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ABSTRACT. For a strictly positive functionf(x), letS(n) =
∑∞

k=n f(k) andI(x) =
∫∞

x
f(t)dt,

assumed convergent. Iff ′(x)/f(x) is increasing, thenS(n)/I(n) is decreasing and
S(n + 1)/I(n) is increasing. Iff ′′(x)/f(x) is increasing, thenS(n)/I(n − 1

2 ) is decreas-
ing. Under suitable conditions, analogous results are obtained for the “continuous tail” defined
by S(x) =

∑∞
n=0 f(x + n): these results apply, in particular, to the Hurwitz zeta function.
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1. I NTRODUCTION

Let f be a positive function with
∫∞

1
f(t)dt convergent, and let

S(n) =
∞∑

k=n

f(k), I(x) =

∫ ∞

x

f(t)dt.

The problem addressed in this article is to determine conditions ensuring that ratios of the type
S(n)/I(n) are either increasing or decreasing. For decreasingf , one hasI(n) ≤ S(n) ≤
I(n − 1), and one might expectS(n)/I(n) to decrease andS(n)/I(n − 1) to increase, but, as
we show, the truth is not quite so simple. In general,I

(
n− 1

2

)
is a much better approximation

to S(n) than eitherI(n) or I(n− 1), so we also consider the ratioS(n)/I
(
n− 1

2

)
.

Questions of this type arise repeatedly in the context of generalizations of the discrete Hardy
and Hilbert inequalities, often in the form of estimations of the norms and so-called “lower
bounds" of matrix operators on weighted`p spaces or Lorentz sequence spaces. These topics
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2 G.J.O. JAMESON

have been studied in numerous papers, e.g. ([3], [4], [5], [7], [8]). Often, the problem equates
to finding the supremum and infimum of a ratio likeS(n)/I(n) for a suitable functionf . In
many “natural" cases, the ratio is in fact monotonic, so the required bounds are simply the first
term and the limit, one way round or the other.

Sporadic results on monotonicity have appeared for particular cases, especiallyf(t) = 1/tp,
in some of the papers mentioned, though not for ratios involvingI

(
n− 1

2

)
. However, the

author is not aware of any previous work formulating general criteria. As we show, such criteria
can, in fact, be given. Though the methods are essentially elementary, the criteria are far from
transparent at the outset, indeed somewhat unexpected.

We show that the kernel of the problem is already contained in the corresponding question
for ratios of integrals (on intervals of fixed length) to single values of the function. Indeed, write

J1(x) =

∫ x

x−h

f(t)dt, J2(x) =

∫ x+h

x

f(t)dt, J3(x) =

∫ x+h

x−h

f(t)dt.

For both types of problem, the outcome is determined by monotonicity off ′/f or f ′′/f , as
follows:

(1) If f ′(x)/f(x) is increasing, thenJ1(x)/f(x) is decreasing andJ2(x)/f(x) is increasing.
Further,S(n)/I(n) is decreasing andS(n)/I(n− 1) is increasing.

(2) If f ′′(x)/f(x) is increasing, thenJ3(x)/f(x) is increasing, andS(n)/I
(
n− 1

2

)
is de-

creasing. Opposite results apply to a second type of ratio relating to the trapezium rule.

If the hypotheses are reversed, so are the conclusions. When applied toxp, the statements in (2)
are stronger than those in (1).

By rather different methods, but still as a consequence of the earlier results onJr(x)/f(x),
we then obtain analogous results for the “continuous tail" defined by

S(x) =
∞∑

n=0

f(x + n).

Whenf(t) = 1/tp, this defines the Hurwitz zeta functionζ(p, x), which has important applica-
tions in analytic number theory [2].

Other studies of tails of series include [9], [10] and further papers cited there. Typically,
these studies describe relationships betweenS(n − 1), S(n) andS(n + 1), and are specific to
power series, whereas the natural context for our results is the situation whereS(n) ∼ I(n) as
n→∞, which occurs for series like

∑
1/np.

2. RATIOS BETWEEN I NTEGRALS AND FUNCTIONAL VALUES

Let f be a strictly positive, differentiable function on a real intervalE, and leth ≥ 0, k ≥ 0.
On the suitably reduced intervalE ′, define

J(x) =

∫ x+k

x−h

f(t)dt

We shall consider particularly the cases where one ofh, k is 0 (so thatx is an end point of the
interval) or whereh = k (so thatx is the mid-point). Our aim is to investigate monotonicity of
G(x), where

G(x) =
J(x)

f(x)
.

We shall work with the expression for the derivativeG′(x) given in the next lemma (we include
the proof, though it is elementary, since this lemma underlies all our further results).
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TAIL OF A SERIES 3

Lemma 2.1. With the above notation, we have

G′(x) =
1

f(x)2

∫ x+k

x−h

W (x, t)dt,

where
W (x, t) = f(x)f ′(t)− f ′(x)f(t).

Proof. We have

J ′(x) = f(x + k)− f(x− h) =

∫ x+k

x−h

f ′(t)dt,

and hence

G′(x) =
1

f(x)

∫ x+k

x−h

f ′(t)dt− f ′(x)

f(x)2

∫ x+k

x−h

f(t)dt,

which is equivalent to the statement. �

So our problem, in the various situations considered, will be to establish that∫ x+k

x−h

W (x, t)dt

is either positive or negative. The functionW is, of course, a certain kind of Wronskian. Note
that it satisfiesW (x, x) = 0 andW (y, x) = −W (x, y). Further, we have:
Lemma 2.2. Let f be strictly positive and differentiable on an intervalE, and letW (x, y) =
f(x)f ′(y)− f ′(x)f(y). Then the following statements are equivalent:

(i) f ′(x)/f(x) is increasing onE,
(ii) W (x, y) ≥ 0 whenx, y ∈ E andx < y.

Proof. Write f ′(x)/f(x) = q(x). Then

W (x, y) = f(x)f(y)
(
q(y)− q(x)

)
.

The stated equivalence follows at once. �

Hence we have, very easily, the following solution of the end-point problems.
Proposition 2.3. Let f be strictly positive and differentiable on an intervalE. Fix h > 0, and
define (on suitably reduced intervals)

J1(x) =

∫ x

x−h

f(t)dt, J2(x) =

∫ x+h

x

f(t)dt.

If f ′(x)/f(x) is increasing, thenJ1(x)/f(x) is decreasing andJ2(x)/f(x) is increasing. The
opposite holds iff ′(x)/f(x) is decreasing.

Proof. Again writef ′(x)/f(x) = q(x). If q(x) is increasing, then, by Lemma 2.2,W (x, t) is
positive fort in [x, x + h] and negative fort in [x − h, x]. The statements follow, by Lemma
2.1. �

Corollary 2.4. Fix h > 0. Let

G1(x) =
1

xp

∫ x

x−h

tpdt, G2(x) =
1

xp

∫ x+h

x

tpdt.

If p > 0, thenG1(x) is increasing on(h,∞), andG2(x) is decreasing on(0,∞). The opposite
conclusions hold whenp < 0.

Proof. Thenq(x) = p/x, which is decreasing on(0,∞) whenp > 0, and increasing when
p < 0. �

J. Inequal. Pure and Appl. Math., 4(2) Art. 25, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 G.J.O. JAMESON

Remark 2.5. Neither the statement of Corollary 2.4, nor its proof, is improved by writing out
the integrals explicitly.

Remark 2.6. Corollary 2.4 might lead one to suppose that monotonicity off(x) itself is signifi-
cant, but this is not true. Iff(x) = x2, then Proposition 2.3 shows thatJ1(x)/f(x) is increasing
both forx < 0 and forx > h.

Remark 2.7. Clearly, the case whereJ1(x)/f(x) and J2(x)/f(x) are constantis given by
f(x) = ecx.

Remark 2.8. Three equivalents to the statement thatf ′(x)/f(x) is increasing (given thatf(x) >
0) are:

(i) f ′(x)2 ≤ f(x)f ′′(x),
(ii) log f(x) is convex,

(iii) f(x + δ)/f(x) is increasing for eachδ > 0.

Condition (iii) is implicitly used in [7, Corollary 3.3] to give an alternative proof of Corollary
2.4.

We now consider the symmetric ratios occurring whenh = k. Let

J(x) =

∫ x+h

x−h

f(t)dt.

There are actually two symmetric ratios that arise naturally, both of which have applications
to tails of series. Themid-pointestimate for the integralJ(x) (describing the area below the
tangent at the mid-point) is2hf(x), while thetrapeziumestimate ishfh(x), where

fh(x) = f(x− h) + f(x + h).

If f is convex, then it is geometrically obvious (and easily proved) that

2hf(x) ≤ J(x) ≤ hfh(x),

with equality occuring whenf is linear. So we consider monotonicity of the mid-point ratio
J(x)/f(x) and the two-end-point ratioJ(x)/fh(x). The outcome is less transparent than in
the end-point problem. We shall see that it is determined, in the opposite direction for the two
cases, by monotonicity off ′′(x)/f(x). Both the statements and the proofs can be compared
with Sturm’s comparison theorem on solutions of differential equations of the formy′′ = r(x)y
[11, section 25]. Where Sturm’s theorem requires positivity or negativity ofr(x), we require
monotonicity, and the proofs share the feature of considering the derivative of a Wronskian.
The key lemma is the following, relating monotonicity off ′′(x)/f(x) to properties ofW (x, y).

Lemma 2.9. Let f be strictly positive and twice differentiable on an interval(a, b). Then the
following statements are equivalent:

(i) f ′′(x)/f(x) is increasing on(a, b);
(ii) for each fixedu in (0, b− a), the functionW (x, x + u) is increasing on(a, b− u).

Proof. Write f ′′(x) = r(x)f(x) and

A(x) = W (x, x + u) = f(x)f ′(x + u)− f ′(x)f(x + u).

Then

A′(x) = f(x)f ′′(x + u)− f ′′(x)f(x + u)

=
(
r(x + u)− r(x)

)
f(x)f(x + u),

from which the stated equivalence is clear. �
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TAIL OF A SERIES 5

Lemma 2.10.Letx be fixed and letw be a continuous function such that

w(x + u) + w(x− u) ≥ 0

for 0 ≤ u ≤ h. Then ∫ x+h

x−h

w(t)dt ≥ 0.

Proof. Clear, on substitutingt = x + u on [x, x + h] andt = x− u on [x− h, x]. �

We can now state our result on the mid-point ratio.
Proposition 2.11.Letf be strictly positive and twice differentiable on an intervalE. Fix h > 0,
and let

J(x) =

∫ x+h

x−h

f(t)dt.

If f ′′(x)/f(x) is increasing (or decreasing) onE, thenJ(x)/f(x) is increasing (or decreasing)
on the suitably reduced sub-interval.

Proof. Fix u with 0 < u ≤ h. Assume thatf ′′(x)/f(x) is increasing. By Lemma 2.9, ifx and
x + u are inE, then

W (x, x + u) ≥ W (x− u, x) = −W (x, x− u).

The statement follows, by Lemmas 2.1 and 2.10. �

Corollary 2.12. Fix h > 0. Let

G(x) =
1

xp

∫ x+h

x−h

tp dt.

If p ≥ 1 or p ≤ 0, thenG(x) is decreasing on(h,∞). If 0 ≤ p ≤ 1, it is increasing there.

Proof. Let f(x) = xp. Then
f ′′(x)

f(x)
=

p(p− 1)

x2
,

which is decreasing (for positivex) if p(p − 1) ≥ 0. (Alternatively, it is not hard to prove this
corollary directly from Lemmas 2.1 and 2.10.) �

Note that Corollary 2.12 strengthens one or other statement in Corollary 2.4 in each case. For
example, ifp > 1, then

(
x/(x−h)

)p
is decreasing, so Corollary 2.12 implies thatJ(x)/(x−h)p

is decreasing (as stated by 2.4).
Corollary 2.13. If f possesses a third derivative onE, then the following scheme applies:

f ′ f ′′ f ′′′ J/f
+ − + incr
− + + incr
+ + − decr
− − − decr

Proof. By differentiation, one sees thatf ′′(x)/f(x) is increasing iff(x)f ′′′(x) ≥ f ′(x)f ′′(x).
In each case, the hypotheses ensure that these two expressions have opposite signs.�

However, the signs of the first three derivatives do not determine monotonicity off ′′/f in the
other cases. Two specific examples of type+ + + arex3 for x > 0 andx−2 for x < 0. In both
cases,f ′′(x)/f(x) = 6x−2, which is increasing forx < 0 and decreasing forx > 0.

Clearly,J(x)/f(x) is constant whenf ′′(x)/f(x) is constant.
For the two-end-point problem, we need the following modification of Lemma 2.1.
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6 G.J.O. JAMESON

Lemma 2.14.Let G(x) = J(x)/fh(x), whereJ(x) andfh(x) are as above. Then

G′(x) =
1

fh(x)2

∫ x+h

x−h

(
W (x− h, t) + W (x + h, t)

)
dt,

whereW (x, t) is defined as before.

Proof. Elementary. �

Proposition 2.15.Letf be strictly positive and twice differentiable on an intervalE. Fix h > 0.
Letfh(x) = f(x− h) + f(x + h) and

J(x) =

∫ x+h

x−h

f(t)dt.

If f ′′(x)/f(x) is increasing onE, thenJ(x)/fh(x) is decreasing on the suitably reduced sub-
interval (and similarly with “increasing” and “decreasing” interchanged).

Proof. By Lemmas 2.10 and 2.14, the statement will follow if we can show that

W (x− h, x− u) + W (x + h, x− u) + W (x− h, x + u) + W (x + h, x + u) ≤ 0

for 0 < u ≤ h. With u fixed, let A(x) = W (x + u, x + h). By Lemma 2.9,A(x) is increasing,
hence

0 ≥ A(x− u− h)− A(x)

= W (x− h, x− u)−W (x + u, x + h)

= W (x− h, x− u) + W (x + h, x + u).

Similarly, B(x) = W (x− h, x + u) is increasing, hence

0 ≥ B(x)−B(x + h− u)

= W (x− h, x + u)−W (x− u, x + h)

= W (x− h, x + u) + W (x + h, x− u).

These two statements together give the required inequality. �

Corollary 2.16. The expression

(x + h)p+1 − (x− h)p+1

(x + h)p + (x− h)p

is increasing ifp ≥ 1 or −1 ≤ p ≤ 0, decreasing in other cases.

3. TAILS OF SERIES: D ISCRETE VERSION

Let f be a function satisfying the following conditions:

(A1) f(x) > 0 for all x > 0;
(A2) f(x) is decreasing on some interval[x0,∞);
(A3)

∫∞
1

f(t)dt is convergent.

We will also assume, as appropriate, either

(A4) f is differentiable on(0,∞)

or

(A4′) f is twice differentiable on(0,∞).
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TAIL OF A SERIES 7

Clearly, under these assumptions,
∑∞

k=1 f(k) is convergent. Throughout the following, we
write

S(n) =
∞∑

k=n

f(k), I(x) =

∫ ∞

x

f(t) dt.

By simple integral comparison,S(n+1) ≤ I(n) ≤ S(n) for n ≥ x0. Further, iff(n)/I(n)→ 0
asn→∞, thenS(n)/I(n) tends to 1. From these considerations, one might expectS(n)/I(n)
to decrease withn, andS(n + 1)/I(n) to increase.

Functions of the type now being considered will often be convex, at least for sufficiently large
x. In this case, the mid-point and trapezium estimations mentioned in Section 2 come into play.
Mid-point comparison, on successive intervals

[
r − 1

2
, r + 1

2

]
, shows thatS(n) ≤ I

(
n− 1

2

)
,

while trapezium comparison on intervals[r, r + 1] givesS∗(n) ≥ I(n), where

S∗(n) = 1
2
f(n) + S(n + 1).

In general, both these estimations give a much closer approximation to the tail of the series than
simple integral comparison. From the stated inequalities, we might expectS(n)/I

(
n− 1

2

)
to

increase, andS∗(n)/I(n) to decrease.
We show that statements of this sort do indeed hold, and can be derived from our earlier

theorems. However, the correct hypotheses are those of the earlier theorems, not simply that
f(x) is decreasing or convex. Indeed, cases of the opposite, “unexpected" type can occur.

The link is provided by the following lemma. Given a convergent series
∑∞

n=1 an, we write
A(n) =

∑∞
k=n ak (with similar notation forbn, etc.).

Lemma 3.1. Suppose thatan > 0, bn > 0 for all n and that
∑∞

n=1 an and
∑∞

n=1 bn are
convergent. Ifan/bn increases (or decreases) forn ≥ n0, then so doesA(n)/B(n).

Proof. Write an = cnbn andA(n) = KnB(n). Assume that(cn) is increasing. ThenA(n) ≥
cnB(n), soKn ≥ cn. Writing

A(n) = an + A(n) = cnbn + Kn+1B(n+1),

one deduces easily thatA(n) ≤ Kn+1B(n), so thatKn ≤ Kn+1. �

Theorem 3.2.Suppose thatf satisfies (A1), (A2), (A3), (A4) and, for somen0, thatf ′(x)/f(x)
is increasing forx ≥ n0. ThenS(n)/I(n) is decreasing andS(n + 1)/I(n) is increasing for
n ≥ n0. The opposite applies iff ′(x)/f(x) is decreasing.

Proof. Let

bn =

∫ n+1

n

f(t) dt,

so thatB(n) = I(n). Assume thatf ′(x)/f(x) is increasing. By Proposition 2.3,bn/f(n) is
increasing andbn/f(n + 1) is decreasing. So by Lemma 3.1,I(n)/S(n) is increasing and
I(n)/S(n + 1) decreasing. �

Corollary 3.3. ([5, Remark 4.10]and [7, Proposition 6]) Let f(x) = 1/xp+1, wherep > 0.
Then (with the same notation)npS(n) decreases withn, andnpS(n + 1) increases.

Proof. Thenf ′(x)/f(x) = −(p + 1)/x, which is increasing, andI(n) = 1/pxp. �

HereS(n) is the tail of the series forζ(p+1), and we deduce (for example) thatsupn≥1 npS(n)
= S(1) = ζ(p + 1). In [7, Theorem 7], this is exactly the computation needed to evaluate the
norm of the averaging (alias Cesaro) operator on the space`1(w), with wn = 1/np. In [5,
sections 4, 10], it is an important step in establishing the “factorized" Hardy and Copson in-
equalities.
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8 G.J.O. JAMESON

In the same way, one obtains the following result for the series
∑∞

n=1(log n)/np+1 =
−ζ ′(p + 1); we omit the details.

Corollary 3.4. Let f(x) = (log x)/xp+1, wherep > 0. Let r = max[1, 2/(p + 1)]. For
n ≥ er, npS(n)/(1 + p log n) decreases withn, andnpS(n + 1)/(1 + p log n) increases.

We now formulate the theorems deriving from our earlier results on symmetric ratios.

Theorem 3.5.Suppose thatf satisfies (A1), (A2), (A3) and (A4′). If f ′′(x)/f(x) is decreasing
(or increasing) forx ≥ n0 − 1

2
, thenS(n)/I

(
n− 1

2

)
increases (or decreases) forn ≥ n0.

Proof. Let

bn =

∫ n+1/2

n−1/2

f(t) dt.

Then B(n) = I
(
n− 1

2

)
. If f ′′(x)/f(x) is decreasing, then, by Proposition 2.11,bn/f(n) is

decreasing. By Lemma 3.1, it follows thatI
(
n− 1

2

)
/S(n) is decreasing. �

Corollary 3.6. Let f(x) = 1/xp+1, wherep > 0. Then
(
n− 1

2

)p
S(n) increases withn.

Further, we have

S(n + 1) ≥
(
n− 1

2

)p
np+1

[(
n + 1

2

)p − (n− 1
2

)p] .
Proof. The first statement is a case of Theorem 3.5, and the second one is an algebraic re-
arrangement of(n− 1

2
)pS(n) ≤ (n + 1

2
)pS(n + 1). �

This strengthens the second statement in Corollary 3.3.

Theorem 3.7. Suppose thatf satisfies (A1), (A2), (A3) and (A4′). Let S∗(n) = 1
2
f(n)

+S(n+1). If f ′′(x)/f(x) is decreasing (or increasing) forx ≥ n0, thenS∗(n)/I(n) decreases
(or increases) forn ≥ n0.

Proof. Similar, with

an =
1

2

(
f(n) + f(n + 1)

)
, bn =

∫ n+1

n

f(t) dt,

and applying Proposition 2.15 instead of Proposition 2.11. �

For the casef(x) = 1/xp+1, it is easy to show thatS(n)/S∗(n) is decreasing. Hence Theo-
rem 3.7 strengthens the first statement in Corollary 3.3.

Remark 3.8. If f(x) = 1/xp+1, thenf ′(x)/f(x) is increasing andf ′′(x)/f(x) is decreasing. A
case of the opposite type isf(x) = xe−x, for whichf ′(x)/f(x) = 1/x− 1 andf ′′(x)/f(x) =
1−2/x. Note that the corresponding series is the power series

∑
nyn, with y = e−1. Of course,

for series of this type,I(n) is not asymptotically equivalent toS(n); in this case, one finds that
S(n)/I(n)→ e/(e− 1) and S(n + 1)/I(n)→ 1/(e− 1) asn→∞.

Finite sums. Clearly, the same reasoning can be applied to finite sums. WriteAn =
∑n

j=1 aj.
The statement corresponding to Lemma 3.1 is: ifan/bn is increasing (or decreasing), then so is
An/Bn. A typical conclusion is:

Proposition 3.9. Letf be strictly positive and differentiable on(0,∞). Write

F (n) =
n∑

j=1

f(j), J(n) =

∫ n

0

f(t) dt.

If f ′(x)/f(x) is increasing (or decreasing), then so isF (n)/J(n).
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TAIL OF A SERIES 9

Proof. Let bn =
∫ n

n−1
f , so thatBn = J(n). If f ′(x)/f(x) is increasing, thenbn/f(n) is

decreasing, soJ(n)/F (n) is decreasing. �

Corollary 3.10. ([4, p. 59], [6, Proposition 3]) If an = 1/np, where0 < p < 1, thenAn/n
1−p

is increasing.

4. TAILS OF SERIES: CONTINUOUS VERSION

We continue to assume thatf is a function satisfying (A1), (A2), (A3) and (A4), and to write
I(x) =

∫∞
x

f(t)dt. The previous definition ofS(n) is extended to a real variablex by defining

S(x) =
∞∑

n=0

f(x + n).

For anyx0 > 0, integral comparison ensures uniform convergence of this series forx ≥ x0.
Clearly,S(x) is decreasing and tends to 0 asx→∞. Also,S(x)− S(x + 1) = f(x).

Whenf(x) = 1/xp, ourS(x) is the “Hurwitz zeta function"ζ(p, x), which has applications
in analytic number theory [2, chapter 12]. Note thatζ(p, 1) = ζ(p) andζ ′(p, x) = −pζ(p+1, x).

Under our assumptions,f ′(x) ≤ 0 for x > x0 and
∫∞

x
f ′(t)dt = −f(x). We make the

following further assumption:
(A5) f ′(x) is increasing on some interval[x1,∞).
This ensures that

∑∞
n=0 f ′(x + n) is uniformly convergent forx ≥ x0, and hence thatS ′(x)

exists and equals the sum of this series. (An alternative would be to assume thatf is an analytic
complex function on some open region containing the positive real axis.)

We shall establish results analogous to the theorems of Section 3, by somewhat different
methods. Unlike the discrete case, there is a simple expression forI(x) in terms ofS(x):
Lemma 4.1. With notation as above, we have

I(x) =

∫ x+1

x

S(t)dt.

Proof. Let X > x + 1. Then∫ X

x

f(t) dt =

∫ X

x

[S(t)− S(t + 1)]dt

=

∫ X

x

S(t)dt−
∫ X+1

x+1

S(t)dt

=

∫ x+1

x

S(t)dt−
∫ X+1

X

S(t)dt

→
∫ x+1

x

S(t)dt asX →∞

sinceS(t)→ 0 ast→∞. �

So I(x)/S(x) is already a ratio of the type considered in Section 2, withS(x) as the inte-
grand. There is no need (and indeed no obvious opportunity) to use Lemma 3.1 or its continuous
analogue. Instead, we apply the ideas of Section 2 toS(x) instead off(x). This will require
some extra work. We continue to write

W (x, y) = f(x)f ′(y)− f ′(x)f(y).

We need to examine
WS(x, y) = S(x)S ′(y)− S ′(x)S(y).
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Lemma 4.2. With this notation, we have

WS(x, y) =
∞∑

n=0

W (x + n, y + n) +
∑
m<n

(
W (x + m, y + n) + W (x + n, y + m)

)
.

Proof. We have

WS(x, y) =

(
∞∑

m=0

f(x + m)

)(
∞∑

n=0

f ′(y + n)

)
−

(
∞∑

m=0

f ′(x + m)

)(
∞∑

n=0

f(y + n)

)
.

Since the terms of each series are ultimately of one sign, we can multiply the series and rear-
range. For fixedn, the terms withm = n equate toW (x + n, y + n). For fixedm, n with
m 6= n, the corresponding terms equate toW (x + m, y + n). �

Lemma 4.3. If f ′(x)/f(x) is increasing forx > 0, then for0 < t < c,

(i) f(c− t)f(c + t) increases witht,
(ii) W (c− t, c + t) increases witht.

Proof. Write f ′(x)/f(x) = q(x). Then

W (c− t, c + t) = f(c− t)f(c + t)
(
q(c + t)− q(c− t)

)
.

This is non-negative whent > 0. Also, the derivative off(c − t)f(c + t) is W (c − t, c + t),
hence statement (i) holds. By the above expression, statement (ii) follows. �

Theorem 4.4.Suppose thatf(x) satisfies (A1), (A2), (A3), (A4) and (A5), and thatf ′(x)/f(x)
is increasing forx > 0. Then:

(i) S ′(x)/S(x) is increasing forx > 0,
(ii) S(x)/I(x) is decreasing andS(x)/I(x− 1) is increasing.

Opposite conclusions hold iff ′(x)/f(x) is decreasing.

Proof. We show thatWS(x, y) ≥ 0 whenx < y. Then (i) follows, by the implication (ii)⇒ (i)
in Lemma 2.2, and (ii) follows in the same way as in Proposition 2.3. It is sufficient to prove
the stated inequality wheny − x < 1. By Lemma 2.2,W (x + n, y + n) ≥ 0 for all n. Now fix
m < n. Note thaty + m < x + n, sincey − x < 1. In Lemma 4.3, take

c = 1
2
(x + y + m + n), t = c− (x + m), t′ = c− (y + m).

Then0 < t′ < t < c, also c + t = y + n and c + t′ = x + m . We obtain

W (x + m, y + n) ≥ W (y + m, x + n),

henceW (x + m, y + n) + W (x + n, y + m) ≥ 0. The required inequality follows, by Lemma
4.2. �

Corollary 4.5. Letp > 1, and letζ(p, x) =
∑∞

n=0(x + n)−p. Thenxp−1ζ(p, x) decreases with
x, and(x− 1)p−1ζ(p, x) increases. Also,ζ(p + 1, x)/ζ(p, x) decreases.

We now establish the continuous analogue of Theorem 3.5, which will lead to a sharper
version of the second statement in Corollary 4.5. First, another lemma.

Lemma 4.6. Suppose thatf ′(x)/f(x) is increasing andf ′′(x)/f(x) is decreasing forx > 0. If
0 < b < a, then

W (x− a, x + a)−W (x− b, x + b)

decreases withx for x > a.
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Proof. Write f ′′(x)/f(x) = r(x). As in the proof of Lemma 2.9, we have

d

dx
W (x− a, x + a) = f(x− a)f(x + a)

(
r(x + a)− r(x− a)

)
,

and similarly forW (x− b, x + b). Sincer(x) is decreasing, we have

r(x− a)− r(x + a) ≥ r(x− b)− r(x + b) ≥ 0.

Also, sincef ′(x)/f(x) is increasing, Lemma 4.3 gives

f(x− a)f(x + a) ≥ f(x− b)f(x + b).

The statement follows. �

Theorem 4.7. Suppose thatf(x) satisfies (A1), (A2), (A3), (A4′) and (A5), and also that
f ′(x)/f(x) is increasing andf ′′(x)/f(x) is decreasing forx > 0. Then(i)S ′′(x)/S(x) is
decreasing forx > 0, and (ii) S(x)/I

(
x− 1

2

)
is increasing forx > 1

2
. The opposite holds if

the hypotheses are reversed.

Proof. Recall that, by Lemma 4.1,

I

(
x− 1

2

)
=

∫ x+ 1
2

x− 1
2

S(t) dt.

The statements will follow, by Lemma 2.9 and Proposition 2.11, if we can show that
WS(x, x + u) decreases withx for each fixedu in

(
0, 1

2

)
. We use the expression in Lemma

4.2, withy = x + u. By Lemma 2.9,W (x + n, x + n + u) decreases withx for eachn. Now
takem < n. We apply Lemma 4.6, with

z = x +
1

2
(m + n + u), a =

1

2
(n−m + u), b =

1

2
(n−m− u).

Then0 < b < a (sincen−m ≥ 1), and

z − a = x + m, z + a = x + n + u, z − b = x + m + u, z + b = x + n,

so the lemma shows that

W (x + m, x + n + u) + W (x + n, x + m + u)

decreases withx, as required. �

Corollary 4.8. The function
(
x− 1

2

)p−1
ζ(p, x) is increasing forx > 1

2
.

Remark 4.9. In Theorem 4.7, unlike Theorem 3.5, we assumed a hypothesis onf ′(x)/f(x) as
well asf ′′(x)/f(x). We leave it as an open problem whether this hypothesis can be removed.

Remark 4.10. Lemmas 4.3 and 4.6 both involve a symmetrical perturbation of the two vari-
ables. Our assumptions do not imply thatW (x, y) is a monotonic function ofy for fixedx. For
example, iff(x) = 1/x2, then W (1, y) = 2/y2 − 2/y3, which increases for0 < y ≤ 3/2 and
then decreases.

Finally, the continuous analogue of Theorem 3.7:

Theorem 4.11.Let

S∗(x) =
1

2
f(x) +

∞∑
n=1

f(x + n).

If f satisfies the hypotheses of Theorem 4.7, thenS∗(x)/I(x) is decreasing.

Proof. Note thatS∗(x) = 1
2
S(x) + 1

2
S(x + 1). By Theorem 4.7,S ′′(x)/S(x) is decreasing. By

Lemma 4.1 and Proposition 2.15, it follows thatI(x)/S∗(x) is increasing. �
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