al), (A2), (A3), (A4) and, for somg that f'(z)/ f(x)
is increasing forr > ny. ThenS(n)/I(n) is decreasing and(n + 1)/I(n) is increasing for
n > ng. The opposite applies jf' (x)/ f(x) is decreasing.

Proof. Let
/ I
so thatB(,y = I(n). Assume thatf’(x)/f(x) is increasing. By Proposm.B /f(n
mcreasmg and,/f(n + 1) is decreasmg So by Lemnya B.A(n)/S(n) is increasing and
I(n)/S(n + 1) decreasing. O

Corollary 3.3. ([5, Remark 4.10knd [7, Proposition 6] Let f(x) = 1/z*!, wherep > 0.
Then (with the same notation)S(n) decreases with, andn”S(n + 1) increases.

Proof. Thenf'(x)/f(z) = —(p + 1)/x, which is increasing, anfi(n) = 1/pxP. O

HereS(n) is the tail of the series faf(p+1), and we deduce (for example) thabp,,~., n?S(n)
= S(1) = ¢(p +1). In [7, Theorem 7], this is exactly the computation needed to evaluate the
norm of the averaging (alias Cesaro) operator on the spdee, with w, = 1/n”. In [5,
sections 4, 10], it is an important step in establishing the “factorized" Hardy and Copson in-
equalities.
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In the same way, one obtains the following result for the se}ies , (logn)/n?™ =
—('(p + 1); we omit the details.

Corollary 3.4. Let f(z) = (logx)/x?™', wherep > 0. Letr = max[1,2/(p + 1)]. For
n > e",nPS(n)/(1+ plogn) decreases with, andn?S(n + 1)/(1 + plogn) increases.
We now formulate the theorems deriving from our earlier results on symmetric ratios.

Theorem 3.5. Suppose thaf satisfies (A1), (A2), (A3) and (A4 If f”(z)/f(x) is decreasing
(or increasing) forz > ny — 3, thenS(n)/I (n — 1) increases (or decreases) far> n,.

Proof. Let
n+1/2
by — / f(t) dt.
n—1/2
Then B,y = I (n—3). If f"(x)/f(x) is decreasing, then, by Proposition 2.1,/ f(n) is
decreasing. By Lemnja 3.1, it follows that(n — }) /S(n) is decreasing. O

Corollary 3.6. Let f(z) = 1/zP*!, wherep > 0. Then(n — $)” S(n) increases withn.
Further, we have

(- )
S(n+1)> 5 T
Nl (R L ey

Proof. The first statement is a case of Theoren] 3.5, and the second one is an algebraic re-
arrangement ofn — 1)?S(n) < (n+ 1)PS(n+1). O
This strengthens the second statement in Cordllafy 3.3.

Theorem 3.7. Suppose thaff satisfies (A1), (A2), (A3) and (A4 Let S*(n) = 3f(n)
+S(n+1).If f’(x)/f(z) is decreasing (or increasing) far > ny, thenS*(n)/I(n) decreases
(or increases) fon > nq.

Proof. Similar, with

n+1
o= 5+ D), b= [ s0 e,

and applying Propositidn 2.[L5 instead of Proposition|2.11. O
For the casg(z) = 1/xF*!, itis easy to show thaf(n)/S*(n) is decreasing. Hence Theo-
rem[3.7 strengthens the first statement in Corollary 3.3.

Remark 3.8.If f(x) = 1/2P*1, thenf’(z)/ f(x) isincreasing and” (z)/ f(x) is decreasing. A
case of the opposite type j§z) = xe*, for which f'(z)/f(z) = 1/x — 1and f"(z)/ f(x) =
1—2/x. Note that the corresponding series is the power s&rjeg™, withy = e~1. Of course,
for series of this type[(n) is not asymptotically equivalent t§(n); in this case, one finds that
S(n)/I(n) —e/(e—1)and S(n+1)/I(n) — 1/(e — 1) asn — oc.

Finite sums Clearly, the same reasoning can be applied to finite sums. Wyite Z};l a;.
The statement corresponding to Lenimd 3.1 is;,jfb, is increasing (or decreasing), then so is
A,/ B,. Atypical conclusion is:

Proposition 3.9. Let f be strictly positive and differentiable df, co). Write
F(n)=>_ f(), Jn)= / f(t) dt.
j=1 0

If f'(x)/f(x) is increasing (or decreasing), then sofign)/J(n).
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Proof. Letb, = [ f, sothatB, = J(n). If f/(x)/f(x) is increasing, them,/f(n) is
decreasing, sd(n)/F(n) is decreasing. O

Corollary 3.10. ([4, p. 59} [6, Proposition 3] If a,, = 1/n?, where0 < p < 1, thenA,,/n'~?
is increasing.

4. TAILS OF SERIES: CONTINUOUS VERSION

We continue to assume thAis a function satisfying (A1), (A2), (A3) and (A4), and to write
I(z) = [ f(t)dt. The previous definition af(n) is extended to a real variahleby defining

S@) =3 fla+n).

For anyz, > 0, integral comparison ensures uniform convergence of this series forz.
Clearly, S(z) is decreasing and tends to 0:as~ co. Also, S(x) — S(x + 1) = f(z).
When f(z) = 1/2?, our S(z) is the “Hurwitz zeta function?(p, =), which has applications
in analytic number theory [2, chapter 12]. Note that, 1) = ((p) and(’(p, z) = —pl(p+1, x).
Under our assumptions/(z) < 0 for z > z, and [° f'(t)dt = —f(z). We make the
following further assumption:

(A5) f’(z)is increasing on some intervat,, co).

This ensures that"~ | f'(z + n) is uniformly convergent for: > xz,, and hence that’(x)
exists and equals the sum of this series. (An alternative would be to assunfieslaatanalytic
complex function on some open region containing the positive real axis.)

We shall establish results analogous to the theorems of Sggtion 3, by somewhat different
methods. Unlike the discrete case, there is a simple expressid(ufpin terms ofS(z):

Lemma 4.1. With notation as above, we have

Proof. Let X > 2+ 1. Then
X

/Xf(t) dt:/ S(t) — S(t + 1)]dt

- / " Syt / Xlﬂ S(t)dt
_ / syt - /X s

z+1
—>/ S(t)dt asX — oo

sinceS(t) — 0 ast — oo. O

Sol(z)/S(x) is already a ratio of the type considered in Secfipn 2, with) as the inte-
grand. There is no need (and indeed no obvious opportunity) to use Liemma 3.1 or its continuous
analogue. Instead, we apply the ideas of Sedtjon 2(t9 instead off(x). This will require
some extra work. We continue to write

W(x,y) = f(x)f'(y) — f'(x)f(y).
We need to examine
Ws(z,y) = S(z)S'(y) — 5'(x)S(y).
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Lemma 4.2. With this notation, we have

Ws(z,y) :ZW(x+n,y+n)+Z (W(z +m,y+n)+W(z+n,y+m)).

m<n

Proof. We have

Ws(z,y) = (Z flz+ m)) (Z fy+ n)) — (Z flz+ m)) (Z fly+ n)) .

Since the terms of each series are ultimately of one sign, we can multiply the series and rear-
range. For fixech, the terms withm = n equate toV (z + n,y + n). For fixedm,n with
m # n, the corresponding terms equatéiqz + m, y + n). O
Lemma 4.3.1If f’(x)/f(z) is increasing forz > 0, then for0 < ¢ < ¢,

(1) f(c—t)f(c+t)increases with,

(1) W(c —t,c—+t)increases witlt.
Proof. Write f'(z)/f(z) = ¢(x). Then

W(e—tc+t)=flc—t)flc+t)(qlc+1t) —qlc—1)).

This is non-negative when> 0. Also, the derivative off (c — t)f(c +t) isW(c — t,c+ 1),
hence statement (i) holds. By the above expression, statement (ii) follows. O
Theorem 4.4. Suppose thaf (z) satisfies (Al), (A2), (A3), (A4) and (A5), and tif&tr)/ f(x)
is increasing forz > 0. Then:

(1) S’(x)/S(x) isincreasing forr > 0,

(13) S(x)/I(x)is decreasing and(z)/I(xz — 1) is increasing.
Opposite conclusions hold ff(z)/ f(x) is decreasing.
Proof. We show thatVs(x,y) > 0 whenz < y. Then (i) follows, by the implication (ii}= (i)
in Lemma 2.2, and (ii) follows in the same way as in Propositiof 2.3. It is sufficient to prove
the stated inequality whep— = < 1. By Lemmd 2.RWW (2 + n,y +n) > 0 for all n. Now fix
m < n. Note thaty + m < x + n, sincey — = < 1. In Lemmd 4.8, take

c=3(z+y+m+n), t=c—(z+m), t'=c—(y+m).
Then0 <t <t<c,alsoc+t=y+n andc+t =z + m. We obtain
W(z+m, y+n) > W(y+m, z+n),

henceWW (z +m,y +n) + W(z +n,y +m) > 0. The required inequality follows, by Lemma
4.2. O

Corollary 4.5. Letp > 1, and let((p,z) = >_>7 ,(x + n)"?. Thenz?~'({(p, x) decreases with
x,and(x — 1)P~¢(p, z) increases. Alsg;(p + 1, x)/{(p, r) decreases.

We now establish the continuous analogue of Thedrein 3.5, which will lead to a sharper
version of the second statement in Corollary 4.5. First, another lemma.

Lemma 4.6. Suppose thaf’(z)/ f(x) is increasing and”(z)/ f (x) is decreasing for > 0. If
0 <b < a,then

W(x—a,z+a)—W(x—0,z+0)
decreases with for z > a.
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Proof. Write f”(z)/ f(x) = r(z). As in the proof of Lemmf 2]9, we have
d

%W(x —a,z+a)=f(zx—a)f(x+a)(r(z+a) —r(z —a)),

and similarly foriW (z — b, x 4+ b). Sincer(z) is decreasing, we have
r(x—a)—r(r+a) >r(z—-0) —r(x+b) >0.
Also, sincef’(z)/ f(z) is increasing, Lemmia 4.3 gives
fle—a)f(x+a)= flz—b)f(z+b).
The statement follows. O

Theorem 4.7. Suppose thaff(x) satisfies (A1), (A2), (A3), (Adand (A5), and also that
f'(x)/f(z) is increasing andf”(x)/f(x) is decreasing forr > 0. Then(i)S"(z)/S(x) is

decreasing for: > 0, and (ii) S(z)/I (z — 1) is increasing forz > 1. The opposite holds if

2
the hypotheses are reversed.
Proof. Recall that, by Lemm@a 4.1,

i (3& _ %) _ / _+ S() dt.

The statements will follow, by Lemma 2.9 and Propositjon P.11, if we can show that
Ws(z, z + u) decreases with: for each fixedu in (0,3). We use the expression in Lemma
4.2, withy =  + u. By Lemmd 2.D,W (z + n,z + n + u) decreases with for eachn. Now
takem < n. We apply Lemma 4|6, with

1 1
z:x+§(m+n+u), azﬁ(n—vau), bzi(n—m—u).

Then0 < b < a (sincen —m > 1), and
z—a=x+m, z4+a=z+n+u, z—b=xr+m+u, z+b=zx+n,
so the lemma shows that
W(x+m,zc+n+u)+W(@+nz+m+u)
decreases with, as required. O

Corollary 4.8. The function(z — £)"' ¢(p, z) is increasing forz > 1.

Remark 4.9. In Theorenj 4.7, unlike Theorem 3.5, we assumed a hypothesi§ o)y f(z) as
well asf”(x)/f(x). We leave it as an open problem whether this hypothesis can be removed.

Remark 4.10. Lemmag 4.3 and 4.6 both involve a symmetrical perturbation of the two vari-
ables. Our assumptions do not imply the{x, y) is @ monotonic function o for fixed z. For
example, iff(x) = 1/2% then W (1,y) = 2/y* — 2/y*, which increases fdi < y < 3/2 and
then decreases.

Finally, the continuous analogue of Theorem 3.7:
Theorem 4.11.Let

1 [e.9]
§'(@) = 5f@) + Y fla+n).
n=1
If f satisfies the hypotheses of Theofem 4.7, fiém)/I(x) is decreasing.
Proof. Note that5*(z) = 35(x) + 3S(z +1). By Theorem 4]7.5" (x)/S(x) is decreasing. By

—2

Lemmg 4.1 and Propositi¢n 2]15, it follows thdt:)/S*(x) is increasing. O
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