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Abstract

The function [Γ(x+1)]1/x

x+1 is strictly decreasing on [1,∞), the function [Γ(x+1)]1/x
√

x

is strictly increasing on [2,∞), and the function [Γ(x+1)]1/x
√

x+1
is strictly increasing

on [1,∞), respectively. From these, some inequalities, for example, the Minc-
Sathre inequality, are deduced, and two open problems posed by the second
author are solved partially.
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1. Introduction
In [14], H. Minc and L. Sathre proved that, ifr is a positive integer andφ(r) =

(r!)
1
r , then

(1.1) 1 <
φ(r + 1)

φ(r)
<
r + 1

r
,

which can be rearranged as

(1.2) [Γ(1 + r)]
1
r < [Γ(2 + r)]

1
r+1

and

(1.3)
[Γ(1 + r)]

1
r

r
>

[Γ(2 + r)]
1

r+1

r + 1
.

In [1, 13], H. Alzer and J.S. Martins refined the right inequality in (1.1) and
showed that, ifn is a positive integer, then, for all positive real numbersr, we
have

(1.4)
n

n+ 1
<

(
1

n

n∑
i=1

ir

/
1

n+ 1

n+1∑
i=1

ir

) 1
r

<
n
√
n!

n+1
√

(n+ 1)!
.

Both bounds in (1.4) are the best possible.
There have been many extensions and generalizations of inequalities in (1.4),

please refer to [3, 4, 12, 15, 16, 22, 23, 28] and references therein.
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The inequalities in (1.1) were refined and generalized in [17, 8, 24, 25, 26]
and the following inequalities were obtained:

(1.5)
n+ k + 1

n+m+ k + 1
<

(
n+k∏

i=k+1

i

) 1
n
/(

n+m+k∏
i=k+1

i

) 1
(n+m)

≤
√

n+ k

n+m+ k
,

wherek is a nonnegative integer,n andm are natural numbers. Forn = m = 1,
the equality in (1.5) is valid.

In [18], inequalities in (1.5) were generalized and Qi obtained the following
inequalities on the ratio for the geometric means of a positive arithmetic se-
quence with unit difference for any nonnegative integerk and natural numbers
n andm:

(1.6)
n+ k + 1 + α

n+m+ k + 1 + α
<

[∏n+k
i=k+1(i+ α)

] 1
n

[∏n+m+k
i=k+1 (i+ α)

] 1
(n+m)

≤
√

n+ k + α

n+m+ k + α
,

whereα ∈ [0, 1] is a constant. Forn = m = 1, the equality in (1.6) is valid.
Furthermore, for nonnegative integerk and natural numbersn andm, we

have

a(n+ k + 1) + b

a(n+m+ k + 1) + b
<

[∏n+k
i=k+1(ai+ b)

] 1
n

[∏n+m+k
i=k+1 (ai+ b)

] 1
n+m

(1.7)

≤

√
a(n+ k) + b

a(n+m+ k) + b
,
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wherea is a positive constant andb a nonnegative integer. Forn = m = 1, the
equality in (1.7) is valid. See [9].

It is clear that inequalities in (1.7) extend those in (1.6).
In [10], the following monotonicity results for the Gamma function were

established. The function[Γ(1 + 1
x
)]x decreases withx > 0 andx[Γ(1 + 1

x
)]x

increases withx > 0, which recover the inequalities in (1.1) which refer to
integer values ofr. These are equivalent to the function[Γ(1 + x)]

1
x being

increasing and[Γ(1+x)]
1
x

x
being decreasing on(0,∞), respectively. In addition,

it was proved that the functionx1−γ[Γ(1 + 1
x
)x] decreases for0 < x < 1,

whereγ = 0.57721566 · · · denotes the Euler’s constant, which is equivalent to
[Γ(1+x)]

1
x

x1−γ being increasing on(1,∞).
In [8], the following monotonicity result was obtained: The function

(1.8)
[Γ(x+ y + 1)/Γ(y + 1)]

1
x

x+ y + 1

is decreasing inx ≥ 1 for fixedy ≥ 0. Then, for positive real numbersx andy,
we have

(1.9)
x+ y + 1

x+ y + 2
≤ [Γ(x+ y + 1)/Γ(y + 1)]

1
x

[Γ(x+ y + 2)/Γ(y + 1)]
1

x+1

.

Inequality (1.9) extends and generalizes inequality (1.5), sinceΓ(n+ 1) = n!.
In an unpublished paper drafted by the second author, the following related

results were obtained: Letf be a positive function such thatx
[
f(x+ 1)/f(x)−

1
]

is increasing on[1,∞), then the sequence
{

n
√∏n

i=1 f(i)
/
f(n+ 1)

}∞
n=1
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is decreasing. Iff is a logarithmically concave and positive function defined

on [1,∞), then the sequence
{

n
√∏n

i=1 f(i)
/√

f(n)
}∞

n=1
is increasing. As

consequences of these monotonicities, the lower and upper bounds for the ratio
n

√∏n+k
i=k+1 f(i)

/
n+m

√∏n+k+m
i=k+1 f(i) of the geometric mean sequence{

n

√∏n+k
i=k+1 f(i)

}∞
n=1

are obtained, wherek is a nonnegative integer andm

a natural number.
In [9, 8], the second author, F. Qi, posed the following.

Open Problem 1. For positive real numbersx andy, we have

(1.10)
[Γ(x+ y + 1)/Γ(y + 1)]1/x

[Γ(x+ y + 2)/Γ(y + 1)]1/(x+1)
≤
√

x+ y

x+ y + 1
,

whereΓ denotes the Gamma function.

Open Problem 2.For any positive real numberz, definez! = z(z− 1) · · · {z},
where{z} = z − [z − 1], and [z] denotes Gauss function whose value is the
largest integer not more thanz. Letx > 0 andy ≥ 0 be real numbers, then

(1.11)
x+ 1

x+ y + 1
≤

x
√
x!

x+y
√

(x+ y)!
≤
√

x

x+ y
.

Hence inequalities in (1.10) and (1.11) are equivalent to the following mono-
tonicity results in some sense forx ≥ 1, which are the main results of this paper.
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Theorem 1.1. The functionf(x) = [Γ(x+1)]1/x

x+1
is strictly decreasing on[1,∞),

the functiong(x) = [Γ(x+1)]1/x
√

x
is strictly increasing on[2,∞), and the function

h(x) = [Γ(x+1)]1/x
√

x+1
is strictly incresing on[1,∞), respectively.

Remark 1.1. Note that the functionf(x) is a special case of the function(1.8).
In this paper, we will give a new and simple proof for the monotonicity off(x).
Theorem1.1partially solves the two open problems above.

Remark 1.2. In recent years, many monotonicity results and inequalities in-
volving the Gamma and incomplete Gamma functions have been established,
please refer to [5, 6, 7, 19, 20, 21, 25, 27] and some references therein.
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2. Proof of Theorem1.1
Forx > 1, the following double inequalities are stated in [11, p. 431]:

0 < ln Γ(x)−
[(
x− 1

2

)
lnx− x+

1

2
ln(2π)

]
<

1

x
,(2.1)

1

2x
< lnx− Γ′(x)

Γ(x)
<

1

x
,(2.2)

1

x
<

d2

dx2
ln Γ(x) <

1

x− 1
.(2.3)

In [29, pp. 103–105], the following formula was given:

(2.4)
Γ′(z)

Γ(z)
+ γ =

∫ ∞

0

e−t − e−zt

1− e−t
dt =

∫ 1

0

1− tz−1

1− t
dt,

whereγ denotes the Euler constant andγ = 0.57721566490153286060651 · · · .
See [29, p. 94]. Formula (2.4) can be used to calculateΓ′(k) for k ∈ N. We call
ψ(z) = Γ′(z)

Γ(z)
the digamma or psi function. See [2, p. 71].

Taking the logarithm yields

(2.5) ln f(x) =
1

x
ln Γ(x+ 1)− ln(x+ 1).

Differentiating withx on both sides of (2.5) and using double inequalities (2.1)

http://jipam.vu.edu.au/
mailto:
mailto:qifeng@jzit.edu.cn
mailto:
http://jipam.vu.edu.au/


Monotonicity Results for the
Gamma Function

Chao-Ping Chen and Feng Qi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 14

J. Ineq. Pure and Appl. Math. 4(2) Art. 44, 2003

http://jipam.vu.edu.au

and (2.2) gives us

x2f
′(x)

f(x)
= − ln Γ(x+ 1) + x

Γ′(x+ 1)

Γ(x+ 1)
− x2

x+ 1

< −
[(
x+

1

2

)
ln(x+ 1)− (x+ 1) +

1

2
ln(2π)

]
+ x

[
ln(x+ 1)− 1

2(x+ 1)

]
− x2

x+ 1

= −1

2
ln(x+ 1)− 1

2(x+ 1)
+

1

2
[3− ln(2π)]

, φ(x),

(2.6)

By direct computation, we have

φ′(x) = − x

2(x+ 1)2
< 0.

Thus, the functionφ(x) is strictly decreasing, and thenφ(x) ≤ φ(1) = 5
4
−

1
2
ln(4π) < 0. Thereforef ′(x) < 0 andf(x) is strictly decreasing on[1,∞).
Straightforward calculating and using inequalities in (2.3) for x > 1 pro-

duces

ln g(x) =
1

x
ln Γ(x+ 1)− 1

2
lnx,(2.7)

x2 g
′(x)

g(x)
= − ln Γ(x+ 1) + x

d

dx
ln Γ(x+ 1)− 1

2
x , ϕ(x),(2.8)
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ϕ′(x) = x
d2

dx2
ln Γ(x+ 1)− 1

2
(2.9)

>
x

x+ 1
− 1

2
=

x− 1

2(x+ 1)
> 0.

Therefore, functionϕ(x) is strictly increasing, andϕ(x) ≥ ϕ(2) = Γ′(3)− 1−
ln 2 > 0 by (2.4). Thusg′(x) > 0 and theng(x) is strictly increasing on[2,∞).

Direct computing and using inequalities in (2.3) for x > 1 produces

lnh(x) =
1

x
ln Γ(x+ 1)− 1

2
ln(x+ 1),(2.10)

x2h
′(x)

h(x)
= − ln Γ(x+ 1) + x

d

dx
ln Γ(x+ 1)− x2

2(x+ 1)
, τ(x),(2.11)

τ ′(x) = x
d2

dx2
ln Γ(x+ 1)− x(2 + x)

2(1 + x)2
(2.12)

>
x

x+ 1
− x(2 + x)

2(1 + x)2
=

x2

2(x+ 1)2
> 0.

Therefore, functionτ(x) is strictly increasing, andτ(x) ≥ τ(1) = Γ′(2)− 1
4
>

0. Thush′(x) > 0 and thenh(x) is strictly increasing on[1,∞).
The proof is complete.
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