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ABSTRACT. Inthe present paper, we estimate the rate of convergence of the recently introduced
generalized sequence of linear positive operatéys (f, z) with derivatives of bounded varia-
tion.
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1. INTRODUCTION

Let DB, (0,00), (v > 0) be the class of all locally integrable functions defined(0yo),
satisfying the growth conditiofy (¢)| < Mt”, M > 0 andf’ € BV on every finite subinterval
of [0,00). Then for a functionf € DB, (0,00) we consider the generalized family of linear
positive operators which includes some well known operators as special cases. The generalized
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sequence of operators is defined by

(1.1) Gre (f;2) =nY_ pok (w3 €) /Oo Prsek—1 (tic) f(t)dt
k=1 0
+ P (z3¢) f(0), 2 €0,00)

wherep,, . (z;¢) = (—1)k i—?ﬁbgbkr): (z),
(i) Pne(z) =e ™ forc=0,
(i) dne(x) = (14 cx) ™ forceN,

and{¢,.}, .y be a sequence of functions defined on an inteffval , b > 0 having the follow-
ing properties for every € N, k € N :

(i) ¢nc € C™([a,b]);
(iii) ¢n. is completely monotoné—1)* ¢n C( ) >
(iv) There exists an integersuch thab (1) = nngCC, n > max {0, —c}.
Remark 1.1. We may remark here that the functiops. have various applications in different
fields, like potential theory, probability theory, physics and numerical analysis. A collection of
most interesting properties of such functions can be found in [10, Ch. 4].

It is easily verified that the operato.l) are linear positive operators.(Alsdl, z) = 1.
The generalized new sequen@g. was recently introduced by Srivastava and Gupta [9].

Forc = 0 and¢, . (x) = e "* the operatorss,, . reduce to the Phillips operators (see e.g.
[7], [8]), which are defined by

(1.2) Guo(f,x)= annk ;0) / Prg—1 (£0) f(t)dt+e ™ f(0), x€]0,00),

wherep,, . (z;0) = k:w (nx)k

Forc = 1 and¢,.(x) = (1 + cx)*”/‘z the operators>, . reduce to the new sequence of
summation integral type operators [6], which are defined by

(1.3) Goa (1) =13 s (@51) [ prinscs (51) £ ()
k=1

+(1+2)"f(0), ze€l0,00),

where
n+k—1

P (231) = ( L )xk(l—l—w)"_k.

Remark 1.2. It may be noted that for = 1, we get the Baskakov basis functions;, (x; 1)

which are closely related to the well known Meyer-Konig and Zeller basis functions(t) =

("F )t (1 =)™, t € [0,1] because by replacing the variableith 2 in the above MKZ

basis functions we get the Baskakov basis functions. Zeng [11] obtained the exact bound for
the Meyer Konig Zeller basis functions. Very recently Gupta et al. [6] used the bound of Zeng
[11] and estimated the rate of convergence for the operétpis f, «) on functions of bounded

variation.
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The operatord (1] 3) are slightly modified form of the operators introduced by Agarwal and
Thamer 1], which are defined by

(1.4) G (1) = (0= 1)) pas(w51) [ pacs (51) f 1)
k=1 0

+(14+2)"f(0), ze€l0,00),

wherep, ;, (2; 1) is as defined by (1]3) above.

Recently Gupta [5] estimated the rate of approximation for the sequien¢e (1.4) for bounded
variation functions. Although the operators defined [by](1.3) (1.4) above are almost the
same, but the main advantage to consider the operators in the[foim (1.3) rather than the form
(1.4) is that some approximation properties become simpler in the analysis for th¢ farm (1.3) in
comparison to the forny (1.4). The rate of approximation with derivatives of bounded variation
has been studied by several researchers. Bojanic and Cheéng ([2], [3]) estimated the rate of
convergence with derivatives of bounded variation for Bernstein and Hermite-Fejer polynomials
by using different methods.

Alternatively we may rewrite the operatofs (1.1) as

(15) Gwmmzéém@mdﬂmw
where

Ky (2,t:6) =1 puk (€16) Puges—t (6:6) + oo (1¢) pro (t0) 6 (¢),
k=1

J (t) being the Dirac delta function. Also let
t

(16) 5 (otic) = [ Ko osic)ds

0
then

B (x,00;¢) = / K, (z,s;¢)ds = 1.
0
In the present paper we extend the results bf [4] and [6] and study the rate of convergence

by means of the decomposition technique of functions with derivatives of bounded variation.

More precisely the functions having derivatives of bounded variation on every finite subinterval
on the interval0, co) be defined as

f(x>:f<0)+/:¢(t)dt, O<a<z<b

wherey is a function of bounded variation da, b] andc is a constant.
We denote the auxiliary functiofy,, by

f) = f@m), 0<t<uz
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2. AUXILIARY RESULTS

In this section we give certain results, which are necessary to prove the main result.

Lemma 2.1. [9]. Let the functionu, ,, (), m € N, be defined as

pnan (516 =05 050) [ o (50) (0= )" 1+ ()" g (550).
0

k=1

Then

CI
o (z36) =1, g (x5¢) = o

z(l4cx)(2n —c) + (1 4 3cz) cx
(n—¢)(n—2c) ’

fin2 (T5¢) =
and there holds the recurrence relation

[n— ¢ (m+ 1) ftoms (3¢)
=z (1 + cx) [unlzn (25 ¢) + 2mptn 1 (z;0)] + [m (1 + 2cz) + cx] pom (25 €) .
Consequently for each € [0, o), we have from this recurrence relation that
foan (@5) = O (™12

Remark 2.2. In particular, given any number > 2 andz > 0 from Lemmg 2.]L, we have for
c € N° andn sufficiently large

(2.1) G ((t — x)2 ,x) = fno (7;¢) < M
Remark 2.3. It is also noted from(2]1), that

1 1
(2.2) Gre ([t — 2] ,2) < (Goe ((t—2)*,2))? < W

Lemma 2.4. Letz € (0,00) and K, (z,t) be defined by (1]5). Then for > 2 and forn
sufficiently large, we have

(i) Bn(z,y;¢) = ) K :L‘tcdt<)‘z($+;;)0 y <,
(i) 1= B (z,20) = [T K, xtcdt<m(il+c)x)x<z<oo

Proof. First, we prove (i). In view of{(2]1), we have

[ s noas [Tk i< @) s 050

< Az (14 c:pz) |
n(z—y)
The proof of (ii) is similar. O

3. MAIN RESULT

In this section we prove the following main theorem.
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Theorem 3.1.Let f € DB, (0,00),y > 0, andz € (0,00). Then forA > 2 and forn
sufficiently large, we have

AMlter) [x=\] i
G () — £ (@)] < (;\/ %xvf )
+)\(1+C$ (If (20 —zf (zN)] +|f (@)
N W (M270 (n=/2) + | f' (1))
wm

7 (@)~ 1 )]
+2(n_c)\f< Y )],

where\/’ (f.) denotes the total variation ¢f, on|[a, b).

Proof. We have

G (f,2) / K, (a.4:0) (F (1) — f () dt

:/ (/ K, (z,t;c) f' (u) u)dt.
0 T

% [f' (z7) = f (z7)] sgn (u — )

# 1@ =51 @) + 7 @] ),

Using the identity

frw) =5 [ @)+ @)+ (), (w) +

DO | —

it is easily verified that

/ (/f )+ ()] I<u>du)mx,t;c)dt:0

Also

and
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Thus we have

(31) [Guel(fia) — f (@)
/:o (/;(f’)x(u)du> Kn(:c,t;c)dt—/ox (/:(f’)x(u)du) Kn(x,t;c)dt‘
l}f’ D —f’(m—)}Gn,c<|t—x|,x>

}f +f' (27)| G <<t—x> z)
= 40 (f,:0) 4 Bu (Fa: 9+ 5 |f (57) = ()| Ge (1 ] )

FSIF @)+ ()] Gue (t = 1) ).

<

To complete the proof of the theorem it is sufficient to estimate the tetmsf, ;) and
B, (f,z;c). Applying integration by parts, using Lemr@ZA and taking: = — z/\/n, we

have
A ( / KRN0 du) % B (@8]}

/Oxﬁn(:c,t;c) dt<(/ /> ()] 1Bn (. £: ¢)| dt

+ex) [V ., 1 T
< 20 V) i [V )

< 2L PV () i+ 5 V(000

| By (f,x¢)| =

Letu = z/ (z — t). Then we have

z(1+ cx) Az (1 +cx) Vi o ,
P N (1) gt = 25 [T )

ML ()
k=1 z—%
Thus
A1+ cx) ] T\
(3-2) By (f w30)| < —— V) + 2= V()
k=1 x—% I_Ln
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On the other hand, we have
(3.3) A, (f, ;0]

/:O (/xt (f), () du) K, (2, 1: ) dt‘
/: (/xt (). () d“) K (z,t;c) dt
+/:9” (/{: (f"), (u) du) dt (1= 3, (,t;¢))

< /Q:O(f(t)—f(m))Kn(x,t;c)dt‘+\f’ \‘/ (t =) Kn (2,8 0) dt

| wa ll—ﬁn(x,Qx;C)H/x (), 111 = B (o t:0)
/ Ky (o t:0) 80 |t — :c]dt+|f( z) ) T Ky (b o) (E— )t

+1f ()] : Kn(x,t;c)|t—x|dt+>\<1+cx £ (22) = f (z) — xf’ (z)]
Az Z\/ WV“JU)I)'

Next applying Holder’s inequality, and Lemrna[2.1, we proceed as follows for the estimation of
the first two terms in the right hand side pf (3.3):

M [oe) x
(3.4) ?/ K, (z,t;c)t7 |t — x| dt + % / K, (z,t;c) (t — 3:)2 dt
2x 2x

1 1
M e8] 3 00 2
< — < K, (x,t;¢) t%t) (/ K, (x,t;¢) (t — :C)Zdt>
T 2x 0

+ |f(f)| T K (o) (t— o) dt

Y 2x

Az (14 cx) . A1+ cx)
UL | 22

Also the third term of the right side df (3.3) is estimated as
zt)]| / K, (z,t;c) |t — x| dt
2z
sl / K, (x,t;c) |t —z|dt
<|f' (= (/K:Utc)t—w dt) (/K:Utcdt)
, Az (1+cx
— | ) LU,

Combining the estimatep (3.1)[- (B.4), we get the desired result.
This completes the proof of Theor¢m[3.1. O

< M2O ()
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Remark 3.2. For negative values af, the operatorg~,, . may be defined in different ways.
Here we consider one such example, whes —1 then¢, . (z) = (1 — )", the operator
reduces to

n 1
Goet (F12) =103 (5 =1) [ prcsics (65-1) £ (1)
k=1 0

+(1—=2)"f(0), z€][0,1],
where
Pk (x;—1) = (Z) z* (1 - a:)"_k .
The rate of convergence for the operat@ts ; (f, ) is analogous so we omit the details.
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