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ABSTRACT. Inthis paper, we establish first-order optimality conditions for the problem of min-
imizing a functionf on the solution set of an inclusidh € F (x) where f and the support
function of a set-valued mapping are epi-differentiable at.
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1. INTRODUCTION

Itis well known that epi-convergence of functions is coming to the fore as the correct concept
for many situations in optimization. The strong feature of epi-convergence is that it corresponds
to a geometric concept of approximation much like the one used in classical differential analysis
(see[2]). Derivatives defined in terms of it therefore have a certain “robustness” that can be
advantageous. Our principal objective is to give necessary and sufficient optimality conditions
of type Ferma for the optimization problem

(P) Maximize f(z) subject ta) € F(x)
wheref is a function from a reflexive Banach spa¥einto R U {+occ} and F' is a set valued
map defined fromX into another reflexive Banach spake
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2 T. AMAHROQ, N. GADHI, AND H. RIAHI

The organization of the paper is as follows. Secfipn 2 contains basic definitions and prelim-
inaries that are widely used in the sequel. In Sedtjon 3 we study the epi-differentiability of the
support function of” defined byC'r(y*, x) := inf cp) (y*, y) for everyy* € Y. Sectiorﬂfl is
devoted to the optimality conditions and also for an application in mathematical programming
problems.

2. PRELIMINARIES

Let F' be a mapping defined iX with nonempty, closed and convex valuesimand letX*
be the topological dual ok
In all the sequel, we denote the domainfoaind its graph by, respectively,

Dom(F) :={zx € X : F(x) # 0},
Gr(F):={(z,y) e X xY 1y e F(x)}.
Let us recall some definitions.

Definition 2.1. A set-valued mapping’ is said to be locally Lipschitz at if there existsy > 0
andr > 0 such that

F(z) C F(2) + a|z — 2'|| By

for all x andz’ in T + rBy, whereB x indicates the unit ball centered at the origin in spAce

Let A be an arbitrary nonempty subset®f The notions of contingent cone and tangent cone
to A at a pointz € A will be used frequently in this paper.

The contingent cone td atz is

K (S,7) :={veX:3(t) \\0, Jv, »v:T+1t,v, €S, Vn}.
The tangent cone td at7 is
k(A Z) = {UEX cVt, — 07,3, v T+t €A Vn}.

Definition 2.2. A set-valued magF' is said to be proto-differentiable &t,y) € Gr(F) if the
contingent cond{ (Gr(F'), (z, 7)) coincides with the tangent cor¢Gr(F), (Z,7)).

The proto-derivative is thus the set-valued map denotef) By the graph of which is the
common set

Gr(‘DFf»?) = K(GI'F, (Tv g)) = k’(GI‘F, <E> y))
For more details, seel[1] and [9].
Lemma 2.1. Let F' be a Lipschitz set valued mapaandy € F(Z), one has
i) limsup D, Fzgy(v) = limsup D, Fzy5 (),

(t,w)—(07) t—0+
i) liminf D;Fzy;(v) = limsup D;Fz5 (D),
) (o D () = lin up Di g (0)
ili lim D;F;5; (v) =limsup D, Fz5 (V)
) () for D (V) = on b Doy (0)

With D, Fy 5 (v) = t~1(F(T + tv) — 7).

Proof. i) The inclusion” O ” is trivial. Let us prove the opposite inclusion. Consider any
w € limsup D;Fzz (v), there exist§t,, v, w,) — (07,7, w) such thaty + t,w,, €
(tv)—(0F )
F(Z + t,v,) . As F'is Lipschitz atz, there exists;, € N such that for any: > n, one
has

F (T +tyon) C F (T + ta0) + oty |[vn — || By.
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Sincey + t,w, € F (T + t,v,), there exis{w,,) C Y and(b,) C By such that for any
n > ngwe gety+t,w, = y+t,w,+at, |v, — 7| b, andy+t,w, € F (T + t,0) . This
implies that(t,,, w,) — (0%, w) andw, € D, Fz5 (V). Hencew € limsup D, Fz 5 (V) .
t—0+
i) It suffices to prove thatlimsup D, F;y (v) C liminf Dy F5 5 (D).
(t:0)— (0% ) =07

Letw € limsup D;Fz3(v) and lett, \, 0F. Then there exist&, — w such
(tv)—(0F,7)

thaty + t,w, € F (T + t,v) . Considering a sequeneg — v; and using the Lipschitz
property of F' at z, there existny € N, (w,) C Y and(b,) C By such thaty +
thw, =7+ ty,w, + at, ||v, — 0| b, andy + t,w, € F (T + t,v,) foralln > ny. Then
Wy, € limsup Dy, F5(v,) with w,, — w.
t—0+
iii) Itis a direct consequence pfandii).

O

Proposition 2.2. Let F' be a set valued map froidi into Y and(z,y) € Gr(F). If F'is Lipschitz
atz then F is proto-differentiable atz,y) with a proto-derivativeD F; 5 (v) if and only if for
everyv € X
DF;5(v) = limsup Dy F55 (v) exists.
t—0t
Proof. i) Fix (v,w) € K(GrF,(Z,7)). There existgt,, v,, w,) — (07, v, w) such that

wy, € Dy, Fry(vy,); thatisw € ( li)m(irif )DtFm(E). Using Lemma 2.1 one has €
t,v)—(0T,v

( h)m(inf )DtFm(’ﬁ). Consequently, for anyt,,v,) — (0T, v) there existso, — w
t,v)— (0T v

such thatlz, ) + t, (v, w,) € Gr(F). This implies thatv, w) € k(Gr F, (Z,7)), and
hence the proto-differentiability of at (7, 7).
i) Fixw e litmggf D,F; 5 (v) and lett,, N\, 0. From Lemma 2.1, one has € limsup
- (t,v")—(0t,v)
D, F;5 (v") and consequentlyy, w) € K(Gr F, (z,7)). Thus by proto-differentiability
(v,w) € k(Gr F,(z,7)). Then there existév,,, w,) — (v,w) such thaty + t,w, €
F (Z + t,v,). Using the Lipschitz property of” atz, there existss, — w such that

Wy, € Dy, Fr3 (v) . Hencew € lim sup D, F5 5(v); and the proof is finished.
t—0t

O

In order to define the epi-derivative, as introduced by Rockaféllar [8], let us recall the notion
of epi-convergence and some of its main properties; for more details/see [8].
A sequence of functiong,, from X into R U {+oc} is said to ber-epi-converging for a

topologyr from X, and we denote by-elm ,, its 7-epi-limit, if the two following conditions
hold

Va, >z p(z) < limsup g, (z,),
n—-4o0o

Iz, — p(x) > limsup @, (2,).
n—-+4oo

A family of functions(, ).~ is said to be epi-converging towhent \ 0, if for every sequence
t, \\ 0, the sequence of functiorig,, ) epi-converges te.

When s designs the strong topology of andw its weak sequential topology, a sequence
of functions(y,,) is said to be Mosco-epi-converging ¢oif (y,,) s-epi-converges and-epi-
converges t@, that is

Yo, = v o (v) < liminf o, (v,),
Fvp, — v @ (v) > limsup @, (vn)
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Finally, recall that a sequence of subsgts) r-converges in the sense of Kuratawski-Painlevé
to another subset if the indicator functions)c, of C,, T -epi-converge t@.. Note, seel[2],
that if X is reflexive and C,,), C' is a sequence of closed convex subsets, tlig¢n Mosco-
converges ta@' if and only if d(z, C,,) — d(z,C) forall z € X.

Let f be a function defined fronX into R U {400}, finite at a pointz. The functionf is
(Mosco-) epi-differentiable at if the difference quotient functions

(Af)z() =t (f@+1t) = f(T)); t >0,
have the property that the (Mosco-) epi-limit functignexists andf.(0) > —oo. Note that the
epigraph off., is the proto-derivative of the epigraph pfat (z, f(7)).
By 0.f (), the epi-gradient off atz, we denote the set of all vector§ € X* satisfying
fo(v) > (z*,v) forallv € X.

xT

3. EPI-DIFFERENTIABILITY OF THE SUPPORT FUNCTION OF A SET-VALUED
M APPING

In the remainder of this paper we assume tNats reflexive and we denote by, (-) the
support function of a subset of X

0% (x*) :=sup (x*, x) for everyz* € X*.
€A

It is easy to see that for two subsetand B of X
0arp() = 04() +d5(-),
AC B = 0,() <05(),

and if A and B are closed convex then the last implication is an equivalence.
For the following,

e [ will be a set-valued mapping frot into Y with a closed convex set-values.
e Np@& (y) designs the normal cone () aty € F(7), i.e.

Ne@ (@) ={y" €Y : (y"y—7y) <0 forally € F(z)}
={y eY" : (y"\9) = 0pa(v)} -
e We denote by} = {y* eyY”: 5}@ (y*) < —|—oo} the barrier cone of. It is easy to
prove that wherf' is locally Lipschitz, see [5], the séf: does not depend on

Definition 3.1. A function f : X — R U {+oc} is said to be (Mosco-) epi-regular atf the
(Mosco-) epi-derivative of exists atr and coincides with the directional derivative patz.

Lemma 3.1. Let (Z,y) € Gr F. Suppose that’ is Lipschitz atz, then the function); (v) :=
53%@(11)(3/*) is equi-locally Lipschitz.

Proof. Fix© € X. As F'is Lipschitz atz, there existx > 0 andr > 0 such that for any € |0, r]
and anyv, v € v+ rBy
F(T+tv) C F(T+ ') + at||jv — V|| By-.
Consequently D, F')z5(v) C (D:F)z5(v") + a v — /|| By. Hence
¥ (0) = ¢ (V)] < afly”[| flo — o]

foranyt € |0,r] and anyv, v’ € v + rBx.
The proof is thus complete. O
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Proposition 3.2. Let (7,7) € Gr F. Suppose that” is reflexive and that for every sequence
tn \ 0
(3.1) d (-, Dy, Fzz(v)) — d (-, DF55(v)).
Then:
i) the set-valued malyp, r, () graph-converges td/pr, (v,
i) there existsw € DFz5 (v ) y* € Npp ) (w), w, € Dy Fry(v) andy; €
Np,, By 5(v) (wy) such that(w,,, y;) — (w, y*) andé})tnpfg(v)(y;) — 5DF§§(’U) ().
Motivated by the article of Demyanov, Lemaréchal and Zowe [4], where the authors approx-
imate F' under the assumption that

Obrp ') = 1m0 (T (V) = 0w (7))

exists (as an element &) for everyy* € RP, we give in Theorem 3|3 sufficient conditions
insuring the existence of this derivative.

Theorem 3.3.Let (7,y) € Gr F. Suppose that’ is reflexive,F' is directionally Lipschitz ar
and thatN ) (7) # 0. Suppose also that the conditign (3.1) is satisfied for eaghd that the
functiondy, . (") is equi-Lipschitz. i.e35 > 0 such that

660y WUn) = 06, (") = Bllun — 7|l

Then for ally* € Ng@& (7), the functionf (z ) 1= 0p(y") = sup (y*,y) is epi-regular atz,
yeF (x)
with 67, ., (y*) as its epi-derivative

Proof. Lett, \, 0. By definition of f one has
' [f(@ + tav) = f(@)] = b, 1y (W)

SettingCy, (v) := Dy, Fry (v), C(v) := DF55(v) and¥, (v) = &, ,(y"), then condition
) permits us to conclude that, ., Mosco-converges t (.. Using Attouch’s theorem [2],
we conclude thad;, ,, Mosco-converges to;.. Hence

a) for anyy’ N y* one hasi;,, (y*) < liminf dg, (,(v5),
b) there existg’ > y* such thavy, ,, (y*) > lim sup 8¢ () (U)-

Let us prove that
) foranywv, — vone hasl (v) := i, (y*) < liminf ¥, (v,),
i) there exists,, — v such thatV (v) > limsup V,,(v,,).
i) Let v, — v. From Lemma 3]1, there exists € N such that for any. > n,

Un(vn) 2 Un(v) = aly"[| [[on = vl|-

Lettingn — +oo we getliminf ¥, (v,) > liminf ¥, (v). Finally, using a), we have
liminf W, (v,,) > W (v) . The result is thus proved.

ii) Considering b), there existg; — y* such thatW (v) > limsupd;, (y;). Since
0., (w(+) Is equi-Lipschitz, there exist$ > 0 such that

0, (0) W) 2 06,y (Y") = B llyn — vl
Hencelim sup ¥, (v,) < ¥(v). Moreover, since" is directionally Lipschitz af on has

lim &p,py (") = T Oy (Y7)

t—0F (tv")—=(0F0) Y
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Thus
5?DF)E§(’U)(y*) = tli%}r 5?DtF)M(v) (y") = fz(v) = tlilgﬂr t_l[f(f +tv) — f(T)].
The proof of the theorem is complete. O

Remark 3.4. When, instead of[ (3]1), we assume the Mosco-Proto-differentiability’ @it
(z,y) € Gr F; we can justify the Mosco-epi-regularity gfatz.

Indeed, suppose that there exists— v such thatD,, F; 5 (v,) does not Mosco-converge
to DF;5 (v). Consequently, there exists — z such thatz, € t;! (F(zZ + t,v,) —¥) and
2z & DFzy(v). Thus (v, z,) — (v,2), (Un,2,) € t;1(Gr F — (7,7)) andz ¢ DFsy (v);
which contradictg’ Mosco-Proto-differentiable at

Theorem 3.5.Let f : X — R U {+o0} be a function epi-differentiable atand letg : X —
R U {+0oc} be a function epi-regular at. Thenf + ¢ is epi-differentiable at.

Proof. Setting
an(v) =1 [f(T + tyv) = f(@)], ba(v) =t [9(T + tyv) — 9()]
and
cn(v) = t_l[(f +9)(T + tyv) — (f + 9)(T)].
) Letwv, = v. Sincef andg are epi-differentiable at, we have
lim glf cn(vy) > h,?li{}f an(vy) + ligggf by (vn) > a(v) + b(v).

n—

i) Since f andg are epi-differentiable at, there exist! % v andv? - v such that

b(v) > liminf b,(v2) anda(v) > liminf a,(v}).

Consequently
liminf ¢, (v,) < liminf a,(v;,) + lim inf b, (v,) < a(v) + liminf b, (v;) .
Using the epi-regularity of atz,

lim inf b, (v}) = liminf b,(v2) = lim inf b, (v).

Then
liminf ¢, (v)) < a(v) + b(v).
The conclusion is thus immediate, that fs} ¢ is epi-differentiable at. O

4. OPTIMALITY CONDITIONS

Fixy* € Y*and letCr(y*, z) := inf (y*,y),
yeF(z)

Nrp@ (@) ={y" € Y™ : {y".7) = Cr(y",7)}
and
Yir={y" €Y :Cp(y",T) > —o0}.
Let I(z) := {y* € Y} such thaCr(y*,z) = dr (x)} . In particular, ifz € C we havel (7) :=
{y* € Yz such thaCr(y*, ) = 0} . Consider, whet'»(y*, -) is epi-differentiable ar
Dp(z):={de X :Vy* € I[(T), Vz* € 0.Cp(y*,-)(T) (x*,d) <0}
and
Hp(@) = {de X vy € I()  Cply'")s(d) <0},
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Definition 4.1. 7 is said to be regular if there exist two reals- > 0 such that
d(0, F(z)) > XA d(z, F~(0))
forallz € 7 + rBy.
Foreveryr € X, letdp(z) := d(0, F(x)).
Proposition 4.1. The following inclusions are always true
K(F~(0),7) C Hr(T) C Dp(Z).

Proof. Let d € K(F~(0),7). There existdt,,d,) — (07, d) such thatt + ¢,d,, € F~(0).
Considery* € 1(7) andz* € X* such thaC},(y*, )z (v) > (z*,v) for all v € X. All we have
to show is that’-(y*, )z (d) < 0. Indeed, sincé € F(Z+t,d,) we haveCr(y*, T+t,d,) < 0.
ButCr(y*,Z) = 0, consequently’. (y*, )z (d) < h}fii;lf tCr(y*, T+ t,d,) — Cr(y*,T)] <

0. ThenC}(y*, )z (d) < 0 and(z*,d) < 0. The proof is thus complete. O
The following lemma will play a very crucial role in the remainder of the paper.

Lemma 4.2. Let 9dr be the Clarke subdifferential. We assuii¢o have the following prop-
erties.

I. F'is Lipschitz atz,

ii. 0.Cr(y*,-) (z)is upper semicontinuous (&*, z)) whenX*, Y* are endowed with the
weak-star topology an& with the strong topology, that is, ift € 0.Cr(y?,-) (z,)
wherez? Y 2% in Xy iR y*inY*andz, — xin X, thenz* € 0.Cr(y*,-) (x).

Then
ddp(T) C co{0.Cr(y", @) :y* € [(T) N B }.

Proof. To prove the lemma, we need the following result of Thibaul [11].

Leth : X — R be a locally Lipschitzian functiori/ a subset ofX" such thatX/H is Haar-
nul set and at every € H, the functions is Gateaux differentiable and has Gateaux differential
Vh (z). Then we have

(1) h(z,v) = max{(z*,v) : a* € Ly (h,z)} for everyv € X,
(2) Oh (z) = {coLy (h,x)},

whereLy (h,x) = {lim supVh (z,) : x, € H, x, — w} and the “limit” of {Vh (x,)} is

in the weak topology.

Now, from Christensen’s Theorem! [3] applied to the locally Lipschitzian funcfieit fol-
lows that there exists a subset C X such thatir is Gateaux differentiable of/ and X /M
is a Haar-nul set.

For everyx,, € M,y € I (z,) "B}, v € X we have

dF (:cn + EU) — dF ($n)

(Vdp (z,),v) = lim

e—0 £
< lim OF(y:w Tp + 5’0) B CF(y;kw xn)
e—0 £
O * n - O *7 n
< limsup i (Yns T + Ex0) = Cr(yn, @n)
k—oo Ek

SinceC' is epi-derivable, there existg — v such that

Cr(y, x, — Cr(y*, zm
C%‘(y:m )mn (U) Z lim sup F(yn’ Tn + Ekvk) F(yn T ) '
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On the other hand,'r is « ||y ||-Lipschitz. Consequently

<VdF (I ) U> < limsup CF(y;kL’ Ty + gkvk) - OF(y:w 1771) + agg ||y:z|| ||Uk - UH
7 o k—oo Ek

< Cr(yn, ), (v) + limsup gy [lynll [low — vl

k—o00 €k
< CrYns )an (V) -

Hence
(41) vdF (xn) € aeCF(y;;a )x

It is easily seen that the set-valued map- [ (z) N B3 is upper semi-continuous. Moreover,
sinced.Cr(y*,-) (z) is upper semicontinuous, the set valued-map G (=) defined by

G(x):={2" 2" € 0.Cp(y*,x) andy™ € I (z) N B} }

is upper semi-continuous as well.
From [4.1), we have

nt

Ly (dp,z) C G(x).
The lemma now follows from the second part of the mentioned result of Thibault and the com-
pactness of the sét () (in the weak topology). O

In the following, we give necessary optimality conditions of type Fermat. Throughout the
reminder of the paper, we assume that the funcfias epi-differentiable, the support func-
tion Cr(z*,-) of the set valued-map’ is epi-differentiable and thal.C'r(y*,-) (z) is upper
semicontinuous.

Theorem 4.3. Consider problemF). Suppose also thatis regular.
If z is a solution of[P) then

(4.2) fa(v) 0
forall v € Dp(Z).
We begin by giving an important lemma which we shall use later on.

Lemma 4.4. If T is regular then
Hp(Z) = Dp(T) = K(F(0), 7).
Proof. All we have to show is thabr(z) C K(F~(0),z). Letd € Dgr(Z) with d # 0. Without
A

, T
loss of generality we can assume thdf = 1. As 7 is regular, we can fix > 0 and\ > 0
such that

(4.3) dp(x) > Ad(z, F~(0))

forallz € 7 + rBy.
Lett, \, 0. Sinceddr(-) is upper semicontinuous, there exists> 0 such that

(4.4) ddp(z) C 0dp(T) + t,\B

forallz € 7+ r,Bx.
Settingy,, := min (r,7,,t,) , and by Lebourg’s Mean value Theorelm [7], we can assert that
for anyn € N there existe,, € (7,7 + p,d] andz;, € ddp(x,,) such that

dp(T + pnd) — dp(T) = (25, ppd) < sup (Y, pnd) = g1, sup  {(yi,d) .
y;;e@dp(wn) y;;e@dp(wn)
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Observe that, € [T, + p,d] C T + r,B. From [4.4) we get
sup  (yn,d) < sup  (yn,d) +tp .
¥ €0dr (2n) y:€dr (T)
By virtue of Lemma 4.p,
Idp(T) C co{0.Cr(y*,T) : y* € I(T) N B} }

and consequentWy (Z-+,d) < p,t,\. Taking account of (4]3), we dedu@&r—+,,d, £~ (0)) <
Pty < 2ppts,.

This implies the existence of a sequeficg) such that form large enoughz + p1,,v,, € F~(0)
and ||z + pnd — (T + ppvn)|| = pin ||vn — d|| < 2pnt,. Henced € K(F~(0),z). This ends the
proof of the lemma. O

Proof of Theoremi 4]3Letv € Dy (). By virtue of Lemmd 4.4y € K(F~(0), ), hence there
exist (t,) \, 0 andv, — v such thatt + ¢,v, € F~(0). Sincez is a solution of [P), there
existsn, € N such that for any: > ny f(Z + t,v,) < f(Z). From the epi-differentiability of
f atz, one getsf,(v) < liminf(A,, f)z(v,) < 0. The proof is thus complete. O

Remark 4.5. Without the regularity ofz, the proof of Theorerp 4|3 permit to get
fo(v) <0< Cu(y*, )z (v)  foreveryv € K(F~(0),z) and everyy* € I(%).

By virtue of the complexity o~ (0), we were forced to adog?r(7) instead of K (£~ (0), 7)
in Theoren 4.B.

Theorem 4.6. Consider problem#) and let us assume thdim (X) < +oco. Suppose that
is regular and thatf is Lipschitz atr.
Thenz is a solution of[P) wheneverf.(v) < 0 for anyv € Dp(7)\ {0} .

Proof. Assume the contrary, that is, that the statement of Thepreim 4.6 is not true. Then there
exists a sequende,,) C F'~(0) satisfyingz,, — 7 and f(z,,) > f(z) Vn. Lett, := ||z, — Z|

andv, := x”t—_x Sincedim (X) is finite, there exists € X with ||| = 1 and a subsequence

noted another timév,,) such that,, — ©. From the epi-differentiability off atz, there exists
v, — v such that

n—-4o0o tn
Settinga,, := t 1 [f(ZT + t,0,) — f(T)], by := t 1 [f(T + t,v,) — f(T)] andc, = b, — a,.
We have thatf is Lipschitz atz, limsupc, = 0 and thath, > 0; consequentlyf.(7) >

n—-+o00

lim sup a,, > limsup b,, — lim sup ¢,, > 0. This conflicts withv € Dr(7)\ {0} and the theorem
n—+0o00 n—-+400 n—-4o0o

follows. U

[ is said to be hypo-differentiableatwith f; . as its hypo-derivative, if- f is epi-differentiable
atz. In this casef; ; = —(—f)z

T

Theorem 4.7. Consider problem#) and let us assume thdim (X) < +oo. Suppose that
is regular and thatf is hypo-differentiable at.
Thenz is a solution of[P) wheneverf;, . (v) < 0 for anyv € Dp(7)\ {0} .

Proof. The argument is slightly similar to that used above, but we give it for the convenience of
the reader. Assume the contrary, thatis, that the statement of Theoiem 4.6 is not true. Then there
exists a sequende,,) C '~ (0) satisfyingz,, — 7 andf(z,) > f(z) Vn. Lett, = ||z, — 7|
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andv, = x”t—_x Sincedim (X)) is finite, there exists € X with ||v|| = 1 and a subsequence
noted another timév,,) such that,, — v. From the hypo—differentiability of atz,
(_f> (E + tnvn) — (_f> (E>

~

—f)- (©) < liminf <0.
(=f)z (0) < lim inf P <0
Hencef; . (v) > 0. This is a contradiction since € D (7)\ {0} . O

As an application for the above results, we are concerned with the mathematical programming
problem

(P*) max f ()

subject tog; (z) < 0andh; (z) =0

foralli € {1,2,...,m} and allj € {1,2,... k}.
LetC:={z:g;(z) <0, hj(z)=0foralli, j}.Letg(z) = (g1 (2),92(x),...,9m (x)) and
h(z) = (hi(z), hy(x),..., hy (z)). The problem[P*) reduces to[F), where the set-valued
mappingF : X = Y = R™ x R* is defined by

F(2) = (g (@) .1 (@) + RY x {0}

Obviously, in that cas&}; = R x R¥ and for anyy* = (), 1) € Y; we have

Cr(yx) = A g (2) + (m, h(2)) .

It can be verified thaf'r (y*,7) = 0 if and only if \;g; (z) =0 foralli € {1,2,...,m}.
ThenI(z) = {(\,p) € RT xR*: N\g; () =0Vi=1,...,m},and consequently

m k
Hr(T) = {v e X :V(\p) el Z:/\Z-ggE (v) + Z:ujh;j (v) < 0} :

We deduce from Theorem 4.3 and Theofen 4.6 the following optimality conditions for problem
(£7).

Theorem 4.8. Let = be a solution of[P*). Suppose that the functionsand h; are epi-
differentiable atz, the functionsy; are epi-regular atz and there exist > 0 and A > 0
such that

(4.5) d(g (z),R™) < Xd(z,C)

foreveryr € T + rBy.
Then foranyw € X suchthat/ (), 1) € R xR satisfying\;g; (z) = 0and>_", \iglz (v)+
Zj 1 il (v) < 0 we have

fz(v) <0.
Remark 4.9. The condition[(4.p) ensures the regularityzof

Theorem 4.10.Suppose thatim (X) < oo and thatf is Lipschitz atz.
 will be a solution of [P*) if for any v € X\ {0} such thatv (A, 1) € RT x R¥, verifying

m k
S Mgl (0) + 3 il (v) 0,
=1 j=1

we have
fz(v) <0.
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