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ABSTRACT. Let P be the class of analytic functions in the unit diskU={|z|<1} with p(0) = 0
and<p(z) > 0 in U. Let alsoS∗, K be the well known classes of normalized univalent starlike
and convex functions respectively. For<α > 0 we introduce the classesP[α], S∗

[α] andK[α]

which are subclasses ofP, S∗ andK respectively, being defined as follows:p ∈ P[α] iff p ∈
P with p(z) 6= α ∀ z ∈ U, f ∈ S∗

[α] iff zf ′

f ∈ P[α] and f ∈ K[α] iff 1 + zf ′′(z)
f ′(z) ∈ P[α].

In this paper we study different kind of coefficient problems for the above mentioned classes
P[α], S∗

[α] andP[α]. All the estimations obtained are the best possible.
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LetH be the class of holomorphic functions in the unit diskU = {z : |z| < 1} andA the
class of functionsf ∈ H(U) with f(0) = f ′(0)− 1 = 0. Let also

W = {w ∈ H(U) : w(0) = 0 and |w(z)| < 1 in U} and

P = {p ∈ H(U) : p(0) = 1 and <p(z) > 0 in U} ≡ {(1 + w)(1− w)−1 : w ∈ W}.

ClassesP (also known as Carathéodory’s class) andW (also known as class of Schwarz
functions) are fundamental in Geometric Function Theory, while a large number of papers writ-
ten during the last century involve them. Apart from the independent interest revealed by their
study, these two classes are significantly useful, since many results related to them prove to be
essential while working with other classes of equal importance. Furthermore, several classes’
coefficients can be formed as expressions of the relative coefficients of classesP andW.

ISSN (electronic): 1443-5756

c© 2003 Victoria University. All rights reserved.

011-03

http://jipam.vu.edu.au/
mailto:samaris@math.upatras.gr
http://www.ams.org/msc/


2 PHILIPPOSKOULORIZOS AND NIKOLAS SAMARIS

Two fundamental examples are given by the classesS∗ andK, consisting of the univalent
functionsf ∈ A which are starlike and convex respectively. It is known that:

(1) f ∈ S∗ iff f ∈ A and
zf ′(z)

f(z)
∈ P

and

(2) f ∈ K iff f ∈ A and 1 +
zf ′′(z)

f ′(z)
∈ P .

The most known subclasses of classP have been initially introduced by the exclusion from
each function’s domain, of an entire surface of the right half-plain{z : <z > 0}. More specifi-
cally, we derive the classesPa andP(a) being defined as follows:

f ∈ Pa iff f ∈ P and<f(z) > a in U, (a > 0)

and f ∈ P(a) iff f ∈ P and| arg f(z)| < aπ

2
in U, (1 > a > 0).

If in relation (1) we replace classP byPa orP(a), we obtain the classesS∗a andS∗(a) respec-
tively, known as starlike of ordera and strongly starlike of ordera. In a similar way, classesKa

andK(a) known as convex of ordera and strongly convex of ordera are obtained, applying the
same substitutions in relation (2).

Our idea is to study coefficient problems, about classes which are “very close” to initial
classesP, S∗ andK, which are obtained excluding from their domains a single point belonging
to the right half-plain{z : <z > 0}. More specifically if <α > 0, we introduce classesP[α],
S∗[α] andK[α] as follows:

P[α] = {f ∈ P : f(z) 6= α, ∀ z ∈ U}, f ∈ S∗[α] iff
zf ′

f
∈ P[α]

and f ∈ K[α] iff 1 +
zf ′′(z)

f ′(z)
∈ P[α].

Similar problems, involving classB[a] = {ϕ ∈ H(U) : |ϕ(z)| ≤ 1, ϕ(z) 6= a, ∀z ∈ U},
(|a| < 1), were studied by Ruud Ermers (see [2]). ForB[a] the author gives the best possible
upper bound for the first and second Taylor coefficient, generalizing the relative results provided
by Krzyż (see [3]) for the well known classB[0].

We also denote
W[a] = W ∩B[a].

If α ≡ 1+a
1−a

(|a| < 1) (we will retain this symbolism throughout the paper), then it is easy to see
that

w ∈ W[a] ⇐⇒
1 + w

1− w
∈ P[α].

In order to obtain the Taylor expansions mentioned we will use the formsf(z) = f0 + f1z +
f2z

2 + . . . andf−1(w) = F0 + F1w + F2w
2 + . . ..

In this paper we give the following results:

(i) For the classP[α] we calculate the quantitiesmax
f
|fn|, n = 1, 2 for<α > 0 andmax

f
|f3|

for α > 0.
(ii) For the classesS∗[α] andK[α]:

(α) we calculatemax
f
|f2| andmax

f
|F2| for <α > 0,

(β) we solve the Fekete–Szegö problem for everyµ ∈ C, determining the quantities
max

f
|f3 − µf 2

2 | andmax
f
|F3 − µF 2

2 |,
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SOME SPECIAL SUBCLASSES OFCARATHÉODORY’ S . . . 3

(γ) we calculatemax
f
|f4| andmax

f
|F4| for α > 0.

The following three lemmas will be very useful in order to prove the theorems where our
main results are stated. First we present the Szynal–Prokhorov lemma (see [4]) which is crucial
for the estimation of our results. Through this lemma the value

Φ(x1, x2) = max
f∈W

|w3 + x1w1w2 + x2w
3
1|

for x1, x2 ∈ R is obtained. For the formulation of the lemma we will need the following
denotations:

S1(x1, x2) =
1

2
− |x1|,

S2(x1, x2) = 2− x1,

S3(x1, x2) = 4− x1,

S4(x1, x2) = x2 + 1,

S5(x1, x2) = 1− x2,

S6(x1, x2) = x2 −
(

4

27
(|x1|+ 1)3 − (|x1|+ 1)

)
,

S7(x1, x2) = −2

3
(|x1|+ 1)− x2,

S8(x1, x2) = x2 −
1

12
(x2

1 + 8),

S9(x1, x2) = x2 −
2

3
(|x1| − 1),

S10(x1, x2) =
2|x1|(|x1|+ 1)

x2
1 + 2|x1|+ 4

− x2,

S11(x1, x2) =
2|x1|(|x1| − 1)

x2
1 − 2|x1|+ 4

− x2,

D1 =
{
(x1, x2) : S1(x1, x2) ≥ 0, S4(x1, x2) ≥ 0, S5(x1, x2) ≥ 0

}
,

D2 =
{
(x1, x2) : −S1(x1, x2) ≥ 0, S2(x1, x2) ≥ 0, S5(x1, x2) ≥ 0, S6(x1, x2) ≥ 0

}
,

D3 =
{
(x1, x2) : S1(x1, x2) ≥ 0, −S4(x1, x2) ≥ 0

}
,

D4 =
{
(x1, x2) : −S1(x1, x2) ≥ 0, S7(x1, x2) ≥ 0

}
,

D5 =
{
(x1, x2) : S2(x1, x2) ≥ 0, −S7(x1, x2) ≥ 0

}
,

D6 =
{
(x1, x2) : −S2(x1, x2) ≥ 0, S3(x1, x2) ≥ 0, S8(x1, x2) ≥ 0

}
,

D7 =
{
(x1, x2) : −S3(x1, x2) ≥ 0, S9(x1, x2) ≥ 0

}
,

D8 =
{
(x1, x2) : −S1(x1, x2) ≥ 0, S2(x1, x2) ≥ 0, −S7(x1, x2) ≥ 0, −S6(x1, x2) ≥ 0

}
,

D9 =
{
(x1, x2) : −S2(x1, x2) ≥ 0, −S7(x1, x2) ≥ 0, S10(x1, x2) ≥ 0

}
,

D10 =
{
(x1, x2) : −S2(x1, x2) ≥ 0, S3(x1, x2) ≥ 0, −S10(x1, x2) ≥ 0, −S8(x1, x2) ≥ 0

}
,

D11 =
{
(x1, x2) : −S3(x1, x2) ≥ 0, −S10(x1, x2) ≥ 0, S11(x1, x2) ≥ 0

}
and

D12 =
{
(x1, x2) : −S3(x1, x2) ≥ 0, −S11(x1, x2) ≥ 0, −S9(x1, x2) ≥ 0

}
.
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4 PHILIPPOSKOULORIZOS AND NIKOLAS SAMARIS

Lemma 1. (See[4])

Φ(x1, x2) =



1 if (x1, x2) ∈ D1 ∪D2,

|x2| if (x1, x2) ∈
⋃7

k=3 Dk,

Φ1(x1, x2) if (x1, x2) ∈ D8 ∪D9,

Φ2(x1, x2) if (x1, x2) ∈ D10 ∪D11,

Φ3(x1, x2) if (x1, x2) ∈ D12,

where:

Φ1(x1, x2) =
2

3
(|x1|+ 1)

(
|x1|+ 1

3(|x1|+ 1 + x2)

) 1
2

,

Φ2(x1, x2) =
1

3
x2

(
x2

1 − 4

x2
1 − 4x2

)(
x2

1 − 4

3(x2 − 1)

) 1
2

and

Φ3(x1, x2) =
2

3
(|x1| − 1)

(
|x1| − 1

3(|x1| − 1− x2)

) 1
2

.

Lemma 2. For every(x1, x2) ∈ C2 it holds thatmax
w∈W

|x1w
2
1 + x2w2| = max{|x1|, |x2|}.

Proof. Let w1, w2 ∈ C. Applying the Carathéodory–Toeplitz (C–T) Theorem (see [1]) in the
classW, there exists aw ∈ W with w′(0) = w1 andw′′(0) = 2w2 if and only if

(3) |w1| ≤ 1 and |w2| ≤ 1− |w1|2,

or equivalently there exist(r1, r2) ∈ [0, 1]2 and|z1| = |z2| = 1 such that

(4) w1 = r1z1 andw2 = (1− r2
1)r2z2.

Using (4) we derive that

max
w∈W

|x1w
2
1 + x2w2|

= max
{
|x1r

2
1z

2
1 + x2(1− r2

1)r2z2| : 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1, |z1| = |z2| = 1
}

= max
{
|x1|r2

1 + |x2|(1− r2
1) : 0 ≤ r1 ≤ 1

}
= max

{
r2
1 (|x1| − |x2|) +|x2| : 0 ≤ r1 ≤ 1

}
= max {|x1|, |x2|} .

�

Lemma 3. (α) If <α > 0 thenf ∈ P[α] if and only if it has the form

1− |a|(p(z)+1) + a(1− |a|(p(z)−1))

1− |a|(p(z)+1) − a(1− |a|(p(z)−1))

with p ∈ P .
(β) For (a1, a2, a3) ⊂ C3 the following propositions are equivalent:

(i) There is a functionf ∈ P[α] such thatf1 = a1, f2 = a2 andf3 = a3.
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SOME SPECIAL SUBCLASSES OFCARATHÉODORY’ S . . . 5

(ii) There is a functionw = w1z + w2z
2 + . . . ∈ W such that:

a1 =
4a log |a|
−1 + |a|2

w1,

a2 =
4a log |a|
−1 + |a|2

(
(−1 + |a|2 + (−1 + 2a− |a|2) log |a|)

−1 + |a|2
w2

1 + w2

)
,

a3 =
4a log |a|
−1 + |a|2

(
w3 +

2 (−1 + |a|2 − (1− 2a + |a|2) log |a|)
−1 + |a|2

w1w2

+
1

3(−1 + |a|2)2

(
3(−1 + |a|2)2 + 2 log |a|(3− 3|a|4 + 6a(−1 + |a|2)

+ (1 + 6a2 + 4|a|2 + |a|4 − 6a(1 + |a|2)) log |a|)
)

w3
1

)
.

Proof. For the proof of this lemma we consider the following propositions:

(i) f ∈ P[α] if and only if f has the formf = 1+w
1−w

with w ∈ W[a].
(ii) f ∈ W[a] if and only if w has the form

w =
α− w1

1− ᾱw1

with w1 ∈ B[0] andw1(0) = a.
(iii) w1 ∈ B[0] with w1(0) = a if and only if w1 has the formw1 = a|a|p−1 with p ∈ P.

We now observe that the proof of propositions (i) and (ii) is rather simple. The proof of
proposition (iii) is obtained by relationw1 ∈ B[0] if and only if w1 gets the formw1 = λe−tp

with |λ| = 1, t > 0 and p ∈ P. Settingw1(0) = λe−t = a we obtain the result of the
proposition.

Thus combining the results of propositions (i), (ii) and (iii) we get the result of the lemma.
�

Our results are stated in the following theorems.

Theorem 4. (α) For <α > 0 it holds that:
(i)

max
f∈P[α]

|f1| = −4|a| log |a|
1− |a2|

and
(ii)

max
f∈P[α]

|f2|

= max

{∣∣∣∣4a log |a|(−1− |a|2(−1 + log |a|) + (−1 + 2a) log |a|)
(−1 + |a|2)2

∣∣∣∣ , ∣∣∣∣ 4a log |a|
−1 + |a|2

∣∣∣∣} .
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6 PHILIPPOSKOULORIZOS AND NIKOLAS SAMARIS

(β) For α > 0 it holds that:

max
f∈P[α]

|f3|

=


|x31(a)| Φ1(x11(a), x21(a)) for α ∈ (0, 0.76227] ∪ [1.05537, 1.39636],
|x31(a)| Φ2(x11(a), x21(a)) for α ∈ [0.76227, 0.883736] ∪ [1.04583, 1.05537],
|x31(a)| Φ3(x11(a), x21(a)) for α ∈ [0.883736, 0.914114] ∪ [1.03238, 1.04583],
|x31(a)| |x21(a)| for α ∈ [0.914114, 1.03238],
|x31(a)| for α ∈ [1.39636,∞),

with:

x11(a) =
2
(
− 1 + a2 − (−1 + a)2 log |a|

)
−1 + a2

,

x21(a) =
(−1 + a)2

(
− 3(−3 + a)(1 + a) log |a|+ 2(1− 4a + a2)(log |a|)2

)
3(−1 + a2)2

and

x31(a) =
4a log |a|
−1 + a2

.

Theorem 5. (α) For <α > 0 andµ ∈ C it holds that:
(i)

max
f∈S∗

[α]

|f2| = −4|a| log |a|
1− |a2|

,

(ii)

max
f∈S∗

[α]

|F2| = max
f∈S∗

[α]

|f2|,

(iii)

max
f∈K[α]

|f2| = max
f∈K[α]

|F2| =
1

2
max
f∈S∗

[α]

|f2|,

(iv)

max
f∈S∗

[α]

|f3 − µf 2
2 |

= max

{∣∣∣∣2a log |a|(1− |a|2 + (1 + |a|2 + 2a(−3 + 4µ)) log |a|)
(−1 + |a|2)2

∣∣∣∣ , ∣∣∣∣ 2a log |a|
−1 + |a|2

∣∣∣∣} ,

(v)

max
f∈S∗

[α]

|F3 − µF 2
2 | = max

f∈S∗
[α]

|f3 + (µ− 2)f 2
2 |,

(vi)

max
f∈K[α]

|f3 − µf 2
2 | =

1

3
max
f∈S∗

[α]

|f3 −
3

4
µ f 2

2 |

and
(vii)

max
f∈K[α]

|F3 − µF 2
2 | =

1

3
max
f∈S∗

[α]

∣∣∣∣f3 + (µ− 2)
3

4
f 2

2

∣∣∣∣ .
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(β) For α > 0 it holds that:

(i) max
f∈S∗

[α]

|f4|

=


|x32(a)| |x22(a)| for α ∈ (0, 1.02357] ∪ [1.14133, 1.33331]

∪[1.76736,∞),
|x32(a)| Φ3(x12(a), x22(a)) for α ∈ [1.02357, 1.03283],
|x32(a)| Φ2(x12(a), x22(a)) for α ∈ [1.03283, 1.0378] ∪ [1.73905, 1.76736],
|x32(a)| Φ1(x12(a), x22(a)) for α ∈ [1.0378, 1.14133] ∪ [1.33331, 1.73905],

with:

x12(a) = −2(1− a2 + (1− 5a + a2) log |a|)
−1 + a2

,

x22(a) = 1− 6(−1 + 5a− 5a3 + a4) log |a|
3(−1 + a2)2

+
2(1 + a(−15 + a(40 + (−15 + a)a)))(log |a|)2

3(−1 + a2)2

and

x32(a) =
4a log |a|

3(−1 + a2)
,

(ii) max
f∈K[α]

|f4| =
1

4
max
f∈S∗

[α]

|f4|,

(iii) max
f∈S∗

[α]

|F4|

=


|x33(a)| |x23(a)| for α ∈ (0, 0.711625] ∪ [0.824185, 0.936408]

∪[0.983596,∞),
|x33(a)| Φ3(x13(a), x23(a)) for α ∈ [0.711625, 0.71718] ∪ [0.977731, 0.983596],
|x33(a)| Φ2(x13(a), x23(a)) for α ∈ [0.71718, 0.732352] ∪ [0.975309, 0.977731],
|x33(a)| Φ1(x13(a), x23(a)) for α ∈ [0.732352, 0, 824185] ∪ [0.936408, 0.975309],

with:

x13(a) = −
2
(
1− a2 + (1 + 10a + a2) log |a|

)
−1 + a2

,

x23(a) = 1− 6(−1 + a)(1 + a)(1 + a(10 + a)) log |a|
3(−1 + a2)2

+
2(1 + a(30 + a(130 + (30 + a)a)))(log |a|)2

3(−1 + a2)2

and

x33(a) =
4a log |a|

3(−1 + a2)
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8 PHILIPPOSKOULORIZOS AND NIKOLAS SAMARIS

and

(iv) max
f∈K[α]

|F4|

=


|x34(a)| |x24(a)| for α ∈ (0, 0.565815] ∪ [0.750011, 0.876173]

∪[0.976968,∞),
|x34(a)| Φ2(x14(a), x24(a)) for α ∈ [0.565815, 0.575026] ∪ [0.963576, 0.968213],
|x34(a)| Φ1(x14(a), x24(a)) for α ∈ [0.575026, 0.750011] ∪ [0.876173, 0.963576],
|x34(a)| Φ3(x14(a), x24(a)) for α ∈ [0.968213, 0.976968],

with:

x14(a) = −2(1− a2 + (1 + 5a + a2) log |a|)
−1 + a2

,

x24(a) = 1− 6(−1− 5a + 5a3 + a4) log |a|
3(−1 + a2)2

+
2(1 + a(15 + a(40 + (15 + a)a)))(log |a|)2

3(−1 + a2)2

and

x34(a) =
a log |a|

−3(−1 + a2)
.

Proof. (i) For everyf ∈ P[α], we set the coefficientsf1, f2 andf3 in the form of Lemma 3
(β). Using the relationmaxw∈W |w1| = 1, we find thatmaxf∈P[α]

|f1| coincides with the
form given in Theorem 4.
In a similar way,maxf∈P[α]

|f2| presented in Theorem 4 follows using Lemma 2.
(ii) Using Lemma 3(β), after the calculations we obtain that

max
f∈P[α]

|f3| = |x31(a)| Φ
(
x11(a), x21(a)

)
.

In order to find for anya ∈ (−1, 1) the corresponding branch ofΦ, we proceed finding
all the roots of each equationSi

(
x1(a), x2(a)

)
= 0 (i = 1, . . . , 11), with respect toa,

that belong in(−1, 1). The procedure by which these calculations are obtained will be
described later.

In the next step, we consider the partition of the interval(−1, 1) formed by the above
roots, into successive subintervals, being defined∀i respectively. Checking in each
subinterval the sign of allSi

(
x1(a), x2(a)

)
, through Lemma 1, we select the corre-

sponding branch ofΦ to this subinterval. More specifically we verify that the roots of
all quantitiesSi

(
x1(a), x2(a)

)
belong to the set:

A = {−0.1349,−0.0761,−0.06172,−0.04487, 0.01593, 0.0224,

0.02694, 0.09078, 0.1654, 0.17104, 0.2707}.
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SOME SPECIAL SUBCLASSES OFCARATHÉODORY’ S . . . 9

Checking the signs of functionsSi

(
x1(a), x2(a)

)
in the twelve subintervals defined, we

obtain the formulation of the following inequalities:

S1 ≥ 0 iff a ∈ [0.17104, 0.27070],
S2 ≥ 0 iff a ∈ [0.09078, 1),
S3 ≥ 0 iff a ∈ (−1,−0.07610] ∪ [0.03902, 1),
S4 ≥ 0 iff a ∈ (−1, 0.10256] ∪ [0.16413, 1),
S5 ≥ 0 iff a ∈ [0.03220, 1),
S6 ≥ 0 iff a ∈ [0.16540, 1),
S7 ≥ 0 iff a ∈ [0.17550, 0.22472],
S8 ≥ 0 iff a ∈ [−0.04027, 0.01306],
S9 ≥ 0 iff a ∈ (−1,−0.25267] ∪ [−0.04487, 0.01593] ∪ [0.44174, 1),
S10 ≥ 0 iff a ∈ (−1,−0.13490] ∪ [0.02694, 1) and
S11 ≥ 0 iff a ∈ (−1,−0.06172] ∪ [0.02240, 1).

In this way we also get for every functionSi, the set ofa ∈ (−1, 1) with Si (x1(a), x2(a)) <
0. Therefore by Lemma 1 we obtain the result given in part(ii) of Theorem 4, which
completes the proof of the theorem.

It only remains to solve the equationsSi (x1(a), x2(a)) = 0. In the following paragraphs, we
outline our methodology for the solution of these equations. But first let us stress that although
we will use a numeric computation program like Mathematica, its use will be restrictedonly to
the following cases:

(i) once we have rigorously proved that a given function of a single real variable has a
uniqueroot in a given closed interval then, we will compute this root by Mathematica,

(ii) given a polynomial of a single variable, we will use Mathematica to compute thek roots
of it and

(iii) we will use Mathematica to perform both numeric and symbolic algebraic calculations
that can, in principle, be performed by hand.

Replacing in the initial equation all the expressions of the form|Π| with ±Π, we form all
possible combinations, deriving some equations of the form

Q(t) = Q0(t) + Q1(t) log |t|+ · · ·+ Qk(t) (log |t|)k = 0,

with Qi i = 0, . . . , k rational functions of a single real variablet. Therefore, it suffices to solve
the new equations and then check which of their roots are also roots of the original one (we call
k the logarithmic degreeof Q(t) – in our casek = 3).

By dividing with Qk(t), we may further suppose that the maximum logarithmic degree coef-
ficientQk(t) is constantly 1 (this step requires a check whether any root ofQk is also a root of
the whole equation). Therefore, we now have to deal with an equation of the form

Q(t) = Q0(t) + Q1(t) log t + · · ·+ Qk−1(t)
(
log t

)k−1
+
(
log t

)k
= 0.

Our crucial observation now is that if we differentiateQ(t), we obtain a function of the same
form, but with its logarithmic degree decremented by one (and possibly with a non-constant
coefficient for

(
log t

)k−1
). Assume that we have computed the roots of the latter equation of

logarithmic degreek − 1. Then we can locate the (closed) intervals where the originalQ(t) is
either strictly increasing or strictly decreasing. In such an interval,Q(t) can have at most one
root. We can easily determine if at this intervalQ(t) has a unique root or no root at all. In case
it has a unique root, we compute it using Mathematica.

These remarks lead to the following recursive computation of the roots ofQ(t). Differentiate
repeatedly and between any two differentiations divide with the maximum degree coefficient,
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until a function with no logarithms (of logarithmic degree 0) is obtained. This obviously is a
rational function. Find its roots by the use of Mathematica. Then backtrack step by step to the
original function using the strict monotonicity intervals at each step to locate the intervals where
the function of the previous step has a unique solution. Then find the roots of the previous step
by Mathematica and proceed further back to larger logarithmic degree, until the original func-
tion is reached and all of its roots are computed. This ends the description of our methodology
for the solution ofSi (x1(a), x2(a)) = 0 and completes the proof of the theorem. �

Remark 6. Fora ∈ (−1, 1) we remark that:

(i) For a → 1 (equivalentlyα → 0) thenmaxf∈P[a]
|fk| → 2, k = 1, 2, 3.

(ii) For a → −1 (equivalentlyα →∞) thenmaxf∈P[a]
|fk| → 2, k = 1, 2, 3.

These remarks are making obvious that our theorem consists an extension of Carathé
-odory’s inequality in the casesi = 1, 2, 3. In Figures 1 – 3 we give the graphical
representations ofmaxf∈P[α]

|fk| as functions ofa, for k = 1, 2, 3 respectively.
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Figure 1:

We also remark that:
(iii) For a → ±1 thenmaxf∈S∗

[a]
|fn| → n, n = 2, 3, 4.

(iv) For a → ±1 thenmaxf∈K[a]
|fn| → 1, n = 2, 3, 4.

Remarks (iii) and (iv) are pointing out that our theorem consists as well an extension of
Rogosinski’s inequality (see [5]), in the casesi = 2, 3, 4, for starlike or convex functions re-
spectively. The graphical representations ofmaxf∈S∗

[α]
|fn|, as functions ofa for n = 2, 3, 4, are

given in Figures 4 – 6 respectively.

Proof of Theorem 5.A functionf ∈ S∗[α] ⇐⇒
zf ′

f
≡ q ∈ P[α] whilef := z+f2z

2+f3z
3+. . . ,

andq := 1 + q1z + q2z
2 + . . . . Since

f2 = q1, f3 =
1

2
(q2 + q2

1) and f4 =
1

6
(q3

1 + 3q1q2 + 2q3),
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Figure 3:

expandingf to Taylor series and substituting quantitiesq1, q2 andq3 with their form described
in Lemma 3, we obtain that:

f2 =
4a log |a|
−1 + |a|2

w1,

f3 =
2a log |a|

(−1 + |a2|)2

(
(−1 + |a2|)w2 +

(
−1 + |a2|+ (−1 + 6a− |a2|) log |a|

)
w2

1

)
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and

f4 =
4a log |a|

9(−1 + a2)3

(
3(−1 + a2)2w3 − 6(−1 + a2)

(
1− a2 + (1− 5a + a2) log |a|

)
w1w2

+(3(−1+a2)2−6(−1+5a−5a3+a4) log |a|+2(1−15a+40a2−15a3+a4)(log |a|)2)w3
1

)
.

Quantitiesmaxf∈S∗
[α]
|f2|, maxf∈S∗

[α]
|f3−µf 2

2 | andmaxf∈S∗
[α]
|f4|, are derived following the pro-

cedure of the previous theorem.
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For the inverse functionF ≡ f−1 it holds that:

F2 = −f2, F3 = 2f 2
2 − f3 and F4 = −5f 3

2 + 5f2f3 − f4.

It is obvious that the most complicated case is the calculation ofmaxf∈S∗
[α]
|F4|, sincemaxf∈S∗

[α]
|F2|

andmaxf∈S∗
[α]
|F3−µF 2

2 | are derived straightforwardly. Substitutingf2, f3 andf4 in F4, we ob-
tain a polynomial expression with respect tow1, w2 andw3. We work in a similar way with the
calculation ofmaxf∈P[α]

|f3| to complete the proof.
Furthermore, due to the initial assumption of this paper, a functiong ∈ K[α] ⇐⇒ 1 +

zg′′

g′
≡ q ∈ P[α] with g := z + g2z

2 + g3z
3 + . . . andq := 1 + q1z + q2z

2 + . . . . Now let
S∗[α] 3 f := z + f2z

2 + f3z
3 + . . .. It can be easily seen that:

g2 =
f2

2
, g3 =

f3

3
and g4 =

f4

4
,

which renders the proof of(α) (iii), (vi), (vii) and (β) (ii) straightforward. In order to prove(β)
(iv), we work in the same manner with the calculation ofmaxf∈P[α]

|f3| andmaxf∈S∗
[α]
|f4|. �
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