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Abstract

In this paper, we establish first-order optimality conditions for the problem of
minimizing a function f on the solution set of an inclusion 0 € F (x) where f
and the support function of a set-valued mapping F' are epi-differentiable at z.
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It is well known that epi-convergence of functions is coming to the fore as
the correct concept for many situations in optimization. The strong feature of
epi-convergence is that it corresponds to a geometric concept of approximation
much like the one used in classical differential analysis (8Pe Derivatives
defined in terms of it therefore have a certain “robustness” that can be advan-
tageous. Our principal objective is to give necessary and sufficient optimality
conditions of type Ferma for the optimization problem
(P) Maximize f(z) subject td) € F'(x)
wheref is a function from a reflexive Banach spakeinto R U {+oco} and F’
is a set valued map defined fraiinto another reflexive Banach space

The organization of the paper is as follows. Sectiaontains basic defini-
tions and preliminaries that are widely used in the sequel. In Segtianstudy
the epi-differentiability of the support function @t defined byCr(y*, z) =
inf,cpz) (y*, y) for everyy* € Y*. Sectiord is devoted to the optimality con-
ditions and also for an application in mathematical programming problems.
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Let F' be a mapping defined iX with nonempty, closed and convex values in
Y, and letX* be the topological dual k.
In all the sequel, we denote the domainfoaind its graph by, respectively,

Dom(F) :={z € X : F(x) # 0},

Gr(F):={(z,y) e X xY :ye F(x)}.
Let us recall some definitions.

Definition 2.1. A set-valued mapping’ is said to be locally Lipschitz at if
there existsx > 0 andr > 0 such that

F(z) C F(2') + al|lz — 2| By

for all z andz’ in T + rByx, whereBx indicates the unit ball centered at the
origin in spaceX.
Let A be an arbitrary nonempty subset &t The notions of contingent cone
and tangent cone td at a pointz € A will be used frequently in this paper.
The contingent cone td at 7 is

K (S,7):={veX:3(t,) \\0, Jv, > v:T+t,v, €S, Vn}.
The tangent cone td at 7 is

k(A,T) := {v cX :Vt,— 03, v THtw, €A Vn}.
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Definition 2.2. A set-valued map’ is said to be proto-differentiable &t,y) €
Gr(F) if the contingent con& (Gr(F'), (z,7)) coincides with the tangent cone
k(Cr(F), (7,7))-

The proto-derivative is thus the set-valued map denoteld By; the graph
of which is the common set

Gr(DFE@) = K<GIF7 <f7 y)) = k?(GI'F, (fu y))
For more details, seel] and [9].
Lemma 2.1. Let F' be a Lipschitz set valued mapaandy € F(7), one has

i) limsup D:Fzz(v) = limsup D;Fz5 (D),

(t,w)—(01,v) t—0+
i) liminf D;Fsz5; (v) = limsup D;Fs5 (D),
) (t)—(0F3) () t_>0+p Fay (7)

i) Jim Dy () =limsup Dy Feg (0),

t,v)— (0t ) t—0+

Proof. i) The inclusion” O ” is trivial. Let us prove the opposite inclu-
sion. Consider any € limsup D;Fzy5(v), there existst,,, v,, w,) —
(tw)—(0,7)
(0", 7, w) such thag+t,w, € F (T + t,v,).As F is Lipschitz atz, there
existsny € N such that for any, > ny one has

F (T +tyv,) C F (T +t,0) + at, ||v, — 3| By.
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Sincey + t,w, € F (T + t,v,), there exist(w,) C Y and(b,) C By
such that for any. > ng we gety + t,w, = 7 + t,w, + at, ||v, — T|| by,
andy + t,w, € F (T +t,v). This implies that(t,,, w,) — (07, w) and
Wy, € Dy, Fr5 (0) . Hencew € limsup D, F; 5 (7).
t—0+
It suffices to prove thatlimsup D, Fzy (v) C liminf Dy F5 5 (7).
(t,v)— (0% 7) t—0t
Letw € limsup D.Fzz(v)and lett, \, 0. Then there exists,, — w
(t,w)— (01 D)

such thayj + t,w, € F (T + t,v) . Considering a sequeneg — v; and
using the Lipschitz property of' at 7, there existn, € N, (w,) C Y
and(b,) C By such thaty + t,w, = ¥ + t,w, + at, ||v, — 7| b, and

g+ tyw, € F (T + tyv,) foralln > ng. Thenw,, € limsup Dy, Fs5(vy,)
t—0t

with w,, — w.

iii) Itis a direct consequence pfandii).

]

Proposition 2.2. Let F' be a set valued map froXi into Y and(z,y) € Gr(F).
If F' is Lipschitz atz then F' is proto-differentiable atz,y) with a proto-
derivative D F; 5 (v) if and only if for everyy € X

Proof.

DFj’y (U) = lim sup DtFE,Q ('U) exists.

t—0t+

i) Fix (v,w) € K(Gr F, (Z,7)). There exist$t,,, v,, w,) — (07, v, w)
liminf D,F;5(v). Using

such thatw, € Dy, Fzy(v,); that isw €
(t,0)—(0t,v)
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LemmaZ2.1 one hasw € ( li)m(inj )DtFm(’ﬁ). Consequently, for any
t,0)— (0t v

(tn, Un) — (07, v) there existsn, — w such that(z,y) + ,(v,, w,) €
Gr(F). This implies that(v, w) € k(Gr F, (Z,y)), and hence the proto-
differentiability of F" at (7, y).

i) Fixw € limiEf D,F57 (v) and lett,, \, 0. From Lemma2.1, one has

t—0
w € limsup D,F5z(v') and consequentlyy, w) € K(Gr F,(Z,7)).
(t,0")—(0F,v)

Thus by proto-differentiabilitfv, w) € k(Gr F, (Z,7)). Then there exists
(Un, wy) — (v, w) such thay +t,w, € F (T + t,v,). Using the Lipschitz
property of F' at z, there existsw,, — w such thatw,, € D,, F55(v).

Hencew € limsup D, F; 3(v); and the proof is finished.
t—0+

]

In order to define the epi-derivative, as introduced by Rockafeilatdt us
recall the notion of epi-convergence and some of its main properties; for more
details seed].

A sequence of functiong,, from X into R U {+oc} is said to ber-epi-
converging for a topology from X, and we denote by-elm ¢, its 7-epi-limit,
if the two following conditions hold

Va, >z p(z) < limsup o, (2,),
n—-+oo

Iz, >z o(z) > limsup @, (x,).
n—-4o0o0

A family of functions(y;);~¢ is said to be epi-converging towhent X\ 0, if
for every sequencg, \ 0, the sequence of functiorig,, ) epi-converges te.
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Whens designs the strong topology af andw its weak sequential topology,
a sequence of functions,,) is said to be Mosco-epi-converging ¢oif (¢,,)
s-epi-converges ana-epi-converges te, that is

Yo, = v (v) < liminf o, (v,),

v, — v @ (v) > limsup @y, (vn)

Finally, recall that a sequence of subséts,) 7-converges in the sense of
Kuratawski-Painlevé to another subgetf the indicator functionsi., of C,
T -epi-converge td.. Note, see]], that if X is reflexive andC,,), C'is a se-
guence of closed convex subsets, tl€h) Mosco-converges t¢' if and only
if d(z,C,) — d(z,C) forallz € X.

Let f be a function defined fromX into R U {+o0} , finite at a pointc. The
function f is (Mosco-) epi-differentiable atif the difference quotient functions

(Af)z () =t (f@+t) = f@): t >0,

have the property that the (Mosco-) epi-limit functign exists andf.(0) >
—oo. Note that the epigraph of. is the proto-derivative of the epigraph pfat
(@, £(x)).

By 0.f(7), the epi-gradient of atz, we denote the set of all vectar$ €
X~ satisfyingf.(v) > (z*,v) forallv € X.
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In the remainder of this paper we assume tKas reflexive and we denote by
5% (+) the support function of a subsétof X

54 (x*) == sup (z*, ) for everyz* € X*.
z€EA
It is easy to see that for two subset@and B of X Epi-differentiability and
Optimality Conditions for an
() = 54() + 850 T
ACB= 52() < 5;(), T. Amahrog, N. Gadhi and
. . . . . . Pr H. Riahi
and if A and B are closed convex then the last implication is an equivalence. o
For the following,
Title Page
e F will be a set-valued mapping frot¥ into Y with a closed convex set- PE—
values.
_ . N SN 44 44
e Np@& (y) designs the normal cone (7)) aty € F'(7), i.e.
< >
Np@ (@) ={y" €Y " : (y",y—7) <0 forally € F(7)}
* * £ — " « Go Back
={y eY" : (", 1) = 6 (v}
Close
e We denote by := {y* €Y 0pm(y) < —l—oo} the barrier cone of". Quit
It is easy to prove that whefi is locally Lipschitz, seed], the setY}: does Page 9 of 26
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Definition 3.1. A functionf : X — R U {+oco} is said to be (Mosco-) epi-
regular atz if the (Mosco-) epi-derivative of exists atz and coincides with
the directional derivative of atz.

Lemma 3.1. Let (z,5) € Gr F. Suppose tha¥' is Lipschitz atz, then the
functiony; (v) := 0D, o 5(0) (y*) is equi-locally Lipschitz.

Proof. Fix© € X. As F'is Lipschitz atz, there existx > 0 andr > 0 such that
foranyt € ]0,r] and anyv, v’ € T+ rBy

F(T+tv) C F(T+t') + at|jv — V|| By.
Consequently D, F')z5(v) C (D F)z5(v") + a||lv —v'|| By. Hence
¥ (0) = ¢ (V)] < afly[ lo =o'

foranyt € |0,r] and anyv, v’ € v + rBx.
The proof is thus complete. O

Proposition 3.2. Let (Z,7) € Gr F. Suppose that” is reflexive and that for
every sequencg, ~\, 0

(3.1) d(-, Dy, Fz5(v)) — d (-, DF55 (v)).
Then:
i) the set-valued mapp, r, () graph-converges td/pr, (v),
i) there existav € DF;5 (v ) y* € Npp, ) (W), w, € Dy, Frz(v) and
Yy € Np,, £, (v) (wn) SUch thatw,, y;) — (w,y*) andégtnF @) y(yn) —

6DF§’Q(’U) (y*) *
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Motivated by the article of Demyanov, Lemaréchal and ZoWeWhere the
authors approximaté under the assumption that

0pr(y(¥*) = lm 7 (6hm (V) = Orp (¥7))
exists (as an element &) for everyy* € R, we give in Theoren3.3 sufficient
conditions insuring the existence of this derivative.

Theorem 3.3.Let (Z,7) € Gr F. Suppose that” is reflexive F' is directionally
Lipschitz atz and thatNp (7) # 0. Suppose also that the conditiof.{)
is satisfied for eacly and that the functiony, . ., (-) is equi-Lipschitz. i.e.
34 > 0 such that

06, (o) Un) = 06, ) W*) = Bllyn — vl
Then for ally* € N (y), the functionf(z) := &%,y (y*) = sup (y*,y)is
yEr ()
epi-regular atz, with 5}%@(‘)(@/*) as its epi-derivative

Proof. Lett, \, 0. By definition of f one has

ty [f(@ + tav) — (@) = 0D, k) (V")

SettingC, (v) := Dy, I35 (v), C(v) == DFz5(v) and¥,, (v) := 67, () (y"),
then condition $.1) permits us to conclude thdt., ), Mosco-converges to
dc(v)- Using Attouch’s theoremZ], we conclude thad;, ., Mosco-converges
to o5.. Hence

a) for anyy’ N y* one has%(v) (y*) < liminf ‘%n(v) (y),
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b) there existy;, — y* such thavy, ) (y*) > limsup &, ,(v5).
Let us prove that
i) foranywv, — v one hasl (v) := 6, (y*) < liminf W, (v,),
ii) there existsy,, — v such thatl (v) > lim sup ¥, (v,,).
I) Let v, — v. From Lemma3.1, there exists:, € N such that for any

n > ng
U (vn) = W (v) — afly™[| flvn — o]

Lettingn — +oo we getliminf ¥,,(v,) > liminf ¥, (v). Finally, using
a), we havdim inf ¥, (v,,) > ¥ (v) . The result is thus proved.

i) Considering b), there existg — y* such that¥ (v) > lim sup 06 () (Un)-
Sincedy, () is equi-Lipschitz, there exist$ > 0 such that
06,0y (Un) = 06, (") = Bllun — vl -

Hencelim sup V¥, (v,) < ¥(v). Moreover, since is directionally Lips-
chitz atz on has

tli%i 5Z<DtF)5,y(“) (y*> - (tyv/)hﬁ%-hv) 5?D1F)E,§(U,)(y*)
Thus
5?DF)W(U) (y") = tlféf}r 5?DtF)fyy(v) (")
= fiv) = lim ¢ [f(@+ 1) = f(@)].
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The proof of the theorem is complete. O

Remark 3.1. When, instead of}(1), we assume the Mosco-Proto-differentiability
of F' at (z,y) € Gr F'; we can justify the Mosco-epi-regularity ffat z.

Indeed, suppose that there exists — v such thatD;, F% 5 (v,) does not
Mosco-converge td F; 5 (v) . Consequently, there exists — 2 such that
Zn € tH(F(T +t,w,) —7) andz ¢ DFgy(v). Thus (vn, 2,) — (v,2),
(Un, z) € ;' (Gr F — (7,7)) andz ¢ DF: (v); which contradicts” Mosco-

Proto-differentiable at. Epi-differentiability and
. L . Optimality Conditions for an
Theorem 3.4.Let f : X — R U {400} be a function epi-differentiable at Extremal Problem Under
and letg : X — R U {400} be a function epi-regular at. Thenf + ¢ is Inclusion Constraints
epi-differentiable aft. T. Amahrog, N. Gadhi and
Pr H. Riahi

Proof. Setting

@, (v) ==t (@ + tav) = f(@)],ba(v) ==t [9(T + tav) — g(T)] M5 [FEEE
and Contents
(V) =t (f + 9)@T + tw) — (f + 9)(T)). < >
) Letv, — v. Sincef andg are epi-differentiable at, we have < >
h;[&iﬂlf (V) > ligiorgf an(vy) + h??ii;lf bn(vr) > a(v) + b(v). Go Back
Close

i) Sincef andg are epi-differentiable at, there exist} % v andv? > v _
such that Quit

b(v) > liminf b,(v2) anda(v) > liminf a,(v)). FER S @A

n—oo n—oo
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Consequently

liminf ¢, (v;,) < liminf a,,(v;) + lim inf b, (v,) < a(v) + liminf b, (v,) .

n—oo n—oo n—oo n—oo

Using the epi-regularity of atz,

liminf b, (v,.) = liminf b, (v2) = liminf b, (v).

n—od n—oo n—oo

Then
liminf c,(v}) < a(v) + b(v).

The conclusion is thus immediate, that fs} ¢ is epi-differentiable at. [
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Fix y* € Y*and letCr(y*, x) := inf (y*,y),
yEF ()

Ne@ (@) ={y" €Y : (y",9) = Cr(y",7)}

and
Yi={y" €Y :Cp(y",T) > —o0}.

Let I(x) := {y* € Y such thaCr(y*,x) = dp (z)} . In particular, ifz € C
we havel (z) := {y* € Y such thaCr(y*, ) = 0} . Consider, whe@r(y*, -)
is epi-differentiable at

Dp(T) :={de X :Yy" € I(T), Va" € 0.Cr(y",-)(T) (z",d) <0}

and

Hp(T) = {d XV e I(@)  Culy*,)s(d) < o} .

Definition 4.1. 7 is said to be regular if there exist two realsr > 0 such that
d(0, F(z)) > Xd(z, F~(0))
forall x € 7 + rBx.
For everyr € X, letdp(x) := d(0, F(z)).

Proposition 4.1. The following inclusions are always true

Epi-differentiability and
Optimality Conditions for an
Extremal Problem Under
Inclusion Constraints

T. Amahroq, N. Gadhi and
Pr H. Riahi

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 15 of 26

J. Ineq. Pure and Appl. Math. 4(2) Art. 41, 2003

httn-//itinarm it adir ann


http://jipam.vu.edu.au/
mailto:
mailto:amahroq@fstg-marrakech.ac.ma
mailto:
mailto:n.gadhi@ucam.ac.ma
mailto:
mailto:riahi@ucam.ac.ma
http://jipam.vu.edu.au/

Proof. Letd € K(F~(0),z). There existyt,,d,) — (07,d) such thatt +
t,d, € F~(0). Considery* € I(z) andz* € X* such thatCy(y*, )z (v) >
(z*,v) for all v € X. All we have to show is thaf'.(y*, )z (d) < 0. Indeed,
since0 € F(Z + t,d,) we haveCr(y*,T + t,d,) < 0. But Cp(y*,7) = 0,
consequently’ . (y*, )z (d) < lim inf tACr(y*, T + tad,) — Cp(y*,T)] < 0.

ThenCL(y*, )z (d) < 0and(z*,d) < 0. The proof is thus complete. O

The following lemma will play a very crucial role in the remainder of the

paper. Epi-differentiability and
. . Optimality Conditions for an
Lemma 4.2. Let 9dr be the Clarke subdifferential. We assuiiido have the Extremal Problem Under

Inclusion Constraints

following properties.
T. Amahroq, N. Gadhi and

I. F'is Lipschitz atz, Pr H. Riahi
ii. 0.Cr(y*,-) (z)is upper semicontinuous (&*, )) whenX*, Y* are en-
dowed with the weak-star topology aid with the strong topology, that Title Page
is, if 2% € 0.0r(y:,-) (,) Wherez* = z*in X*, y* % y*in Y* and Contents
x, — xin X, thenz* € 0.Cr(y*, ) (x). % =
Then
Adp(T) C co{0.Cr(y*,T) 1 y* € I(T) N B} < 4
Proof. To prove the lemma, we need the following result of Thibaiiif [ Eo 20
Leth : X — R be alocally Lipschitzian functior/ a subset ofX” such that Close
X/H is Haar-nul set and at every € H, the functionh is Gateaux differen- Quit

tiable and has Gateaux differentih (z) . Then we have
Page 16 of 26

1. h(xz,v) = max{(z*,v) : 2* € Ly (h,x)} for everyv € X,

J. Ineq. Pure and Appl. Math. 4(2) Art. 41, 2003

httn-//itinarm it adir ann


http://jipam.vu.edu.au/
mailto:
mailto:amahroq@fstg-marrakech.ac.ma
mailto:
mailto:n.gadhi@ucam.ac.ma
mailto:
mailto:riahi@ucam.ac.ma
http://jipam.vu.edu.au/

2. 0h(z) = {coLy (h,z)},

whereLy (h,x) = {lim supVh(z,) : x, € H, x, — ZE} and the “limit ”

of {Vh (z,)} is in the weak topology.

Now, from Christensen’s Theorenz][applied to the locally Lipschitzian
functiondy it follows that there exists a subskt C X such thatlr is Gateaux
differentiable on\/ and X /M is a Haar-nul set.

For everyz,, € M,y € I (z,) "B}, v € X we have

<VdF (xn) ,U) — lim dF (xn + 5?)) — dF (:L‘n)

e—0 £
S lim CF(CU:; Tn + 5'0) - OF(y;iv xn)
e—0 £
C * n - C *7 n
< Tim sup £ (Y Tn + £40) = Cr(Yn, Tn)
k—oo €k

SinceC'r is epi-derivable, there existg — v such that

C o - C o
(Y (v) > Tim sup S Wnr Tn & ExV) = Crlyn, Tn)
k—o00 €k

On the other hand,'r is « ||y ||-Lipschitz. Consequently

T (o) o) < tim sup Wi+ E601) = Crp. ) + 2 | o = v]
’ - k—oo €k

< C}?(y:n ')acn (U) + lim sup A€k HynH “Uk - UH

k—o0 €k
< C%‘(y;;a ')xn (U) .
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Hence

(41) VdF (l‘n> - 8eCp(ny, )m

"

Itis easily seen that the set-valued map- I (x)NB}. iS upper semi-continuous.
Moreover, since).Cr(y*,-) (x) iS upper semicontinuous, the set valued-map
x +— G (z) defined by

G(z):={z": 2" € 0.Cr(y*,z)andy” € I (x) N B} }

is upper semi-continuous as well.
From @.1), we have

The lemma now follows from the second part of the mentioned result of Thibault
and the compactness of the é&fx) (in the weak topology). O

In the following, we give necessary optimality conditions of type Fermat.
Throughout the reminder of the paper, we assume that the fungtisrepi-
differentiable, the support functiof’(z*, -) of the set valued-map’ is epi-
differentiable and tha®.C'»(y*, -) (z) is upper semicontinuous.

Theorem 4.3. Consider problem ). Suppose also thatis regular.
If z is a solution of {°) then

(4.2) fz(v) <0

forall v € Dp(T).
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We begin by giving an important lemma which we shall use later on.

Lemma 4.4. If T is regular then
Hp(Z) = Dp(T) = K(F(0), 7).
Proof. All we have to show is thabr(7) C K(F~(0), ). Letd € Dp(T) with

d # 0. Without loss of generality we can assume théf = 1. As 7 is regular,

we can fixr > 0 and)\ > 0 such that
(4.3) dp(z) > Ad(x, F~(0))

forallz €e 7 + rBy.
Let¢, \, 0. Sinceddr(-) is upper semicontinuous, there exists> 0 such
that

(4.4) ddp(x) C 0dp(T) + t, \B

forallz € 7+ r,Bx.

Settingu,, := min (r, r,, t,) , and by Lebourg’s Mean value Theorerij,[we
can assert that for any € N there existc,, € [T, T + u,d] andz? € ddp(x,)
such that

dp(T + pind) = dp(T) = (25, pind)

< sup (Y ped) = sup  (yn,d).
y3 €0dp (vn) yi €0dp (zn)

Observe that,, € [Z,7 + p,d] C T + r,B. From @.4) we get

sup  (yr.dy < sup  (yi,d) +t.\
y;e@dF(:cn) y,’;eé)dp(f)
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By virtue of Lemma4.2,
0dp(T) C co{0.Cr(y*,T) : y* € I(Z) N B }

and consequentlyr (7 + p,d) < p.t,A. Taking account of4.3), we deduce
d(T + pnd, F~(0)) < pinty, < 2unt,.

This implies the existence of a sequerieg) such that fom large enough,
T+ ppv, € F7(0) and||T + pnd — (T + pnvn)|| = pn l|vn — d|] < 2pnts,.
Henced € K(F~(0), 7). This ends the proof of the lemma. O

Proof of Theoremd.3. Letv € Dp(Z). By virtue of Lemmad.4,v € K(F~(0),z),

hence there exist,,) \, 0 andv,, — v such that + ¢,v,, € F~(0). Sincer is
a solution of (), there exists,, € N such that for any. > ny f(Z + t,v,) <
f(z). From the epi-differentiability off atz, one gets

f3(v) < liminf(Ay, f)z(v,) < 0.

The proof is thus complete. O

Remark 4.1. Without the regularity of, the proof of Theorem.3permit to get

fo(v) 0 < Crly*, )z (v)

By virtue of the complexity df~(0), we were forced to adog? () instead of
K(F~(0),z) in Theorenm¥.3.

for everyv € K(F~(0),z) and everyy* € I().

Theorem 4.5. Consider problem?) and let us assume thdim (X) < +oo.
Suppose that is regular and thatf is Lipschitz atr.
Thenz is a solution of ) wheneverf.(v) < 0 for anyv € Dy(7)\ {0} .
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Proof. Assume the contrary, that is, that the statement of Thearéns not
true. Then there exists a sequerfeg) C I (0) satisfyingz, — 7 and
fzn) > f(@) Vn. Lett, == |z, — 7| andv, = "’“"”t—_x Since dim (X)

is finite, there exist¥ € X with ||7]] = 1 and a subsgquence noted another
time (v, ) such thawv,, — v. From the epi-differentiability of atz, there exists
v, — v such that

Settinga,, = t," [f(T + t,0,) — f(@)], by = ¢, [f(@ + tav,) — f(T)] and
¢n = b, — a,. We have thay is Lipschitz atz, lim sup ¢, = 0 and that,, > 0;

n—-—+o00
consequentlyf(7) > limsup a,, > limsup b, — limsup ¢, > 0. This conflicts
n—-+oo n——+o0o n—-+oo
with o € Dp(7)\ {0} and the theorem follows. O

f is said to be hypo-differentiable & with f; . as its hypo-derivative, if
— f is epi-differentiable af. In this casef; ; = —(—f);-

Theorem 4.6. Consider problem ) and let us assume thdim (X) < +oo.
Suppose that is regular and thatf is hypo-differentiable at.
Thenz is a solution of {°) wheneverf; .(v) < 0 foranyv € Dp(Z)\ {0} .

Proof. The argument is slightly similar to that used above, but we give it for the
convenience of the reader. Assume the contrary, that is, that the statement of

Theorem¥.5is not true. Then there exists a sequeficg C F'~(0) satisfying
v, — Tandf(z,) > f(T) Vn. Lett, = ||z, — 7| andv, =

. Since

n
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dim (X) is finite, there exist¥ € X with ||| = 1 and a subsequence noted
another timgv, ) such thaw,, — ©. From the hypo—differentiability of atz,

(—f), (@> < lim 1nf(_f) (f—i_ tnvn) — (_f) (f) <0.

n—-+4oo an

Hencef; ;(v) > 0. This is a contradiction since € Dy (7)\ {0} . O

As an application for the above results, we are concerned with the mathe-

matical programming problem Epi-differentiability and
Optimality Conditions for an
Extremal Problem Under

(P*) max f (:E) Inclusion Constraints
SUbjeCt toy; (.T) <0 andhj (ZE) =0 T. Amahrog, N. Gadhi and
foralli € {1,2,...,m} andallj € {1,2,...,k}. ARB !

LetC:= {z:g;i(z) <0, hy (z) =0foralli, j}.Letg(z) = (g1 (2), g2 (), Title Page

. gm () andh (z) = (hy (x), he (z),...,ht (x)). The problem £*) re-
duces to £), where the set-valued mappihg: X = Y = R™ x R is defined

by <« >
F(z):=(g9(x),h(z)) + R x {Ogx}.

Contents

< 4
H H ¥ _ Tom k * *
Obviously, in that cas®}; = R’ x R and for anyy* = (A, ) € Y we have P——
Cr(y" ) = (A g () + (1, h (2)) . Close
It can be verified thaCr (y*,7) = 0 if and only if \;g; () = 0 for all i € Quit
{1,2,...,m}. Page 22 of 26
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ThenI(z) = {(\,p) e RT xR¥: Nyg; (T) =0Vi=1,...,m}, and con-
sequently

Hp(T) = {v eX:V(\p) el Z)\ig% (v) + Zujh;-j (v) < O} :

We deduce from Theorerm3and Theoremnd.5the following optimality condi-
tions for problem {*).

Theorem 4.7. Let7 be a solution of {*). Suppose that the functiorfsand i
are epi-differentiable af, the functiongy; are epi-regular atz and there exist
r > 0and\ > 0 such that

(4.5) d(g (x),R”) < Ad(z,C)
foreveryr € T + rBy.
Then for anyw € X such thatv (A, 1) € R x R¥ satisfying\;g; (T) = 0
and S, Nigls (v) + Yy ik (v) < 0 we have
f%(v) <0.
Remark 4.2. The condition 4.5) ensures the regularity af.

Theorem 4.8. Suppose thalim (X) < co and thatf is Lipschitz atz.
Z will be a solution of ) if for any v € X\ {0} such thatv (\,u) €
R7 x R*, verifying \;g; (Z) = 0 and

m k
Z Nigiz (V) + Z Mjh;E (v) <0,
=1 j=1
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we have
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