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Let H be the class of holomorphic functions in the unit disk= {z : |z| <
1} and.A the class of functiong € H(U) with f(0) = f’(0) — 1 = 0. Let also

W={weHU):w(0)=0 and |w(z)| <1 in U} and
P={peH(U):p0)=1 and Rp(z) >0 in U}
={(1+w)(1—-w)":weW}

ClassesP (also known as Carathéodory’s class) afidalso known as class
of Schwarz functions) are fundamental in Geometric Function Theory, while  Some Special Subclasses of
a large number of papers written during the last century involve them. Apart CELD o S
from the independent interest revealed by their study, these two classes are sig-  Coefficient Problems

nificantly useful, since many results related to them prove to be essential while

Philippos Koulorizos and

working with other classes of equal importance. Furthermore, several classes’ Nikolas Samaris
coefficients can be formed as expressions of the relative coefficients of classes
P andW. Title Page

Two fundamental examples are given by the clagsesnd/C, consisting of
the univalent functiong € A which are starlike and convex respectively. It is

known that: 44 44
/ < >
1) fes iff fedand L cp
f(Z) Go Back
and Close
1 't
2) Fekif fedandls L) cp) QU
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The most known subclasses of cl&save been initially introduced by the
exclusion from each function’s domain, of an entire surface of the right half-
plain {z : Rz > 0}. More specifically, we derive the classBsandP, being
defined as follows:

fepP, iff fePandRf(z)>ainU, (a>0)
and  f e Py iff fcPand|arg f(z)| < %Tin U, (1>a>0).

If in relation (1) we replace clas® by P, or P, we obtain the classes;
andS(*a) respectively, known as starlike of ordeand strongly starlike of order
a. In asimilar way, classes, andiC(,) known as convex of orderand strongly
convex of order are obtained, applying the same substitutions in rela@pn (

Our idea is to study coefficient problems, about classes which are “very
close” to initial classe®, S* andK, which are obtained excluding from their
domains a single point belonging to the right half-pléin: ®z > 0}. More
specifically if o > 0, we introduce classeBy,), Sp,, andKy,) as follows:

/!

Pa={fEP: flz) #a,Vz U}, feS iff ieP[a]

f
and f € K iff 1+ ZJ{,(S)

Similar problems, involving clas8,; = {¢ € H(U) : |p(2)| <1, o(2) #
a, ¥z € U}, (Ja| < 1), were studied by Ruud Ermers (sed)] For B,
the author gives the best possible upper bound for the first and second Taylor
coefficient, generalizing the relative results provided by Krzyz (Spddr the
well known classBj).

€ P[a} .
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We also denote
W[a] =Wn B[a].

If o = }j—g (la] < 1) (we will retain this symbolism throughout the paper), then
it is easy to see that

1
w € W[a] <~ %Z S 'P[a].

In order to obtain the Taylor expansions mentioned we will use the f@fms=
fo+ fiz+ fo22+.candfHw) = Fy + Fiw + Fow? + ...
In this paper we give the following results:

(i) Forthe clas$®|, we calculate the quantities?x |ful,m=1,2forRa >0
andm?x | f3| for a > 0.

(17) For the classeS;;, andKCp:
«) we calculatanax | fo| andmax | F5| for Ra > 0,
f f

(B) we solve the Fekete—Szegd problem for eyery C, determining the
quantitieSm?X |fs — pf2 andm?x |F3 — uF%|,

(v) we calculaten?x | f4] andm?x |Fy| for a > 0.

The following three lemmas will be very useful in order to prove the theo-
rems where our main results are stated. First we present the Szynal-Prokhorov
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lemma (see4]) which is crucial for the estimation of our results. Through this

lemma the value

O (21, 22) = maxyeyy |ws + T1wWi W + xgwﬂ

for z1, x5 € R is obtained. For the formulation of the lemma we will need

the following denotations:

5'11(I1, xz)

1
=§—|371|,
=2 -,
=4 -,
=29 + 1,
=1—1y,
4 3
— a1 = (5ol + 2 = (i + 1))
=—=(|z1] + 1) — 2o,
1 2
$2_§($1+8)7
=~ 2| - 1),
_ 2z|(aa] +1)
242 +4 Y
_ 2z (|| — 1)
222 +4 Y
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Dy = {(x1,2) : Si(w1,25) >0, Sy(w1,25) >0, Ss(1,2) >0},

Dy={(w1, 1) : =S1(x1,22) >0, Sy(1,22) >0, S5(x1,22) >0, Ss(x1, 22) >0},

D3 = {(m,:m) Si(z1,2) >0, —=Sy(xy,19) > 0}

Dy = {(m,m) —S1 (21, 29) >0, Se(1,79) > 0}

D5 = {(JIl,ZEQ) 0 So(1,29) >0, —S7(x1,29) > 0}

Dg = {(m,m) —Sy(x1,m3) >0, Ss(x1,x3) >0, Ss(21,35) > 0}7

D7 = {(I1,x2) : —S3(x1,29) >0, So(z1,19) > 0}

Dg = {(21,9) : =Si(21,22) >0 1L a2) >0, —Si(x1,20) > 0,
— Se(x1,29) > 0}

Dy = {(I1,x2) :—=So(xy,19) >0, —=S7(x1,29) >0, Sio(x1,22) > 0}7

Dy = {($1,ZE2) : —Sa(xy, ) >0, S3(x1,29) >0, =S10(21,29) >0

— Sg(x1,29) >0
Dy = {($1,$2) = S3(z1, T2)
Diy = {(I1,$2) : —S3(z1, T2)

H,_/

(A\VARAYS
o o

Lemma 1. (See [1])

(I)(l‘h%) = ¢1($1,$2)

, —Sio(z1,22) >0, Sii(z1,22) > 0} and
, =Sui(z1,22) >0, —Sy(z1,22) > 0}.
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where:

1
2 |,’L’1‘ + 1 2
o == 1
1@, 22) = (laa +1) <3(|x1] +1+:cz)) ’
1 z2 —4 -4\
o 1 1 1 and
2(1’171'2) 3[E2 <(p% — 4$2) (3<ZL'2 - 1))
1
2 K :
o =5 (Jan] =1 '
3(1’1,562) 3(|$1‘ ) (3(’$1| —1—[L’2))

Lemma 2. For every(z, x5

~

eC?%itholds thaﬁn%]xlw%—i-xgwj =max{|z1|,|z2]}.
we

Proof. Let wy, wy, € C. Applying the Carathéodory—Toeplitz (C—T) Theorem
(see []) in the classV, there exists a € W with «/'(0) = w; andw”(0) =
2wy If and only if

3) fn <1 and Juwa] < 1 uy |,

or equivalently there exigtry, 75) € [0, 1]> and|z;| = |z»| = 1 such that

(4) w, = 71121 andwy = (1 — r3)ryzs.

Using @) we derive that

max |z1w; + wows|

= max {|z1772] + 22(1 — 1)raze : 0 <y <1, 0 <1y < 1, |2 = |20] = 1}
= max {|z1|r] + [22|(1 = 73) : 0 <1y < 1}
= max {r] (|z1] — |z2]) +|z2] : 0 <7y < 1}

= max{|:1:1], |ZL’2|} .
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Lemma 3. (a) If Ra > 0thenf € Py, if and only if it has the form

1 — |a,|(p(z)+1) + a(l — |a|(p(z)71))
1— |a|(p(z)+1) — a(]_ — |a|(p(z)—1))

withp € P.
(B) For (a1, as,a3) C C? the following propositions are equivalent:

() There is a functiorf € Py, such thatf; = a4, fo = a; and f3 = as.
(i) There is a functionv = w2 + wy2% + ... € W such that:

4alog |al
ay = ———— w,
Pl
- Aaloglal (14l + (-1 + 24— laf)loglal) ,
Tt aP —L+ af )
4alog |al 2(=1+ |al* = (1 — 2a + |a|?) log |a|)
T e\ T B s

— 1 2)\2 4 2
+3(_1 + [a]?)? (3(=1+ la[*)* + 2log a(3 — 3[a|* + 6a(~1 + |a|*)

+ (14 6a* + 4|al* + |a|* — 6a(1 + |a]?)) log |a|)) wi’) .

Proof. For the proof of this lemma we consider the following propositions:
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(i) f € Py ifandonly if f has the formf = 12 with w € W,).
(i) f € Wy ifand only ifw has the form

a — Wy
wW=-——-
1 — aw;

with w, € By andw, (0) = a.

(iii) wy € By with w;(0) = a if and only if w; has the formv; = aja|P~! with
peEP.

We now observe that the proof of propositions (i) and (ii) is rather simple.

The proof of proposition (iii) is obtained by relatian, € By if and only
if w; gets the formw; = e with |[\| = 1, ¢ > 0 andp € P. Setting
wy(0) = Xe™* = a we obtain the result of the proposition.

Thus combining the results of propositions (i), (ii) and (iii) we get the result
of the lemma. O

Our results are stated in the following theorems.
Theorem 4. («) For Ra > 0 it holds that:
x 4fa|log |al
A= T e

and
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(ii)

Jnax | f]

:max{

(8) For a > 0 it holds that:

4alog|al(—1 — |a]*(=1 +log|a|) + (=1 + 2a) log |a])

(—1+[aP)?
}.

9

4alog |al
-1+ ’CL|2

max
masfy

[ |z31(a)| @1(z11(a), ze1(a)) for a € (0,0.76227]
U[1.05537, 1.39636],
|ZE31 (CL)| @2(1‘11(@),[[‘21 (CL)) for a € [076227, 0883736]
U[1.04583, 1.05537],
|z31(a)] P3(x11(a),x21(a)) for a € [0.883736,0.914114]
U[1.03238, 1.04583],

’1331(CL)| |ZL’21((Z)| fora € [0914114, 103238],

WE©] for a € [1.39636, ),
with:
N 2( =1+ a*— (=14 a)?loglal)
u(a) = —1+4a? ’
() = (=14 a)*( = 3(=3+a)(1+a)logla| +2(1 — 4a + a?)(log |a])?)

3(—1+ a?)?
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and

(a) 4alog |a|
x31(a) = ———-.
o —1+ a?
Theorem 5. («) For Ra > 0 andy € C it holds that:
! 4lallog |al
__4fallog|a
}lgg’[%f] f2|_ 1_|a2| )
(ii)
max |Fy| = max|fs],
Fesy, 2 fesg, £l
(iii)
max = max |Fy| = — max/|fs],
e 2] = s [F2] = 5 max o
(iv)
2
max | fg —
jest, [z — nfs]
e 2alog |a|(1 — |a]® + (1 + |a]? + 2a(—3 + 4u)) log |al)
N (=1 +[af?)? ’
2alog |al
—1+1al?|)’
(v)

max |Fy — uFZ| = max|fs + (u— 2)f2|,
fES[*a]‘ 3 K 2’ fES[*a]‘fg (,u )f2|
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(vi)

1 3
2 2
max 7‘ —m‘ = —max |fs — -
FEK 4 ‘ 5 2‘ 3 feS[*a] ’ 3 4 H f2’

and
(vii)

fit (=23 13

1
max |3 — pF2| = = max
fGIC[a] 3 fES[*a]

(8) For a > 0 it holds that:
(i) ;ggﬁ\fd

( Jwga(a)| Jwan(a)| for a € (0,1.02357] U [1.14133,1.33331]
U[1.76736, 50),
|ZL’32((1,)| @3(1‘12(&),%22(&)) for a € [102357, 103283],
= |zza(a)] Pa(x19(a), x2(a)) for a € [1.03283,1.0378|
U[1.73905, 1.76736],
|(L’32(CL)| @1(1]12(@),1‘22(@)) for a € [10378, 114133]
U[1.33331, 1.73905)],

with:

2(1 —a?+ (1 — 5a + a?) log |a])
—1+a?

Q?lg(a) = —

Y
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6(—1+ ba — 5a® + a*) log |a|

mala) =1 - 3(—1 1 a2)?
N 2(1 4+ a(—15+ a(40 + (=15 + a)a)))(log|al)?
31+ a2)
and
v5a(a) = 4alog |a|
TR+ @)
(i) fil = & max |7

[a]

i) max|F
@ o Py

1[0.983596, 00),
|ZL‘33<CZ)| @3($13(a),$23(a)) for a € [0711625, 071718]
u[0.977731, 0.983596],
|zg3(a)| Pa(x13(a), z23(a)) for a € [0.71718,0.732352]
u[0.975309, 0.977731],
|x33(a)| (1)1(1713((1), IL‘Qg(CL)) for o € [0732352, 0, 824185]
U[0.936408, 0.975309)],

with:
2(1—a®+ (1 + 10a + a*) log|al)
—1+a?

I13(a) = -

)

(|z33(a)| |r2s(a)| for a €(0,0.711625] U [0.824185,0.936408]
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6(—1+a)(1+a)(l+a(l0+a))loglal

maa(0) = 1= 3(—1 + a?)?
N 2(1 + a(30 + a(130 + (30 + a)a)))(log |a|)?
3(—1+ a?)?
and
4alog|al
") = 5Ty a2
and

(iv) f?;%fj]lﬂ’
( Jwsa(a)] [z2a(a)| for a €(0,0.565815] U [0.750011,0.876173]
U[0.976968, 00),

\x34(a)| @2(1‘14(@),1’24(&)) for a € [0565815, 0575026]

= U[0.963576, 0.968213],
|x34(a)| @1(3714(@),[[’24(0,)) for a € [0575026, 0750011]

U[0.876173,0.963576],
| J234(a)] @5(214(a), 72a(a)) Tor o € [0.968213,0.976968],

with:
2(1 — a® + (1 + 5a + a?) log |al)
r14(a) = — —1+a2 '
6(—1 — ba + 5a® + a*) log |a|
maa(0) = 1= 3(—1 + a?)?
N 2(1 4 a(15 + a(40 + (15 + a)a)))(log |a|)?

3(—1+ a?)?
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Proof.

(ii)

and

_ alog|al
m(0) = 3 F )
(i) For everyf < P, We set the coefficient;, f, and f; in the
form of Lemmas3 (). Using the relatiomax,,cyy|w;| = 1, we find that
maxep, | fi| coincides with the form given in Theorefn
In a similar way, maxfep[a]|f2| presented in Theorem follows using
Lemma2.

Using LemmaB (), after the calculations we obtain that

J{gg{f}|f3| = |za1(a)] ®(211(a), 221(a)).
In order to find for anys € (—1,1) the corresponding branch df, we
proceed finding all the roots of each equati§iiz1(a), z2(a)) =0 (i =
1,...,11), with respect tas, that belong in(—1,1). The procedure by
which these calculations are obtained will be described later.

In the next step, we consider the partition of the intefval, 1) formed by
the above roots, into successive subintervals, being defii@spectively.
Checking in each subinterval the sign of &ll(z:(a),z2(a)), through
Lemmal, we select the corresponding branchdoto this subinterval.
More specifically we verify that the roots of all quantiti&gz:(a), z2(a))
belong to the set:

A ={-0.1349, —0.0761, —0.06172, —0.04487,0.01593, 0.0224,
0.02694, 0.09078, 0.1654,0.17104, 0.2707}.
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Checking the signs of functiorts (z (a), z2(a)) in the twelve subintervals
defined, we obtain the formulation of the following inequalities:

Sy >0 iff a €[0.17104,0.27070],

Sy >0 iff a €[0.09078,1),

S3>0 iff a € (—1,-0.07610] U[0.03902,1),
Sy>0 iff a € (—1,0.10256] U [0.16413,1),
S5 >0 iff a €[0.03220,1),

Se >0 iff a €[0.16540, 1),

Some Special Subclasses of

S7>0 iff a € [0.17550, 0.22472], Carathéodory’s or Starlike
Ss>0 iff a € [~0.04027,0.01306], Coufficiont problems
So >0 iff a € (—1,-0.25267] U [—0.04487,0.01593] U [0.44174, 1), ) |

Sy >0 iff a € (—1,—0.13490] U [0.02694,1) and Fllepoe e leres e
Sip >0 iff a € (—1,-0.06172] U [0.02240, 1).

In this way we also get for every functidf), the set ol € (—1,1) with Title Page

S;i (z1(a), zo(a)) < 0. Therefore by Lemma we obtain the result given Contents

in part(i7) of Theoremd, which completes the proof of the theorem.

It only remains to solve the equatiofis(x; (a), z2(a)) = 0. In the following S L
paragraphs, we outline our methodology for the solution of these equations. But < >
first let us stress that although we will use a numeric computation program like

o : : : Go Back
Mathematica, its use will be restrictedly to the following cases: oBac
Close
(i) once we have rigorously proved that a given function of a single real vari- Quit

able has ainiqueroot in a given closed interval then, we will compute this
root by Mathematica, Page 16 of 25
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(i) given a polynomial of a single variable, we will use Mathematica to com-
pute thek roots of it and

(ii)) we will use Mathematica to perform both numeric and symbolic algebraic
calculations that can, in principle, be performed by hand.

Replacing in the initial equation all the expressions of the fdifwith +11,
we form all possible combinations, deriving some equations of the form

Q(t) = Qo(t) + Ql(t) log |t| 4+t Qk(t) (log |t|)k =0, Some Special Subclasses of

Carathéodory’s or Starlike
Functions and Related
Coefficient Problems

with Q; ¢ = 0, ..., k rational functions of a single real variableTherefore, it
suffices to solve the new equations and then check which of their roots are also
roots of the original one (we cali thelogarithmic degreef )(¢) — in our case

k = 3).

By dividing with Q. (¢), we may further suppose that the maximum logarith-
mic degree coefficien)),(¢) is constantly 1 (this step requires a check whether
any root ofQ),. is also a root of the whole equation). Therefore, we now have to Contents
deal with an equation of the form

Philippos Koulorizos and
Nikolas Samaris

Title Page

<44 >»
Q(t) = Qo(t) + Qu(t)logt + - -+ + Qr_1(t) (log )" + (logt)" = 0. < >
Our crucial observation now is that if we differenti@¢t ), we obtain a function Go Back
of the same form, but with its logarithmic degree decremented by one (and Close
possibly with a non-constant coefficient f@rogt)kfl). Assume that we have Quit

computed the roots of the latter equation of logarithmic degreel. Then

we can locate the (closed) intervals where the origipél) is either strictly Page 170725
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increasing or strictly decreasing. In such an intergil;) can have at most one
root. We can easily determine if at this interv@(t) has a unique root or no
root at all. In case it has a unigue root, we compute it using Mathematica.
These remarks lead to the following recursive computation of the roots of
Q(t). Differentiate repeatedly and between any two differentiations divide with
the maximum degree coefficient, until a function with no logarithms (of log-
arithmic degree 0) is obtained. This obviously is a rational function. Find its
roots by the use of Mathematica. Then backtrack step by step to the original
function using the strict monotonicity intervals at each step to locate the inter-  some Special Subclasses of
vals where the function of the previous step has a unique solution. Then find ~ “anodorys of Starike
the roots of the previous step by Mathematica and proceed further back to larger Coefficient Problems

logarithmic degree, until the original function is reached and all of its roots are

Philippos Koulorizos and

computed. This ends the description of our methodology for the solution of Nikolas Samaris
S; (z1(a), zo(a)) = 0 and completes the proof of the theorem. O
Remark 1. For a € (—1,1) we remark that: Title Page
. . Contents
(i) Fora — 1 (equivalentlyn — 0) thenmaxyep, |fi| — 2,k =1,2,3.
44 44
(i) Fora — —1 (equivalentlya — oo) thenmaxep, |fx| — 2,k =1,2,3.
>

These remarks are making obvious that our theorem consists an extension

of Carathé -odory’s inequality in the cases- 1, 2, 3. In Figures1 — 3 we Go Back
give the graphical representations ofax;cp,, | fx| as functions of, for
k = 1,2, 3 respectively.

We also remark that:

Close
Quit
Page 18 of 25

(i) Fora — +1 thenmaxfeg[*a] fol = n,n=2,34.
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Carathéodory’s or Starlike
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Philippos Koulorizos and
Nikolas Samaris

Figure 1.
Title Page

(iv) Fora — &1 thenmaxyex,, [fu| — 1, n = 2,3, 4. Contents

Remarks (iii) and (iv) are pointing out that our theorem consists as well < 33
an extension of Rogosinski’s inequality (s€3),[in the casesi = 2,3,4, p >
for starlike or convex functions respectively. The graphical representations of
maxXfes: fxl, as functions ot; for n = 2,3,4, are given in Figurest — 6 Go Back
respectively. Close
Proof of Theorend. A function f € S, <= sz’ = q € Py While f = Quit

Page 19 of 25
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N

0.5

-1 -0.5 0.5 1

Figure 2:

24 for 4 f323 4+ ... andg =14 ¢z + 2% +.... Since

1 1
fo=q, fs==(@+q}) and f, = E(Qi” + 3192 + 2g3),

2

expandingf to Taylor series and substituting quantitigsg, andgs with their
form described in Lemm3, we obtain that:

fo=
fa =

4alog|al
=——w

2alog |al

(=14 [a?])?

((—1 + |a?)wy + (—1 +|a?| + (=1 + 6a — |a?|) log |a|) wf)

Some Special Subclasses of
Carathéodory’s or Starlike
Functions and Related
Coefficient Problems

Philippos Koulorizos and
Nikolas Samaris

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 20 of 25

J. Ineq. Pure and Appl. Math. 4(2) Art. 45, 2003

httrn//itinarm vit odir ann


http://jipam.vu.edu.au/
mailto:
mailto:
mailto:samaris@math.upatras.gr
http://jipam.vu.edu.au/

2
1.
1
0.5
-1 -0.5 0.5 1
Figure 3:
and
_ 4alog]al B 9\
= 5t @y (3( L+ a%)ws

—6(—=14a%) (1 —a®+ (1 —5a+ a*)log|a|) wiwy
+ (3(=1+ a?®)? — 6(—1 + 5a — 5a® + a*) log |a|

+2(1 — 15a + 40a* — 15a* + a*)(log |a])2)wi’>.

, are derived

fa

QuantitieSmaxfeg[*] fal, maxfes: fs — ufi] and maxsesy
following the procedure of the previous theorem.
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Title Page
Contents
44 44
< >
Go Back
Close
Quit
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Figure 4 Nikolas Samaris
Title Page
For the inverse functio = f~! it holds that:
Contents
Fy=—fy, Fs=2f2— fs and Fy = —5f3 + 5fafs — fu. «“« NS
Itis obvious that the most complicated case is the calculatiomafcs; |Fil, 4 >
since maxsesy F,| and maxsesy F3 — pF}| are derived straightforwardly. Go Back
Substitutingf>, f3 and f, in F;, we obtain a polynomial expression with re- p—
spect tow;, wo, andws. We work in a similar way with the calculation of
maxep,, | f3| to complete the proof. Quit
Furthermore, due to the initial assumption of this paper, a fungjion Page 22 of 25

Ko <= 1+%,” =q € Py Wwithg = z+ ¢g2* +¢32° +... and
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Figure 5: Nikolas Samaris
9 " 9 3 Title Page
g =14+qz+ @+ .... NOWIGtSM S fi=z4 forr+ f3z2+ ... It
can be easily seen that: Contents
f2 fS f4 b dd
== == and g, = =—
g2 9 , g3 3 ga 4 ; < S
which renders the proof af) (iii), (vi), (vii) and () (ii) straightforward. In Go Back
order to prove(3) (iv), we work in the same manner with the calculation of Close
HlaXfep[a] |f3| andmaxfeg[*a] f4| [] _
Quit

Page 23 of 25
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Figure 6:
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