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ABSTRACT. For a positive integer. let o(n) and7'(n) be the sum of divisors and product of
divisors ofn, respectively. In this note, we compaFén) with T'(c(n)).
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Letn > 1 be a positive integer. In[7], Sandor introduced the funcfidn) := [],, d as
the multiplicative analog of (n), which is the sum of all the positive divisorsof and studied
some of its properties. In particular, he proved several results pertairmmgltiplicative perfect
numberswhich, by analogy, are numbeitsfor which the relatioril’(n) = n* holds with some
positive integelk.

In this paper, we compafE(n) with T'(c(n)). Our first result is:

Theorem 1. The inequalityl'(c(n)) > T'(n) holds for almost all positive integers

In light of Theoreni I, one can ask whether or not there exist infinitely mafgr which
T(c(n)) < T(n) holds. The fact that this is indeed so is contained in the following more
precise statement.

Theorem 2. Each one of the divisibility relatioris(n) | 7'(c(n)) andT'(o(n)) | T'(n) holds for
an infinite set of positive integers

Finally, we ask whether there exist positive integers- 1 so that7'(n) = T(o(n)). The
answer is no.

Theorem 3. The equatiorf'(n) = T'(c(n)) has no positive integer solution> 1.

Throughout this paper, for a positive real numbeand a positive integef we writelog,, «
for the recursively defined function given byg, x := max{loglog,_, x, 1}, wherelog stands
for the natural logarithm function. When= 1, we simply writelog =, and we understand that
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2 FLORIAN LUCA

this number is always greater than or equal td-or a positive real number we use| x| for
the integer part of, i.e., the largest integér so thatk < z. We use the Vinogradov symbols
> and< as well as the Landau symbalsando with their regular meanings. For a positive
integern, we writer(n), andw(n) for the number of divisors of, and the number of distinct
prime divisors ofn, respectively.

Proof of Theorem]|1Let x be a large positive real number, andddbe a positive integer in the
interval I := (x/log x, x). Since

— Z O(log x),

n<x

it follows that the inequality

(2) 7(n) < log®
holds for alln € I, except for a subset of suehof cardinalityO(z/ log z) = o(x).
A straighforward adaptation of the arguments from [4, p. 349] show that the inequality

@) w(o(n)) > % Jog2

holds for alln € I, except, eventually, for a subset of suclof cardinalityo(z). So, we can
say that for most € I both inequalities (1) andl|(2) hold. For suchwe have

r(n 1 log?
3) T(n) = n's = exp (T(n)%) < exp ( 0g2 $) ,
while
@) T(o(n)) = (o(n) "=
r(o(n)
>n 2
= exp (T(J(n)) log n)
2
>exp | ———
2
log%z

- 273 | x
P 2 ©8 logz ) |’

and it is easy to see that for large values dhe function appearing in the right hand side[adf (4)
is larger than the function appearing on the right hand sidg]of (3). This completes the proof of
TheoreniL. O

Proof of Theorerm|2We first construct infinitely many such that’(n) | T'(c(n)). Let A be an
odd number to be chosen later and put= 2* - 3. Then T(TL) = 2(\+ 1), therefore

(5) T(n) = (2*-3)7% | 60!

Now o (n) = 4-(2*1 — 1) is a multiple of6 because\ + 1 is even, and se* ! — 1 is a multiple
of 3. Thus,T'(c(n)) is a multiple of

a1y 3r2 11
6L p) J — 6'. P} J’

and since the inequality3k /2] > k holds for all positive integers, it follows thatT'(c(n)) is
a multiple of6™**" =1,
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It suffices therefore to see that we can choose infinitely many such sdthatr (221 —1) >
(A +1)2. Sincer (2! — 1) > 2¢2*"'~1) it follows that it suffices to show that we can choose
infinitely many odd\ so that

201 S (N 4 1)2,
which is equivalent to

w@M 1) > log(A +1).

log 2
Since2/log 2 < 3, it suffices to show that the inequality
(6) w2 —1) > 3log(A + 1)

holds for infinitely many odd positive integeks

Let (ux)x>1 be theLucas sequencef general termy;, := 2 — 1 fork = 1, 2, .... The
primitive divisor theorem (seé[1],[2]), says that for dll k, d # 1, 6, there exists a prime
numberp | uy (hencep|u, as well), so thap f u,, foranyl < m < d. In particular, the
inequalityw(2* — 1) > 7(k) — 2 holds for all positive integerk. Thus, in order to prove that
(6) holds for infinitely many odd positive integeksit suffices to show that the inequality

T(A+1) >2+3log(A+1)

holds for infinitely many odd positive integeks
Choose a large real numbgand put

(7) /\+1::Hp.

p<y
Clearly,\ + 1 is even, therefore is odd. With the prime number theorem, we have that

A+ 1=exp(l+o0(1))y)
holds for largey, and therefore the inequality

A+ 1 < exp(2y)
holds for large values qf. In particular,
(8) 2 +3log(A+1) < 2+ 6y

holds for largey. However,

A4 1) > 2¢CFD — 97(),
where we writer (y) for the number of prime numbefs< y. Sincern(y) > y/logy holds for
all y > 17 (seel[6]), it follows that fory sufficiently large we have

9) T(A+1) > 20,

It is now clear that the right hand side ¢f (9) is larger than the right hand sidié of (8) for suffi-
ciently large values of, and therefore the numbeksshown at[() do fulfill inequality[ (6) for
large values of;.

We now construct infinitely many such thatl'(o(n)) | T'(n). For coprime integers andd
with d positive and a large positive real numhelet 7(z; d, a) be the number of primgs < =
with p = a (mod d). For positive real numberg < z let =(z;y) stand for the number of
primesp < x so thatp + 1 is free of primes; > y. Let £ denote the set of all real numbefs
in the rangd) < E < 1 so that there exists a positive constafi’) and a real number, (E)
such that the inequality

(10) (2! ™") > y(E)m(x)
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holds for allz > =, (E). Thus,£ is the set of all real numbefrs in the intervald < E < 1 such
that for larger a positive proportion (depending @) of all the prime numbers up tox have
p + 1 free of primes; > z'~%. Erdds (seel[B]) showed thatis nonempty. In fact, he did not
exactly treat this question, but the analogous question for the ppimes such thap — 1 is
free of primes larger than'!~Z, but his argument can be adapted to the situation in whieh
is replaced by + 1, which is our instance. The best result known alfoig due to Friedlander
[5], who showed that every positive numh&rsmaller thanl — (2,/¢)~! belongs taf. Erdds
has conjectured thatis the full interval(0, 1).

Let £ be some number ifi. Letz > x,(FE) be a large real number. L& (x) be the set of
all the primesp < z counted byr(z; 2'~%). Note that all the primeg < z'~% are already in
PE(Qf) Put

D n= [ »
pEPE(ac)
Clearly,
(12 T(n) = n¥,
and
(13) %ﬂ) — Q#PE(x)*l — 27T(:p;x1—E)71 > ZCW("E) . 2%’

where one can take:= v(E)/2, and inequality[(13) holds for sufficiently large valuescofin
particular,T'(n) is divisible by all primes; < #!~*, and each one of them appears at the power
at least2 s+ .

We now look atl’(o(n)). We have

7(o(n))
2

(14) Tiem)=| [[ @+1

pEPE(x)

From the definition ofPz(z), we know that the only primes than can dividi¢o(n)) are the
primesq < x!~F. Thus, to conclude, it suffices to show that the exponent at which each one of
these primeg < x'~¥ appears in the prime factorization 6fo(n)) is smaller thargs= . Let

q be such a prime, and let, be so thay“«||o(n). It is easy to see that

(15) aq S ﬂ-(x?(L _1) + 7T(':U7q27 _1) Tt ﬂ-('raqja _1) T

Letj > 1. Thenn(x;¢’, —1) is the number of primeg < z such that’ | p + 1. In particular,
n(z; ¢/, —1) is at most the number of numbers < = + 1 which are multiples of’, and this

number ist’f—*;lJ <zt Thus,
q q
1 r+1

jzlq q

Thus,
o +1<x+2<2x

holds for allg < 2!, and therefore

T(o(n)) < (22)"@") = exp(n(z!7F) - log(22)).
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By the prime number theorem,

B ‘,L,le
Ey=(1+0(1)) —————
w(@ ) = (L ol1) -
and therefore the inequality
21 F 2 = F

16 1=F = :
(16) Tz < log(z'=#) 1—FE logx
holds for large values of. Thus,

.CEI_E

1-E
(17) T(o(n)) < exp (% Togz -log(2x)) < exp (?x_ E) ,

holds for large values of. In particular, the exponent at which a prime numier '~ can
appear in the prime factorization ®f{c(n)) is at most

7(o(n)) 6! —F

(18) g = < 7(o(n))? < exp (1 —% )
Comparing[(1B) with[(1]8), it follows that it suffices to show that the inequality

6! —F co
(29) exp (1 — E) < 2oz
holds for large values of, and taking logarithms in (19), we see that|(19) is equivalent to
(20) clogx < x¥,
wherec, =y, and it is clear thaO) holds for large valueszof Theorenﬂz is
therefore proved. O

Proof of Theorem|3Assume that > 1 satisfiesI'(n) = T'(o(n)). Writet := w(n). Itis clear
thatt > 1, for otherwise the number will be of the formn = ¢~ for some prime numberand
some positive integer, and the contradiction comes from the fact th&®) is coprime tog.
We now note that it is not possible that the prime factors afe in{2,3}. Indeed, if this were
so, them = 2% - 3°2 ando(n) = (2“+! — 1)(3°2*! — 1). Since the prime factors of(n) are
also in the sef2, 3}, we get the diophantine equatiazfs "' — 1 = 37t and3°2™! —1 = 272, and

it is wellknown and very easy to prove that the only positive integer solftion s, 51, 32)

of the above equations {4, 1, 1, 3). Thus,n = 6, and the contradiction comes from the fact
that this number does not satisfy the equafign) = 7'(c(n)).

Write
(21) ni=qt g
whereq; < ¢2 < --- < ¢, are prime numbers and are positive integers far=1,...,¢t. We
claim that
(22) gL q > e

This is clearly so ift = 2, because in this casgq, > 2 -5 > e%. Fort > 3, one proves by
induction that the inequality

holds, where; is theith prime number. This takes care pf]22).
We now claim that

(23) # < exp(l +logt).
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Indeed,

o(n) _ ( L. 1)
(24) n H 1+Qi+ +qzqi

=1

< exp (iz %)

i=1 p>1 Pi

o1
< exp (Zp-—1>’

i=1
and so, in order to prove (R3), it suffices, \jia|(24), to show that

t

(25)

<1+logt.
— Pi — 1

One checks thaf (25) holdsiat= 1 andt := 2. Assume now that > 3 and that[(2p) holds for
t — 1. Then,

t t—1

26 3 — : +Zp'1_1<1+

prl 2

where the last inequality if (26) above holds because it is equivalent to

1 pt—1
1 R
( +t—1) > e,

which in turn holds becauge > t + 1 holds fort > 3, and

1 t
1 -
( + P 1) >e
holds for all positive integers> 1.
After these preliminaries, we complete the proof of Thedrém 3. Write the rel&tioh =
T(o(n)) as

1
] +log(t—1) < 1+logt,

Dt —

7(n) r(n)—7(s(n))

(27) o(n) =n @) =n.n- T@HED)

Sinces(n) > n, we get thatr(n) > 7(c(n)). We now use[(23) to say that
RW = @ < exp(1 +logt),

therefore

(28) 7(n) —7(o(n)) _ 1+logt

T(o(n)) logn
Letd := ged(7(n), 7(o(n))) = ged(r(n) — 7(o(n)), 7(c(n))). From [28), we get that

d< (Hlogt) r(o(n)).

logn

Write
r(n) = 7(o(n) _ B
(29) o)y
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ON THE PRODUCT OFDIVISORS OFn AND OF o (n) 7

where( and~ are coprime positive integers. We have

T(o(n)) - logn

(30) T 1+logt

The numben’> = o(n)/n is both a rational number and an algebraic integer, and is therefore
an integer. Sincg and~ are coprime, it follows, by unique factorization, thatis a multiple
ofyforalli =1,...,t. Thus,o; > v holds fori =1, ..., t, therefore

(31) n>(q---- @)Y > e = exp(ty) > exp (%) = n1++ogt7
and now|[(3]L) implies that
1+ logt > t,
which is impossible. Theoref 3 is therefore proved. O

Remark 4. We close by noting that if. is a multiply perfect numberthenT'(n) | T'(o(n)).
Recall that a multiply perfect numberis a number so that | o(n). If n has this property,

thenr(s(n)) > 7(n), and now it is easy to see tha(o(n)) = o(n)"%" is a multiple of

n~2 = T(n). Unfortunately, we still do not know if the set of multiply perfect numbers is
infinite.
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