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ABSTRACT. In this paper, a class of generalized general mixed quasi variational inequalities is
introduced and studied. We prove the existence of the solution of the auxiliary problem for the
generalized general mixed quasi variational inequalities, suggest a predictor-corrector method
for solving the generalized general mixed quasi variational inequalities by using the auxiliary
principle technique. If the bi-function involving the mixed quasi variational inequalities is skew-
symmetric, then it is shown that the convergence of the new method requires the partially relaxed
strong monotonicity property of the operator, which is a weak condition than cocoercivity. Our
results can be viewed as an important extension of the previously known results for variational
inequalities.
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1. I NTRODUCTION

In recent years, variational inequalities have been generalized and extended in many different
directions using novel and innovative techniques to study wider classes of unrelated problems
in mechanics, physics, optimization and control, nonlinear programming, economics, regional,
structural, transportation, elasticity, and applied sciences, etc., see [1] – [8] and the references
therein. An important and useful generalization of variational inequalities is called the general
mixed quasi variational inequality involving the nonlinear bifunction. It is well-known that due
to the presence of the nonlinear bifunction, projection method and its variant forms including
the Wiener-Hopf equations, descent methods cannot be extended to suggest iterative methods
for solving the general mixed quasi variational inequalities. In particular, it has been shown that
if the nonlinear bifunction is proper, convex and lower semicontinuous with respect to the first
argument, then the general mixed quasi variational inequalities are equivalent to the fixed-point
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problems. This equivalence has been used to suggest and analyze some iterative methods for
solving the general mixed quasi variational inequalities. In this approach, one has to evaluate
the resolvent of the operator, which is itself a difficult problem. To overcome these difficul-
ties, Glowinski et al. [6] suggested another technique, which is called the auxiliary principle
technique. Recently, Noor [1] extended the auxiliary principle technique to suggest and ana-
lyze a new predictor-corrector method for solving general mixed quasi variational inequalities.
However, the main results in [1, Algorithm 3.1, Lemma 3.1 and Theorem 3.1] are wrong. Also,
Algorithm 3.1 in [1] is based on the assumption that auxiliary problem has a solution, but the
author did not show the existence of the solution for this auxiliary problem. On the other hand,
in 1999, Huang et al. [7] modified and extended the auxiliary principle technique to study the
existence of a solution for a class of generalized set-valued strongly nonlinear implicit varia-
tional inequalities and suggested some general iterative algorithms. Inspired and motivated by
recent research going on in this fascinating and interesting field, in this paper, a class of gener-
alized general mixed quasi variational inequalities is introduced and studied, which includes the
general mixed quasi variational inequality as a special case. We prove the existence of the so-
lution of the auxiliary problem for the generalized general mixed quasi variational inequalities,
and suggest a predictor-corrector method for solving the generalized general mixed quasi vari-
ational inequalities by using the auxiliary principle technique. If the bi-function involving the
mixed quasi variational inequalities is skew-symmetric, then it is shown that the convergence
of the new method requires the partially relaxed strong monotonicity property of the operator,
which is a weaker condition than cocoercivity. Our results extend, improve and modify the
main results of Noor [1].

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denoted by〈·, ·〉and‖ · ‖,
respectively. Let CB(H) be the family of all nonempty closed and bounded sets inH. LetK be
a nonempty closed convex set inH. Letϕ(·, ·) : H ×H → H be a nondifferentiable nonlinear
bifunction. For given nonlinear operatorsN(·, ·) : H×H → H,g : H → H and two set-valued
operatorsT, V : H → CB(H), consider the problem of findingu ∈ H,w ∈ T (u), y ∈ V (u)
such that

(2.1) 〈N(w, y), g(v)− g(u)〉+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0,∀g(v) ∈ H.

The inequality of type (2.1) is called the generalized general multivalued mixed quasi variational
inequality.

For a suitable and appropriate choice of the operatorsN, g, ϕ and the spaceH, one can obtain
a wide class of variational inequalities and complementarity problems, see [1]. Furthermore,
problem (2.1) has important applications in various branches of pure and applied sciences.

Lemma 2.1. For all u, v ∈ H, we have

(2.2) 2 〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2.

Definition 2.1. For allu1, u2, z ∈ H, x1 ∈ T (u1), x2 ∈ T (u2), an operatorN(·, ·) is said to be:

(i) g-partially relaxed strongly monotone with respect to the first argument, if there exists
a constantα > 0 such that

〈N(x1, ·)−N(x2, ·), g(z)− g(u2)〉 ≥ −α‖g(u1)− g(z)‖2.
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(ii) g-cocoercive with respect to the first argument, if there exists a constantµ > 0 such that

〈N(x1, ·)−N(x2, ·), g(u1)− g(u2)〉 ≥ µ‖N(x1, ·)−N(x2, ·)‖2.

(iii) T is said to be M-lipschitz continuous, if there exists a constantδ > 0 such that

M(T (u1), T (u2)) ≤ δ‖u1 − u2‖,
whereM(·, ·)is the Hausdorff metric on CB(H).

We remark that ifN(x, ·) ≡ Tx, then Definition 2.1 is exactly the Definition 2.1 of Noor and
Memon [1]. If z = u1, N(x, ·) ≡ Tx, g-partially relaxed strongly monotone with respect to
the first argument ofN(·, ·) is exactly g-monotone ofT , and g- cocoercive implies g- partially
relaxed strongly monotone [3]. This shows that g-partially relaxed strongly monotone with
respect to the first argument ofN(·, ·) is a weaker condition than g-cocoercive with respect to
the first argument ofN(·, ·).

Definition 2.2. For allu, v ∈ H,the bifunctionϕ(·, ·) is said to be skew-symmetric, if

ϕ(u, u)− ϕ(u, v)− ϕ(v, u) + ϕ(v, v) ≥ 0.

Note that if the bifunctionϕ(·, ·) is linear in both arguments, then it is nonnegative.

In order to obtain our results, we need the following assumption.

Assumption 2.2. The mappingsN(·, ·) : H × H → H, g : H → H satisfy the following
conditions:

(1) for allw, y ∈ H, there exists a constantτ > 0 such that‖N(w, y)‖ ≤ τ(‖w‖+ ‖y‖);
(2) for a givenx ∈ H, mappingv 7→< x, g(v) > is convex;
(3) ϕ(u, v)is bounded, that is, there exists a constantγ > 0 such that

|ϕ(u, v)| ≤ γ‖u‖‖v‖,∀u, v ∈ H;

(4) ϕ(u, v) is linear with respect tou.
(5) ϕ(·, ·) is continuous andϕ(g(·), ·) is convex with respect to the first argument.

Remark 2.3. If g ≡ I, it is easy to see that the conditions (2), (5) in Assumption 2.2 can be
easily satisfied.

We also need the following lemma.

Lemma 2.4. [4, 5]. LetX be a nonempty closed convex subset of Hausdorff linear topological
spaceE, φ, ψ : X ×X → R be mappings satisfying the following conditions:

(1) ψ(x, y) ≤ φ(x, y),∀x, y ∈ X;
(2) for eachx ∈ X, φ(x, y) is upper semicontinuous with respect toy;
(3) for eachy ∈ X, the set{x ∈ X : ψ(x, y) < 0} is a convex set;
(4) there exist a nonempty compact setK ⊂ X andx0 ∈ K such thatψ(x0, y) < 0, for any

y ∈ X \K. Then there exists ay ∈ K such thatφ(x, y) ≥ 0,∀x ∈ X.

3. M AIN RESULTS

In this section, we give an existence theorem of a solution of the auxiliary problem for the
generalized general set-valued quasi variational inequality (2.1). Based on this existence theo-
rem, we suggest and analyze a new iterative method for solving the problem (2.1).

For givenu ∈ H, w ∈ Tu, y ∈ V u, consider the problem of finding a uniquez ∈ H
satisfying the auxiliary general mixed quasi variational inequality

(3.1) 〈ρN(w, y) + g(z)− g(u), g(v)− g(z)〉+ ρϕ(g(v), g(z))− ρϕ(g(z), g(z)) ≥ 0,
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for all v ∈ H, whereρ > 0 is a constant.

Remark 3.1. We note that ifz = u, then clearlyz is a solution of (2.1).

Theorem 3.2. If Assumption 2.2 holds,g : H → H is invertible and Lipschitz continuous, and
0 < ργ < 1, thenP (u,w, y) has a solution.

Proof. Defineφ, ψ : H ×H → H by

φ(v, z) = 〈g(v), g(v)− g(z)〉 − 〈g(u), g(v)− g(z)〉+ ρ 〈N(w, y), g(v)− g(z)〉
− ρϕ(g(z), g(z)) + ρϕ(g(v), g(z))

and

ψ(v, z) = 〈g(z), g(v)− g(z)〉 − 〈g(u), g(v)− g(z)〉+ ρ 〈N(w, y), g(v)− g(z)〉
− ρϕ(g(z), g(z)) + ρϕ(g(v), g(z)),

respectively. Now we show that the mappingsφ, ψ satisfy all the conditions of Lemma 2.4.
Clearly,φ andψ satisfy condition (1) of Lemma 2.4. It follows from Assumption 2.2(5) that

φ(v, z) is upper semicontinuous with respect toz. By using Assumption 2.2 (2) and (5), it is
easy to show that the set{v ∈ H|ψ(v, z) < 0} is a convex set for each fixedz ∈ H and so the
conditions (2) and (3) of Lemma 2.4 hold.

Now let

ω = ‖g(u)‖+ ρτ(‖w‖+ ‖y‖), K = {z ∈ H : (1− ργ)‖g(z)‖ ≤ ω}.

Sinceg : H → H is invertible,K is a weakly compact subset ofH. For any fixedz ∈ H \K,
takev0 ∈ K such thatg(v0) = 0. From Assumption 2.2, we have

ψ(v0, z) = −〈g(z), g(z)〉+ 〈g(u), g(z)〉+ ρ 〈N(w, y),−g(z)〉 − ρϕ(g(z), g(z))

≤ −‖g(z)‖2 + ‖g(u)‖‖g(z)‖+ ρτ(‖w‖+ ‖y‖)‖g(z)‖+ ργ‖g(z)‖2

= −‖g(z)‖(‖g(z)‖ − ‖g(u)‖ − ρτ(‖w‖+ ‖y‖)− ργ‖g(z)‖)
< 0.

Therefore, the condition (4) of Lemma 2.4 holds. By Lemma 2.4, there exists az ∈ H such
thatφ(v, z) ≥ 0, for all v ∈ H, that is,

(3.2) 〈g(v), g(v)− g(z)〉 − 〈g(u), g(v)− g(z)〉+ ρ 〈N(w, y), g(v)− g(z)〉
− ρϕ(g(z), g(z)) + ρϕ(g(v), g(z)) ≥ 0,∀v ∈ H.

For arbitraryt ∈ (0, 1) andv ∈ H, let g(xt) = tg(v) + (1− t)g(z). Replacingv by xt in (3.2),
we obtain

0 ≤ 〈g(xt), g(xt)− g(z)〉 − 〈g(u), g(xt)− g(z)〉+ ρ 〈N(w, y), g(xt)− g(z)〉
− ρϕ(g(z), g(z)) + ρϕ(g(xt), g(z))

= t(〈g(xt), g(v)− g(z)〉 − 〈g(u), g(v)− g(z)〉) + ρt 〈N(w, y), g(v)− g(z)〉
+ ρtϕ(g(v)− g(z), g(z)).

Hence

〈g(xt), g(v)− g(z)〉 − 〈g(u), g(v)− g(z)〉+ ρ 〈N(w, y), g(v)− g(z)〉
+ ρϕ(g(v), g(z))− ρϕ(g(z), g(z)) ≥ 0
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and so

〈g(xt), g(v)− g(z)〉 ≥ 〈g(u), g(v)− g(z)〉 − ρ 〈N(w, y), g(v)− g(z)〉
− ρϕ(g(v), g(z)) + ρϕ(g(z), g(z)).

Letting t→ 0, we have

〈g(z), g(v)− g(z)〉 ≥ 〈g(u), g(v)− g(z)〉 − ρ 〈N(w, y), g(v)− g(z)〉
− ρϕ(g(v), g(z)) + ρϕ(g(z), g(z)).

Therefore,z ∈ H is a solution of the auxiliary problemP (u,w, y). This completes the proof.
�

By using Theorem 3.2, we now suggest the following iterative method for solving the gener-
alized general set-valued quasi variational inequality (2.1).

Algorithm 3.1. For givenu0 ∈ H, ξ0 ∈ Tu0, η0 ∈ V u0, compute the approximate solution
un+1 by the iterative scheme

xn ∈ T (wn) : ‖xn+1 − xn‖ ≤M(T (wn+1), T (wn)),

yn ∈ V (wn) : ‖yn+1 − yn‖ ≤M(V (wn+1), V (wn)),

(3.3) 〈ρN(xn, yn) + g(un+1)− g(wn), g(v)− g(un+1)〉+ ρϕ(g(v), g(un+1))

− ρϕ(g(un+1), g(un+1)) ≥ 0, ∀v ∈ H,

and
ξn ∈ T (un) : ‖ξn+1 − ξn‖ ≤M(T (un+1), T (un)),

ηn ∈ V (un) : ‖ηn+1 − ηn‖ ≤M(V (un+1), V (un)),

(3.4) 〈βN(ξn, ηn) + g(wn)− g(un), g(v)− g(wn)〉+ βϕ(g(v), g(wn))

− βϕ(g(wn), g(wn)) ≥ 0, ∀v ∈ H,

whereρ > 0, β > 0 are constants.

For the convergence analysis of Algorithm 3.1, we need the following result.

Lemma 3.3. Let u ∈ H, x ∈ Tu, y ∈ V u be the exact solution of (2.1) andun+1 be the
approximate solution obtained from Algorithm 3.1. If the operatorN(·, ·) is g- partially relaxed
strongly monotone with respect to the first and second argument with constantsa > 0, b > 0,
respectively, the bifunctionϕ(·, ·) is skew-symmetric and the conditions in Theorem 3.2 are
satisfied, then

(3.5) ‖g(un+1)− g(u)‖2 ≤ ‖g(un)− g(u)‖2 − (1− 2ρ(a+ b))‖g(un+1)− g(un)‖2.

Proof. Let u ∈ H, x ∈ Tu, y ∈ V u be a solution of (2.1). Then

(3.6) 〈ρN(x, y), g(v)− g(u)〉+ ρϕ(g(v), g(u))− ρϕ(g(u), g(u)) ≥ 0,∀v ∈ H,

(3.7) 〈βN(x, y), g(v)− g(u)〉+ βϕ(g(v), g(u))− βϕ(g(u), g(u)) ≥ 0,∀v ∈ H,

whereρ > 0, β > 0 are constants. Now takingv = un+1 in (3.6) andv = u in (3.3), we have

(3.8) 〈ρN(x, y), g(un+1)− g(u)〉+ ρϕ(g(un+1), g(u))− ρϕ(g(u), g(u)) ≥ 0,
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(3.9) 〈ρN(xn, yn) + g(un+1)− g(wn), g(u)− g(un+1)〉+ ρϕ(g(u), g(un+1))

− ρϕ(g(un+1), g(un+1)) ≥ 0.

Adding (3.8) and (3.9), we have (3.10)

〈g(un+1)− g(wn), g(u)− g(un+1)〉(3.10)

≥ ρ 〈N(xn, yn)−N(x, y), g(un+1)− g(u)〉+ ρ{ϕ(g(u), g(u))

− ϕ(g(u), g(un+1))− ϕ(g(un+1), g(u)) + ϕ(g(un+1), g(un+1))}
≥ ρ 〈N(xn, yn)−N(xn, y), g(un+1)− g(u)〉

+ ρ 〈N(xn, y)−N(x, y), g(un+1)− g(u)〉
≥ −ρ(a+ b)‖g(wn)− g(un+1)‖2,

where we have used the fact thatN(·, ·)is g- partially relaxed strongly monotone with respect
to the first and second argument with constantsa > 0, b > 0, respectively, and the bifunction
ϕ(·, ·) is skew-symmetric. Settingu = g(u)−g(un+1), v = g(un+1)−g(wn) in (2.2), we obtain

(3.11) 〈g(un+1)− g(wn), g(u)− g(un+1)〉

=
1

2
{‖g(u)− g(wn)‖2 − ‖g(un+1)− g(wn)‖2 − ‖g(u)− g(un+1)‖2}.

Combining (3.10) and (3.11), we have

(3.12) ‖g(un+1)− g(u)‖2 ≤ ‖g(wn)− g(u)‖2 − (1− 2ρ(a+ b))‖g(un+1)− g(wn)‖2,

Similarly, we have

‖g(u)− g(wn)‖2 ≤ ‖g(un)− g(u)‖2 − (1− 2β(a+ b))‖g(un)− g(wn)‖2,(3.13)

≤ ‖g(un)− g(u)‖2, 0 < β < 1/2(a+ b).

and

‖g(un+1)− g(wn)‖2 = ‖g(un+1)− g(un) + g(un)− g(wn)‖2(3.14)

= ‖g(un+1)− g(un)‖2 + ‖g(un)− g(wn)‖2

+ 2 〈g(un+1)− g(un), g(un)− g(wn)〉 .

Combining (3.12) – (3.14), we have

‖g(un+1)− g(u)‖2 ≤ ‖g(un)− g(u)‖2 − (1− 2ρ(a+ b))‖g(un+1)− g(un)‖2.

The required result. �

Theorem 3.4. LetH be finite dimensional,g : H → H be invertible,g−1 is Lipschitz contin-
uous and0 < ρ < 1

2
(a + b). Let {un}, {ξn}, {ηn} be the sequences obtained from Algorithm

3.1,u ∈ H be the exact solution of (2.1) and the conditions in Lemma 3.3 are satisfied, then
{un}, {ξn}, and{ηn} strongly converge to a solution of (2.1).

Proof. Let u ∈ H be a solution of (2.1). Since0 < ρ < 1
2
(a+ b), from (3.5), it follows that the

sequence{‖g(u)− g(un)‖} is nonincreasing and consequently{un} is bounded. Furthermore,
we have

Σ(1− 2ρ(a+ b))‖g(un+1)− g(un)‖2 ≤ ‖g(u0)− g(u)‖2,

which implies that

(3.15) lim
n→∞

‖g(un+1)− g(un)‖ = 0.
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Let û be the cluster point of{un} and the subsequence{unj
} of the sequence{un} converge

to û, which implies{unj
} is a Cauchy sequence inH. By (3.4), we know that both{ξnj

} and
{ηnj

} are Cauchy sequences inH. Let ξnj
→ x̂ andηnj

→ ŷ. Since

d(x̂, T (û)) ≤ ‖x̂− ξnj
‖+M(T (unj

), T (û)) → 0, nj →∞.

So we can obtain̂x ∈ T (û). Similarly, we can obtain̂y ∈ V (û). Replacingwn by unj
in (3.3)

and (3.4), the limitnj →∞ and using (3.14), we have

〈N(x̂, ŷ), g(v)− g(û)〉+ ϕ(g(v), g(û))− ϕ(g(û), g(û)) ≥ 0, ∀v ∈ H,
which implies that̂u ∈ H, x̂ ∈ T û, ŷ ∈ V û is a solution of (2.1), and

‖g(un+1 − g(u))‖2 ≤ ‖g(un)− g(u)‖2.

Thus it follows from the above inequality that the sequence{un} has exactly one cluster pointû
andlimn→∞ g(un) = g(û). Sinceg is invertible andg−1 is Lipschitz continuous,limn→∞ un =
û. The required result. �

Remark 3.5. Lemma 3.3 and Theorem 3.4 improve and modify the main results of Noor [1].
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