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ABSTRACT. LetP be the class of analytic functions in the unit disk{|z|<1} with p(0) = 0
andRp(z) > 0inu. Let alsoS*, K be the well known classes of normalized univalent starlike
and convex functions respectively. Fiir > 0 we introduce the classég,,), S[*a | and K4
which are subclasses &f, S* andK respectively, being defined as follows: € P, iff p €

Puwithp(z) # aVz € U, f € Sty iff 2L € Pgand f € Kpoiff 1+ 252 € Py,
In this paper we study different kind of coefficient problems for the above mentioned classes

Plajs S[*;X] andPy,. All the estimations obtained are the best possible.
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Let H be the class of holomorphic functions in the unit disk= {z : |z|] < 1} and.A the
class of functiong € H(U) with f(0) = f'(0) — 1 = 0. Let also

W={weHU):w0)=0 and |w(z)| <1 in U} and
P={peHU):p0)=1and Rp(z) >0 in U} ={(1+w)(1—w)":we W}

ClassesP (also known as Carathéodory’s class) and(also known as class of Schwarz
functions) are fundamental in Geometric Function Theory, while a large number of papers writ-
ten during the last century involve them. Apart from the independent interest revealed by their
study, these two classes are significantly useful, since many results related to them prove to be
essential while working with other classes of equal importance. Furthermore, several classes’
coefficients can be formed as expressions of the relative coefficients of cRsselN .
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2 PHILIPPOSKOULORIZOS AND NIKOLAS SAMARIS

Two fundamental examples are given by the clagseand K, consisting of the univalent
functionsf € A which are starlike and convex respectively. It is known that:

@) jes it fedand L) cp
f(2)

and

@) ek if fedandls L) cp)
f'(2)

The most known subclasses of cld$ave been initially introduced by the exclusion from
each function’s domain, of an entire surface of the right half-p{ain’®z > 0}. More specifi-
cally, we derive the class€g, andP,) being defined as follows:

fePp, iff fePandRf(z)>ainU, (a>0)
and  f e P iff fePand|arg f(2)| < %in U, (1>a>0).

If in relation (1) we replace clasB by P, or P(,), we obtain the classes; andS(*a) respec-
tively, known as starlike of order and strongly starlike of order. In a similar way, classes,,
andC(,) known as convex of order and strongly convex of orderare obtained, applying the
same substitutions in relation| (2).

Our idea is to study coefficient problems, about classes which are “very close” to initial
classesP, S* andkC, which are obtained excluding from their domains a single point belonging
to the right half-plain{z : #z > 0}. More specifically if Ra > 0, we introduce classeB,,

S, andKy, as follows:

zf'

Poj={f€P:f(2)#a,VzeU}, fe& iff 7677[04
: z2f"(2)

and f € Ky iff 1+ € Pl

J €K 7o) € P

Similar problems, involving clasBy,; = {¢ € H(U) : |¢(2)| < 1, p(2) # a, Vz € U},
(Ja] < 1), were studied by Ruud Ermers (sée [2]). By the author gives the best possible
upper bound for the first and second Taylor coefficient, generalizing the relative results provided
by Krzyz (seel[3]) for the well known cladsy.

We also denote

W[a] =Wn B[a].

If @ = 12 (Ja] < 1) (we will retain this symbolism throughout the paper), then it is easy to see
that

w € W[a} < 1 € 'P[a}.

— W
In order to obtain the Taylor expansions mentioned we will use the fgims= f, + f1z +
f222 + ... andf_l(w) = Fo + Flw + F2w2 + ...

In this paper we give the following results:

(i) Forthe clas®, we calculate the quantities?x | fn

,n =1,2forRa > Oandm?X|f3|

fora > 0.
(i) For the classes, andK.:
() we calculaten?x | f2] andm?x | F3| for Ra > 0,

() we solve the Fekete—Szeg0 problem for everg C, determining the quantities
max |fs — pf3] andmax | Fs — k3],
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(v) we calculaten?x | fa andm?x |Fy| for a > 0.

The following three lemmas will be very useful in order to prove the theorems where our
main results are stated. First we present the Szynal-Prokhorov lemméa (see [4]) which is crucial
for the estimation of our results. Through this lemma the value

(w1, 15) = max lws + z1w1ws + Tow?|

for x1, xo € R is obtained. For the formulation of the lemma we will need the following
denotations:

Sy(x1,22) = w2 + 1,
Ss(w1,m2) = 1 — 29,
4
Sutonaz) = 1= (£l + 1 = (il +1))

2
S7(ZL‘1,$2) = —§(|l’1| + 1) — T2,
1

Sg(w1,T9) = 19 — E(mf +8),
2
59(3717552) = X9 — g(‘l'l’ — 1),
2|ay|(Jza] +1)
S Sl b AN ol P
o) = S v
_ 2|z(Jza] - 1)

Sll(xth) - l'% —_ 2|.T1| +4 25
D, = {($1,562) Sz, 29) >0, Sy(xy,29) >0, S5(x1,29) > 0}’
Dy = {(w1,22) : =Si(21,22) > 0, Sy(x1,79) > 0, S5(w1,22) > 0, Se(w1,22) > 0},
D3 = {(xhxz) Si(xq1,29) >0, —Sy(x1,29) > ()}7
Dy = {(551,1‘2) —51($1,$2) >0, 57(x1’x2) > 0}’
Ds = {(bez) So(x1,29) >0, —S7(x1,29) > (]}7
D6 = {(xlaxQ) —52(1'1,332) > O7 53(1'171‘2) > 0’ 5’8(3:17:52) > O}7
D; = {(Ihxz) —S3(x1,x9) > 0, So(x1,22) > (]}7
Ds = {(x1,22) : =S1(21,22) >0, Sa(x1,22) >0, —=S7(21,22) >0, —Sg(21,22) >0},
Do = {(z1,22) : =Sa(21,22) >0, —=S7(x1,22) >0, Sio(z1,22) > 0},
Dio = {(w1,22) : =Sa(1,22) 2 0, Sy(1,22) 2 0, =Sho(w1,22) 2 0, =Sy(w1,22) > 0},
D1 = {(21,22) : =Ss(z1,22) > 0, =Sio(z1,22) > 0, Si1(z1,22) > 0} and
Dis = {(21,22) : =Ss5(x1,22) > 0, =Si1(21,22) > 0, —Sy(z1,22) > 0}.

J. Inequal. Pure and Appl. Math4(2) Art. 45, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/
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Lemma 1. (Sed4])
(1 if (x1,22) € Dy U Dy,
2 if
Q(z1,29) = Py(x1,10) |f
Dy(xy,29) if

\ @3(1‘1, ZEQ) |f

where:
Ta(m, 22) = %“xl‘ 1 (3(|a;|lg|m+|i:@))5 ’
Dy (x1,29) = %:1:2 (;?_;;) (355:52_—41))% and
Dolm, m2) = g(m' ~b (3(|x|1|$1_|1i 952)>é |

Lemma 2. For every(z1, x5) € C? it holds thatm% |z1w? + ows| = max{|x|, |2}
we

Proof. Let wy, wy € C. Applying the Carathéodory—Toeplitz (C-T) Theorem (see [1]) in the
classW, there exists a € W with w’'(0) = w; andw”(0) = 2w, if and only if

3) lwi| <1 and |wy| < 1 — |wy|?,
or equivalently there exigt;, 72) € [0, 1]* and|z;| = |z2| = 1 such that
4) wy = 1121 andwy = (1 — r})roze.
Using (4) we derive that
gé%\xlw% + zows|
= max {|z1772] + 22(1 — 1)raze 1 0 <y <1, 0 <1y < 1, || = || = 1}
= max {|z1|r] + [22|(1 —77) : 0 <1y <1}

= max {17 (Ja| — ]} +ea] 10 < 7y < 1)

= maX{|951|a |$2’}

Lemma3. («a) If Ra > 0thenf € Py, if and only if it has the form

1 — [a|"@+D 4 g(1 — |a|¢>)-D)
1— ’a|(p(z)+1) — a(l — ‘a’(?(z)*l))

withp € P.
(8) For (ay,as,a3) C C? the following propositions are equivalent:
() There is a functiorf € Py, such thatf, = a4, f> = ay and f5 = as.
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(i) Thereis a functionv = w2z + w»2% + ... € W such that:

4alog|al
] = ———5 Wi,
SR P
4alog|a —1+a]* + (=14 2a — |a|?) log|a
as = glL(( |a] ( . ||)g||)w%+w ’
—1+1a| —1+ |a
4alog |al 2(=1+al]® = (1 — 2a + |a|?) log |a|)
Qg —= —8M8M8M8M8M8M8
5T 1+ af? 1+ |af?
N 1 2\2 4 2
+3(—1—|—|a|2)2 (3(=1+ la*)? + 2log|al(3 — 3[a|* + 6a(~1 + |a|*)

+ (1 + 6a* + 4|a* + |a|* — 6a(1 + |a]?)) log |a|)) w?)

Proof. For the proof of this lemma we consider the following propositions:

(i) f € Py ifandonlyif f has the formf = 12 with w € W,.
(i) f € Wy ifand only ifw has the form

o — Wq

w =
1-— awy
with w, € By andw, (0) = a.
(iii) wy € By with w;(0) = a if and only if w; has the formv; = alaP~! with p € P.

We now observe that the proof of propositions (i) and (ii) is rather simple. The proof of
proposition (iii) is obtained by relatiom;, € By if and only if w; gets the formw, = Ae™*
with [A\| = 1, ¢ > 0 andp € P. Settingw;(0) = Xe”* = a we obtain the result of the
proposition.
Thus combining the results of propositions (i), (ii) and (iii) we get the result of the lemma.
O

Our results are stated in the following theorems.

Theorem4. («) For Ra > 0 it holds that:

(i)
4|a|log |al
paxIfl ===
and
(ii)
ma
fepi]!fﬂ
4alog|a|(—=1 — |a|*(=1 +log |a|) + (—1 + 2a) log |a|)| |4alog]al
= max .
(=14 [af?)? =1 Jaf?
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(3) For a > 0 it holds that:

joax |fs]
231 (a)] @1 (21 (a), 221 (a))  for a € (0,0.76227] U [1.05537, 1.39636],
|I31(a)| (I)Q(QZH(CL), I21<CL>> for a e [076227, 0883736] U [104583, 105537],
=< |zsi(a)| P3(z11(a),z21(a)) for a € [0.883736,0.914114] U [1.03238,1.04583],
|z31(a)| |xe1(a)] for a € [0.914114, 1.03238],
|21 ()| for a € [1.39636,c0),
with:
2(—1+a®>— (—1+a)?loglal)
$11(a) = 1+ a2 )
(a) = (=14 a)?(—3(=3+a)(1+ a)logla| + 2(1 — 4a + a?)(log |a])?)
rarl) = 3(—1 + a?)?
and
4alog|al
w0 = g

Theorem 5.  («) For Ra > 0 andy € C it holds that:

(i)
4la|log a|
RS =
(ii)
max |Fy| = max|fs],
f€st, fest,
(i)
max = max |Fy| = = max|fs],
X |/l feK[a]| 2| ) joax fol
(iv)
g2
jmax fs = nfsl
e 2alog|al(1 — |a]? + (1 + |a]® + 2a(—3 + 4p)) log |a]) | | 2alog|al
- (=1 +[af?)? =1 al )
(v)
max |Fs — uF2| = max|fs + (u— 2)f2],
max Py = uFf| = max fy + (u = 21
(vi)
max |fs — pf2] = = max |fs — > i f2)
fek 217 3esy, 0 4l
and
(vii)

Fit (=25

1
max |Fy — uF2| = - max
fGIC[a] ‘ H 2 ’ 3 fES[*a]
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(3) For a > 0 it holds that:
i
(i) nggﬁfﬁ

|232(a)]| |222(a)] for o € (0,1.02357] U [1.14133, 1.33331]
U[1.76736, c0),
= |x32(a)| @3(3712(@), ZL‘QQ(CZ)) for a € [102357, 103283],
|232(a)| Bo(w19(a), 225(a)) for o € [1.03283,1.0378] U [1.73905, 1.76736],
‘$32(a)| @1(.%12(@), 33’22(&)) for « € [10378, 114133] U [133331, 173905],

with:

2(1 —a? + (1 — ba + a?)log |al)
—1+a?
6(—1+ 5a — 5a® + a) log |a|
3(—1 + a?)?
N 2(14 a(—15+ a(40 + (—15 + a)a)))(log |al)?
3(—1+ a?)?

56'12(61) = - )

Igg((l) =1-

and

4alog |al

$32(CL) = mu

.. 1
i max = — max
(i) feK |f4| 4 fest,

f4’7

|233(a)| |223(a)] for a € (0,0.711625] U [0.824185, 0.936408]
U[0.983596, 00),
= { Jass(a)] P3(213(a), 725(a)) for o € [0.711625,0.71718] U [0.977731,0.983596],
|233(a)| Po(z13(a), 295(a)) for a € [0.71718,0.732352] U [0.975309, 0.977731],
) for o € [0.732352,0,824185] U [0.936408,0.975309],

2(1 = a*+ (1 + 10a + a?)log |al)
—1 +CL2
6(—1+a)(1+a)(l+a(l0+a))log|al
3(—1+ a?)?
2(1 4 a(30 + a(130 + (30 + a)a)))(log |a|)?
* 3(—1+ a?)?

$13(G) = -

I

[Egg(d) =1-

and

4alog |al

) = 5T v @)
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and

(iv) max |Fy
fe

Proof.

Ko

|234(a)| |224(a)] for o € (0,0.565815] U [0.750011, 0.876173)
U[0.976968, co),

|234(a)| o(214(a), 224(a)) TOr a € [0.565815,0.575026] U [0.963576, 0.968213],

\234(a)| @1 (214(a), 224(a)) TOr a € [0.575026,0.750011] U [0.876173, 0.963576],

|z34(a)| P3(x14(a), z24(a)) for a € [0.968213,0.976968],

— —

with:

2(1 —a*+ (14 5a + a?)log |al)
—1 +a2
6(—1 — ba + 5a® + a*) log |a|
3(—1+ a?)?
N 2(1+ a(15 + a(40 + (15 + a)a)))(log |a|)?
3(—1+ a?)?

9

.1714((1) = —

ZL’Q4(CL) =1-

and

alog |al
x34(a> = _3(_1 —|—CL2).

(i) Foreveryf € Py, we set the coefficient, f, and f; in the form of Lemm
(8). Using the relatiomax,cyy|w:| = 1, we find thatmaxep,, | f1| coincides with the
form given in Theorer|4.

In a similar waymaxcp,, | f2| presented in Theore@u 4 follows using Lem@a 2.

(ii) Using Lemmd B(3), after the calculations we obtain that

max | f| = |z31(a)| ®(211(a), 221(a)).
F€Pa)

In order to find for any: € (—1, 1) the corresponding branch &, we proceed finding

all the roots of each equatiof} (z1(a), z2(a)) =0 (i = 1,...,11), with respect tas,

that belong in(—1, 1). The procedure by which these calculations are obtained will be
described later.

In the next step, we consider the partition of the intefval, 1) formed by the above
roots, into successive subintervals, being defidédespectively. Checking in each
subinterval the sign of alb;(x:1(a), z2(a)), through Lemma |1, we select the corre-
sponding branch o to this subinterval. More specifically we verify that the roots of
all quantitiesS; (z1(a), z2(a)) belong to the set:

A = {-0.1349, —0.0761, —0.06172, —0.04487,0.01593, 0.0224,

0.02694, 0.09078, 0.1654, 0.17104, 0.2707}.
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Checking the signs of function (z1(a), z2(a)) in the twelve subintervals defined, we
obtain the formulation of the following inequalities:

S1 >0 iff a €[0.17104,0.27070],

Sy >0 iff a € [0.09078,1),

Sy >0 iff a e (—1,—0.07610] U [0.03902, 1),

S, >0 iff ae(—1,0.10256] U[0.16413, 1),

Ss >0 iff a €[0.03220,1),

S¢ >0 iff a €[0.16540,1),

S7 >0 iff a € [0.17550,0.22472],

Sg >0 iff a € [—0.04027,0.01306],

S >0 iff a € (—1,-0.25267) U [—0.04487,0.01593] U [0.44174, 1),
Si1o >0 iff a € (—1,—0.13490] U [0.02694,1) and
Sy >0 iff a € (—1,-0.06172] U[0.02240,1).

In this way we also get for every functiaf, the setofi € (—1, 1) with S; (z1(a), z2(a)) <
0. Therefore by Lemmp]1 we obtain the result given in gait of Theoren{ 4, which
completes the proof of the theorem.

It only remains to solve the equatioAs(z;(a), z2(a)) = 0. In the following paragraphs, we
outline our methodology for the solution of these equations. But first let us stress that although
we will use a numeric computation program like Mathematica, its use will be restoatgdo
the following cases:

(i) once we have rigorously proved that a given function of a single real variable has a
uniqueroot in a given closed interval then, we will compute this root by Mathematica,
(i) given a polynomial of a single variable, we will use Mathematica to computé tbets
of itand
(iif) we will use Mathematica to perform both numeric and symbolic algebraic calculations
that can, in principle, be performed by hand.

Replacing in the initial equation all the expressions of the faihwith +I1, we form all
possible combinations, deriving some equations of the form

Q(t) = Qo(t) + Qu(t) log [t] + - - + Qi(t) (log [¢])* = 0,
with Q; i = 0, ..., k rational functions of a single real varialdleTherefore, it suffices to solve
the new equations and then check which of their roots are also roots of the original one (we call
k thelogarithmic degreef Q)(t) — in our casé: = 3).
By dividing with Q(¢), we may further suppose that the maximum logarithmic degree coef-
ficient Qx(t) is constantly 1 (this step requires a check whether any roQ4.aé also a root of
the whole equation). Therefore, we now have to deal with an equation of the form

Qt) = Qolt) + Qu(t)logt + - - + Qu1(t) (log )™ + (logt)* = 0.

Our crucial observation now is that if we differentiaigt), we obtain a function of the same
form, but with its logarithmic degree decremented by one (and possibly with a non-constant

coefficient for(log t)k_l). Assume that we have computed the roots of the latter equation of
logarithmic degreé — 1. Then we can locate the (closed) intervals where the origial is
either strictly increasing or strictly decreasing. In such an intefy&l) can have at most one
root. We can easily determine if at this inter¢alt) has a unique root or no root at all. In case
it has a unique root, we compute it using Mathematica.

These remarks lead to the following recursive computation of the ro@p$f Differentiate
repeatedly and between any two differentiations divide with the maximum degree coefficient,
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until a function with no logarithms (of logarithmic degree 0) is obtained. This obviously is a
rational function. Find its roots by the use of Mathematica. Then backtrack step by step to the
original function using the strict monotonicity intervals at each step to locate the intervals where
the function of the previous step has a unique solution. Then find the roots of the previous step
by Mathematica and proceed further back to larger logarithmic degree, until the original func-
tion is reached and all of its roots are computed. This ends the description of our methodology
for the solution ofS; (z1(a), z2(a)) = 0 and completes the proof of the theorem. O

Remark 6. Fora € (—1,1) we remark that:

(i) Fora — 1 (equivalentlye — 0) thenmaxep,, | fr| — 2,k =1,2,3.
(if) Fora — —1 (equivalentlya — oc) thenmaxyep, |fi| — 2,k =1,2,3.
These remarks are making obvious that our theorem consists an extension of Carathé
-odory’s inequality in the cases= 1,2,3. In Figureg 1 {B we give the graphical
representations afiax;cp, | fi| as functions oti, for k = 1,2, 3 respectively.

Figure 1:

We also remark that:
(i) For a — +1 thenmaxfegl*a] |ful = nyn=2,3,4.
(iv) Fora — 1 thenmaxyex, [fo] — 1, n = 2,3, 4.
Remarks (iii) and (iv) are pointing out that our theorem consists as well an extension of
Rogosinski's inequality (se€l[5]), in the cases 2, 3, 4, for starlike or convex functions re-
spectively. The graphical representationmfegra] | f|, as functions ofi for n = 2, 3,4, are

given in Figure§ |4 6 respectively.

Proof of Theoreri]5A function f € S;,) <= % =q € Py while f :=z+ for?+ f32+. ..,
andg := 1+ gz + ¢22 +.... Since

1 1
fo=aq, f3= 5(% +4¢i) and f, = E(Q? +3¢1¢2 + 2q3),
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N

0.5

Figure 2:

No

0.5

Figure 3:

expandingf to Taylor series and substituting quantitigsg, andgs with their form described
in Lemmd_ 3, we obtain that:

F 4alog|al
= —w
2T I faP "
2a1
fs= <—?‘ig|a|—3||)—2 (=1 +la*ws + (=14 |a*| + (=1 + 6a — |a’|) log|a] ) w})

J. Inequal. Pure and Appl. Math4(2) Art. 45, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

12 PHILIPPOSKOULORIZOS AND NIKOLAS SAMARIS

Figure 4:

Figure 5:

and

4al
= 008 \a’)i’) (3(—1 + a?)*ws — 6(—1+a®) (1 — a® + (1 — 5a + a®) log |a|) wyw,

9(—1+ a?
+(3(=1+a*)*—6(—1+5a—>5a*+a*) log |a| +2(1 — 15a+40a” — 156> + a*) (log |a\)2)wrf).

QuantitieSmaxfeS[*a] | f2], maxfes: f4|, are derived following the pro-

cedure of the previous theorem.

fg — /Lfg‘ andmaxfes[*a}
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Figure 6:

For the inverse functio®” = f~! it holds that:
F2 = —fg, Fg = 2f22 — f3 and F4 = —5f23 + 5f2f3 — f4.
Itis obvious that the most complicated case is the calculatimlam}egfa] Fyl, sincemaxfeg[*a] F|

andmaXfeg[*a] F3 — uF2| are derived straightforwardly. Substitutirig f; andf, in F}, we ob-
tain a polynomial expression with respectito, w, andws. We work in a similar way with the
calculation ofmaxcp,, | f3] to complete the proof.

Furthermore, due to the initial assumption of this paper, a fungfien ;) <= 1+

/!

0 =g € Py With g := 2+ g222 + g32° + ... andq :== 1 + q1z + ¢22° + ... Now let

g =

Sty f=2+ fo2? + 323 + .. .. It can be easily seen that:

92:%7 g3:§ andg4:%7
which renders the proof dfv) (iii), (vi), (vii) and () (ii) straightforward. In order to prové3)
(iv), we work in the same manner with the calculatiomefx;cp,, | f3 andmaXfeg[*Q] fa]- O
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