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Abstract

In [2] the second author proposed to find a description (or examples) of real-
valued n-variable functions satisfying the following two inequalities:

with strict inequality if there is an index i such that z; < y;; and for 0 < z; <
1y < --+ < 1y, then,
F(af?,z9%,...apt) < F(a)t z5?, - ap).

In this short note we extend in a direction a result of [2] and we prove a the-
orem that provides a large class of examples satisfying the two inequalities,
with £ replaced by any symmetric polynomial with positive coefficients. More-
over, we find that the inequalities are not specific to expressions of the form z¥,
rather they hold for any function g(z, y) that satisfies some conditions. A simple
consequence of this result is a theorem of Hardy, Littlewood and Polya [1].
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In [2], the following problem was proposedind examples of functiong' :
R? — R with the properties

if z; <y,i=1,...,n,thenF(zy,...,2,) < F(y1,...,Yn)s

1.1 . . o . .

(1.1) with strict inequality if there is an indexsuch thatz; < vy;,
and

(1.2) for0 <z < a9 <--- < x,, then,

F(ai?, a5, .. x0t) < F(af', 5%, -+ o).

In [2], the following result was proved.

Theorem 1.1. Assume that the permutatiencan be written as a product of
disjoint circular cycle”; xCy x - - - x C,., where eaclt’; is a cyclic permutation,
that isC;(7) = j + t;, for some fixed,. For any increasing sequenée< x; <
.- < 2, We have

n n
To(s .
E a;r; " < E a;x;', and
=1 i=1
n

n

To(s .

| | a;r; " < | | a;x;’,
i=1

i=1

(1.3)

wherea; > 0 is increasing on the cycles; of o.
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(The condition oru; was inadvertently omitted in the final version 6.

In this short note we extend in a direction the previous resul?’ptd any
permutation, not only the permutations which are products of circular cycles,
by proving (L.1) and (L.2) for symmetric polynomials with positive coefficients.
Finally, we prove that these inequalities are not specific only to rearrangements
of powers, that is, we find other classes of functions of 2-variables with real
values, say(z,y), such that, for any € S, (the group of permutations), we
have

(1.4) F(g(z1,250)), -, 9(@n, Tow))) < Fg(z1,21), .., 9(Tn, T0)),

whereF' is any symmetric polynomial with positive coefficients.
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Lemma 2.1. If f € R[X;, X5] is a symmetric polynomial with positive coef-
ficients and(z, z2) € R and (y1,y2) € R? are such thatr;z, < 4y, and
ap +ah <y +yy,Vn e N, thenf(zy, z2) < f(y1,92)-

Proof. We have

XlaXZ

> a;XiX] =

wherea;; € R,. Sincef is symmetrica;;

= (ayXiX] + a; X{X3) + > aiXi X},

1<j

= aj;, and therefore

F(X1, X0) =) ay (X1X) + X{X5) + > auXi X}
1<j
= Z az‘inXé (Xf_i + Xg_i) + Z aiinXé-
1<j
It is clear now that the two conditions imposed @n, x2) and (y;, y2) imply
thatf(l‘l, ZEQ) < f(yl, y2> L]

We will considerA C R and a functiong : A x A — [0, 00) with the
following property: for allz,, x5, y1, y2 € R such thatr; < z, andy; < y, the
following two inequalities are satisfied:

(2.1)
(2.2)

9(z1,92)9(x2,11) < g(x1,y1)9(22, y2)

[9(w1,y2)]" + [g(x2, y1)]" < [g(@1, y0)]" + [9(w2,92)]", Vn € N.
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Theorem 2.2.Let F'(X;, Xo, ..., X,,) be a symmetric polynomial with positive
coefficients and as above. Then for any € S, and anyzy, z,,...,z, € A
we have:

F(g(z1,250)), 9(%2, Z2))s - - - s 9(Tns To@my))
S F(g(l'l, xl)a 9(332,1'2), oo 7g(xn7$n))

Proof. Considerz,, z-, ..., x,, € A arbitrary and fixed. Without loss of general-
ity we may assume that; < z, <--- < z,. Let

m = max{F (9(z1,To(1)), - -, 9(Tn, To(m))) | o € Sy}

and let

P = {J € Sn| F (g($17xa(1))7 SR 7g($naxa(n))) = m}

We would like to prove that € P wheree is the identity. Letr € P the
permutation that has the minimum number of inversions among all elements of
P and suppose that# e. Sincee is the only increasing permutation it follows
that there exists € {1,2,...,n — 1} such that (i) > 7(i + 1). Without loss

of generality we may assume that 1. Considerr’ € S,, defined as follows:
(1) = 7(2), 7(2) = 7(1) and7'(j) = 7(j) if 7 > 3. Then7t' has fewer
inversions tham and therefore’ ¢ P, which implies that:

(23) F(Q(Ihl'.,-/(l)),...,g(l’n,l'.,-/(n)))<F(Q(ZE1,IT(1)),...,g(fL‘n,ZET(n))).

Considerf (X, Xy) = F(X1, X2, 9(23, %+(3)), - - -, 9(Tn, Tr())). It fOllows that
f is symmetric and has positive coefficients. If we get= x./(1) = 2,2 and
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Yo = Tr(2) = T, it follows thaty, < y,. Using the two properties of and

Lemma2.1we deduce thaf(g(z1,y2), 9(z2,y1)) < f(g(21,91), 9(22,92)) and
therefore

Fg(z1, 1), - s 9(@ns Trny)) < F (9(z1, 201))s - -+, 9(T, T ()
which contradictsZ.3). O

If g(z,y) = x¥, then the conditions imposed grare
wal <ol
x?lﬂ + :L‘;yl S :L.'ilyl + x;lw’
which are equivalent to

Y2—uy1 Y2—yY1
Ty S Ty ’

Jfrllyl (x?(lﬁ_yl) . 1) < x;lzﬂ ($g(y2—y1) _ 1)‘
The first inequality is certainly true as;, < z, andy; < 5. The second
inequality is true ifl < z; < x5 andy; < y. Therefore

Corollary 2.3. The inequalitieg1.1) and (1.2) are satisfied for all:-variable
symmetric polynomials with positive coefficients, definef ox)™.

If F(zq,...,2,) =21 + - + z,, We can prove a result similar to the one

of Theorem2.2 even if we significantly weaken the assumptiongon
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Theorem 2.4.LetA C Randg : Ax A — R be afunction such that, ,(y) =
g(a,y) —g(b,y) (a > b) isincreasing. Then for any,, =, ..., z, € Aand any
o € S, we have:

F(g<x17xa(l))ug(x27xa(2))7-~-ug(xn7xo(n)))
SF(g('rl;xl)vg(xQ?xZ))--'ag(xnaxn))'

Proof. We follow the proof of Theorer.2and the only thing we have to check

is that Inequalities Related to
Rearrangements of Powers and
Symmetric Polynomials
F (g(:cl, Tr1))s -5 9(Tn, :L’T(n))) < F (g(:vl, Tr(1))s -5 (T, xT/(n))) )
Cezar Joita and
Pantelimon Stanica

But this inequality is equivalent to

9(71,271)) + 9(T2, T72)) < g(71, T701)) + g(T2, T71(2))- Title Page
If we sety; = /(1) = (2 andys = z,/(2) = 21y, it follows thaty; < y, and Contents
the previous inequality can be written as pp >
9(z1,y2) + g(z2, y1) < g(1,91) + g(T2, Y2), < 4
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Corollary 2.5. Letu, v be increasing functions dR with values in1, o). The

following inequalities are true for alty, 25, - - , 2, € R
(2.4) S uleulne) < 3 ulev(e),
=1 =1
(2.5) i u(a;) @) < i w(a;)" @),
i=1 i=1
(2.6) f[u(xi)“(w) < - u(z;) )
i=1 i=1

Proof. It suffices to prove that the following functiongz,y) = u(z)v(y),
g(x,y) = u(x)*@), or g(x,y) = u(y)"® have the associatéds increasing.
Letg(z,y) = u(x)v(y). Thenh(y) = u(a)v(y) —u(b)o(y) = (u(a)—u(b))v(y)
which is increasing since(a) > «(b) andv(y) is increasing.

Let g(z,y) = u(z)*@. Thenh(y) = u(a)*® — u(b)*W. Sinceu(a) > u(b) >
1, andv(y) is increasing, by writing

h(y) = u(t)' ((ZE‘;)))U(” - 1> ,

we see thak is increasing.

We remark that to prove2(4) we only needed:, v to have positive values.

Using the previous remark, to show the last inequality, appl) (with w =
log(u) andv (which are both increasing). O
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Corollary 2.6. If the functionh is decreasing o, then all the inequalities are
reversed.

Remark 2.1. We see that Theorem 368 df follows from (2.4) and Corollary
2.6.
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