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ABSTRACT. The function =@+ jg strictly decreasing ofl, o), the functionZ NG

x+1
is strictly increasing otf2, co), and the functlor% is strictly increasing otl, co), re-
spectively. From these, some inequalities, for example, the Minc-Sathre inequality, are deduced,
and two open problems posed by the second author are solved partially.
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1. INTRODUCTION

In [14], H. Minc and L. Sathre proved that,ifis a positive integer and(r) = (r!)i, then
o(r+1) r+1

(1.1) 1< R
which can be rearranged as
(1.2) [C(1+ 7)) < [[(2+7)]7
and

T+ _ L@+

(1.3)
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In [1,[13], H. Alzer and J.S. Martins refined the right inequalityin(1.1) and showed that, if
is a positive integer, then, for all positive real numbera/e have

n n+1 r n

14 n < 1 " ! ] < —n'
(L.4) n+1 n ; n+1 ; "/ (n+ 1)!
Both bounds in[(1]4) are the best possible.

There have been many extensions and generalizations of inequalifieg in (1.4), please refer to
[3,14,12, 15 16, 22, 23, 28] and references therein.

The inequalities in(1]1) were refined and generalized in[[17,18, 24, 25, 26] and the following
inequalities were obtained:

n + k +1 n+k n n+m-+k (n+m) "+ A
1.5 < : : <1
(13) n+m+k+1 (Jgf>//<glf “Vant+m+k’

wherek is a nonnegative integet,andm are natural numbers. Far= m = 1, the equality in
(1.5) is valid.

In [18], inequalities in[(15) were generalized and Qi obtained the following inequalities on
the ratio for the geometric means of a positive arithmetic sequence with unit difference for any
nonnegative integer and natural numbers andm:

(1.6)

1
n—+k . n
n+k+1+a _ [Hi:k+1(l+a):| <\/ n+k+ o
n+m+k+1+a btk - i Vn+m4k+a’
T2 G+ )
wherea € [0, 1] is a constant. For = m = 1, the equality in[(1.6) is valid.
Furthermore, for nonnegative integeand natural numberns andm, we have

1

an+k+1)+b _ [H?:kkﬂ(ai"‘b)r S\/ a(n+k)+b

(1.7)

aln+m+k+1)+5b et , i aln+m+k)+0b’
( e en) )

whereq is a positive constant arida nonnegative integer. Far=m = 1, the equality in[(L.]7)

is valid. Seel[9].

Itis clear that inequalities i (1.7) extend thosein|(1.6).

In [10], the following monotonicity results for the Gamma function were established. The
function [[(1 + 1)]* decreases with: > 0 andz[I'(1 + 1)]* increases with: > 0, which
recover the inequalities if (1.1) which refer to integer values. oFhese are equivalent to the

1
function[I'(1+ )]« being increasing anw being decreasing o), co), respectively. In
addition, it was proved that the functien—7[I'(1 + 2)*] decreases fdy < = < 1, wherey =

0.57721566 - - - denotes the Euler’s constant, which is equivalenf 21" being increasing
on (1, c0).

In [8], the following monotonicity result was obtained: The function
L@ +y+1)/T(y+ 1)

r+y+1

is decreasing ir > 1 for fixedy > 0. Then, for positive real numbersandy, we have
ty+1_ [laty+1)/Ty+1)
THY+2 7 [D(a4y+2)/T(y + D)=

(1.8)

(1.9)
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Inequality [1.9) extends and generalizes inequdlity] (1.5), ditiget+ 1) = n!.

In an unpublished paper drafted by the second author, the following related results were ob-
tained: Letf be a positive function such that f(z + 1)/ f(z) — 1] is increasing orjl, o),
then the sequenc% Y1, f(z’)/ f(n+ 1)} is decreasing. Iff is a logarithmically con-
n=1

cave and positive function defined dnoco), then the sequencz{e{t/]"[?:1 f(z’)/ V f(n) }Oo is
n=1
increasing. As consequences of these monotonicities, the lower and upper bounds for the ratio

YTLEE L FG) / R TIEE™ f(3) of the geometric mean sequen{e(”/ [ f (i)}

are obtained, wherkis a nonnegative integer amad a natural number.
In [9, 8], the second author, F. Qi, posed the following.

n=1

Open Problem 1. For positive real numbets andy, we have

[C(z+y+1)/T(y+1)"" Ty

wherel' denotes the Gamma function.

Open Problem 2. For any positive real number, definez! = z(z — 1) --- {z}, where{z} =
z — [z — 1], and|z] denotes Gauss function whose value is the largest integer not more.than
Letx > 0 andy > 0 be real numbers, then

V&
(1.11) x+1 < V! < T
r+y+17 R(x+y) r+y
Hence inequalities iff (1.10) and (1}11) are equivalent to the following monotonicity results
in some sense far > 1, which are the main results of this paper.

Theorem 1.1. The functionf(z) = L&V is strictly decreasing offl, oo), the function

z+1
g(z) = w is strictly increasing ori2, co), and the functiorh(z) = % is strictly

incresing on[1, o), respectively.

Remark 1.2. Note that the functiorf(z) is a special case of the functidn ([L.8). In this paper,
we will give a new and simple proof for the monotonicity fifc). Theorenj 11 partially solves
the two open problems above.

Remark 1.3. In recent years, many monotonicity results and inequalities involving the Gamma
and incomplete Gamma functions have been established, please refer ta [5./6, 7, 19, 20, 21, 25,
27] and some references therein.

2. PROOF OF THEOREM [1.1

Forx > 1, the following double inequalities are stated(inl[11, p. 431]:

1 1 1
(2.1) 0<Inl(z)-— [(m——) Inx —z+ -In(27)| < —,
2 2 x
1 Mz) 1
2.2 — <Inx— -
(2:2) 2z = ['(z) <z
I
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In [29, pp. 103-105], the following formula was given:
I'(z2) © et — et bl — ¢t
2.4 = —dt = —dt
(2:4) F(z)+7 /0 1—et /0 1—t
wherey denotes the Euler constant and- 0.57721566490153286060651 - - - . Seel[29, p. 94].
Formula [Z-%) can be used to calcul@ték) for k € N. We cally(z) = %2 the digamma or

['(z)
psi function. Se€ |2, p. 71].
Taking the logarithm yields

2.5) In f(z) = élnF(er 1) = In(z + 1),

Differentiating withx on both sides of (2|5) and using double inequalifies (2.1) (2.2) gives
us

Me+1)  a?

M'z+1) x+1

<—[Gﬁé>m@+l%%x+n+%MQﬂ}

=—Inl'(z+1)+=2

(2.6) 1 72
+x {1n(:13+1)— 2@_‘_1)] ~ox1

1 1 1
:—gln(.%‘—i‘l)—m‘i‘é
= o),

By direct computation, we have

[3 — In(2)]

, _ T
V@) =5 <
Thus, the functiony(z) is strictly decreasing, and thef(z) < ¢(1) = 2 — 11In(4m) < 0.
Thereforef’(z) < 0 and f(x) is strictly decreasing of1, o).
Straightforward calculating and using inequalities in](2.3).fos 1 produces

1 1
(2.7) Ing(z) = Eln I(z+1)— élnx,
! d 1
2. ) T )+t D+ 1) - 2a 2
(2.8) T o(2) nl'(z+ )+xdx nl(z+1) 57 o(x),
, d? 1
T 1 rz—1
=—>>0.

>—__
z+1 2 2@+1)

Therefore, functionp(x) is strictly increasing, ang(z) > ¢(2) = I'(3) — 1 — In2 > 0 by
(2.4). Thusy'(z) > 0 and thery(z) is strictly increasing of2, co).
Direct computing and using inequalities [n (2.3) for- 1 produces

(2.10) In h(z) = ilnr(:c +1)— %ln(x +1),
WP (z) d >,
(2.11) T o) —lnF(m—i—l)—i—x%lnF(aﬁLl)—m = 7(z),
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(2.12) 7(z) = x% mT(z+1) %
T r(24x)  a?

> 0.

> — =
r+1 2(1+4+2x)2 2(x+1)?

Therefore, functionr(z) is strictly increasing, and(z) > 7(1) = I"(2) — 1 > 0. Thus
h'(z) > 0 and them(z) is strictly increasing offil, co).
The proof is complete.
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