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ABSTRACT. Recently Hadamard-type inequalities for nonnegative, evenly quasiconvex func-
tions which attain their minimum have been established. We show that these inequalities remain
valid for the larger class containing all nonnegative quasiconvex functions, and show equality of
the corresponding Hadamard constants in case of a symmetric domain.
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1. INTRODUCTION

The well-known Hadamard inequality for convex functions has been recently generalized to
include other types of functions. For instance, Pearce and Rubinov [2], generalized an earlier
result of Dragomir and Pearce [1] by showing that for any nonnegative quasiconvex function
defined o0, 1] and anyu € [0, 1], the following inequality holds:

f(u)gmmu1 /f

In a subsequent paper, Rubinov and Dutta [3] extended the resultitedineensional space,
by imposing the restriction that the nonnegative functfaaittains its minimum and is not just
guasiconvex, but evenly quasiconvex. The purpose of this note is to establish the inequality
without these restrictions, and to obtain a simpler expression of the “Hadamard constant” which
appears multiplied to the integral. To be precise, given a convex subsdtR"™, a Borel
measurg: on X and an element € X, we show that any nonnegative quasiconvex function
satisfies an inequality of the forrfi(u) < ~ [, fdu where~ is a constant. An analogous
inequality f (u) < v, [, fdu is obtained for all quasiconvex nonnegative functions for which
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2 N. HADJISAVVAS

f(0) = 0 (under the assumption thatc X). We obtain simple expressions for the constants
and~, and show that they are equal, under a symmetry assumption.

In what follows, X is a convex, Borel subset &", 1 is a finite Borel measure o, and\
is the Lebesgue measure. As usyakl A means tha: is absolutely continuous with respect
to \. The open (closed) ball with centerand radius- will be denoted byB (u, ) (B (u,)).
We denote bys the spherdz € R" : ||z|| = 1} and set, for each € S, u € R,

(1.1) Xouw={re€e X : (v,x—u)>0}.

2. INEQUALITY FOR QUASICONVEX FUNCTIONS

The following proposition shows that the Hadamard-type inequality for nonnegative evenly
guasiconvex functions that attain their minimum, establishedlin [3], is true for all nonnegative
guasiconvex, Borel measurable functions.

Proposition 2.1. Let f : X — RU{+o0} be a Borel measurable, nonnegative quasiconvex
function. Then for every € X, the following inequality holds:

(2.1) mf p (X / fdu.

Proof. Let L = {z € X : f(z) < f(u)}. ThenL is convex andu does not belong to the
relative interior of L. We can thus separateand L by a hyperplane, i.e., there exists= S
such that'z € L, (x,v) < (u,v). Hence, for every € X, ., f () > f (u). Consequently,

p() f) < [ s [ g
Xou X
from which follows relation[(2]1). O
Note that ifx = )\, then we do not have to assuryido be Borel measurable. Indeed, any
convex subset dR™ is Lebesgue measurable since it can be written as the union of its interior
and a subset of its boundary; the latter is a Lebesgue null set, thus is Lebesgue measurable.
Consequently, every quasiconvex function is Lebesgue measurable since by definition its level
sets are convex.

Itis possible thainf,cs 1 (X,,) = 0. In this case relatiod (2.1) does not say much. We can
avoid this ifu € int X andu does not vanish on sets of nonzero Lebesgue measure:

Proposition 2.2. Assumptions as in Propositipn P.1.

(i) If u € int X and A < p, theninf,cg u (X,,) > 0.
(17) If u ¢ int X andp < A, theninf,cs 1 (X, ) = 0.

Proof. (i) Lete > 0 be such thaB (u,e) C X. For eachv € S andz € B (u+ $v, %),
the triangle inequality yields

|z —ull < [le = (u+50) || +[|50] <<
hencer € X. Also,
(v,z—u) =(v,z— (u+5v)) + (v, 5v) > — || ||z = (u+ Sv)|| + £ > 0.
Consequentlyy € X, ,,, 1.e.,B (u—l— s, ) C X, .. Hence,
Inf A (Xou) 2 A (B (ut50,5)) = A(B(0,5)) > 0.

2712

By absolute continuityinf,cs 1 (X)) > 0.
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(7i) Sinceu ¢ int X, we can separate and X by a hyperplane. It follows that for some
v € S, the setX,, , is a subset of this hyperplane, hencgeX, ,) = 0 which entails that

p (X)) = 0.
]
Let us set
1
2.2 = 7 )
( ) 7 1nfveS M (Xv,u)
where we make the conventign= +oco. Then we can writ (2]1) in the form
(2.3) f <y [ fan
X

The following Lemma will be useful for obtaining alternative expressions of “Hadamard
constants” such ag and showing their sharpness. In particular, it shows ¥at could have
been defined (see relatign ([L.1)) by usingnstead of>. Let
(2.4) Xpu={r€X: (v,x—u)>0}
be the closure ok, , in X.

Lemma 2.3.If u < A, then
<Z> H (XU,U) - 2 (Xv,u); _ )
(i7) The functiorv — (X, ,,) is continuous orf.
Proof. (i) Weknowthat\ ({z € R" : (v,z — u) = 0}) = 0; consequently) (X, ,\X,.) =
0 and this entails that (X, ,\X,.) = 0.
(i) Suppose thatv,) is a sequence i, converging tov. Lete > 0 be given. Choose
r > 0 large enough so that (X\B (u,r)) < /2. Let us show that

lim A (X,, . N B (u,7)) =X (Xpu N B (u,r)).

n—oo

For this it is sufficient to show thaimn_@/\ (X,) = 0 whereX,, is the symmetric
difference(( X, \ Xv, «) U (X4, . \Xvu)) N B (u,r). If z € X,, then||xz — u|| < rand

(2.5) (v,x—u) > 0> (v,,x —u)
or
(2.6) (U, —u) >0> (v,x —u).

If, say, (2.6) istrue, thetv,z — u) <0 < (v, — v,z — w)+{v,x — u) < ||v, — v r+
(v, 2 —u) thus|(v,z — u)| < ||v, —v||r. The same can be deduced][if (2.5) is true.
Thus the projection ak,, onv can be arbitrarily small; sinc¥,, is contained in3 (u, r)
this means thdim,, .., A (X,,) = 0 as claimed.

By absolute continuitylim,, .o 1t (Xo,.. N B (u, 7)) = p (Xyu N B (u,r)). Since

1 (X ) — 1 (X )| < |N (Xvn,u NB (u, T)) —H (Xv,u NB (u, T))‘
+ |u (XUH,H\E (u,?“))‘ + ‘,u (XU,U\E (u,r))|
< |u (Xvn’u N B (u, r)) — U (vau QE(U,T))‘ + €,

it follows thatlim,, . [ (Xy, «) — p (Xvw)| < €. This is true for alle > 0, hence

limy, oo p (X u) = 10 (Xow)-
O
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4 N. HADJISAVVAS

We now obtain an alternative expression for the “Hadamard constarghalogous to the
one in [3]. Foru € X define

At ={(v,m0) € R" x X : (v,u—x¢) > 1}.
Further, giverv € R™ andx, € X set]
X o ={reX: (v,r—mx)>1}.

v,T0
Proposition 2.4. The following equality holds for everye int X:
1

inf(v,xo)eAt H (XJ:OC()) .

Proof. For every(v,z¢) € A}, we setv’ = v/ |v||. Foreache € X, ,, (v, —u) > 0
holds. Besidesyv, zy) € A} implies that(v, u — o) > 1. Hence,(v,z — x¢) = (v,x — u) +

(v,u — o) > 1thusz € X;f, . Itfollows thatX., , C X[, ;consequently,
2.7 inf X ) >inf u(X,.).
(2.7) ot (X) 2 b (Xe)

To show the reverse inequality, letc S be given. Since: € int X, we may findzy, € X such
that (v, u — o) > 0. Choose > 0 so that foro’ = tv one hagv’, u — z,) = 1. The following
equivalences hold:

r € Xy, &, r—x)>1
& (W —u)+ (v, u—x) > 1
& (V,x—u) >0
< (v,r—u)y >0

SaxeX,,.

Thus, for every € S there exist§v’, z9) € A} such thatX, , = X . Hence equality holds

in (2.7). O

3. INEQUALITY FOR QUASICONVEX FUNCTIONS SUCH THAT f(0) = 0.

Whenevebh € X andf (0) = 0, another Hadamard-type inequality has being obtained in [3],
assuming thaf is nonnegative and evenly quasiconvex. We generalize this result to nonnegative
guasiconvex functions and compare with the previous findingsk L&, — R, be increasing

with i (¢) > 0 for all ¢ > 0 and\, := sup,., g < oo (we follow the notation of[8]).

Proposition 3.1. Let f : X — RU {400} be Borel measurable, nonnegative and quasiconvex.
If 0 € X and f (0) = 0, then for every, € X,

(3.1) it (%) £ ) < 00 [ 1S (@) e

vES, (v,u)>0 X

Proof. If f(u) = 0 we have nothing to prove. Suppose tligt:) > 0. Coming back to the
proof of Propositiof 2]1, we know that there exists S such that'z € X, ,,, f () > f (u);
henceh (f (z)) > h (f (u)), from which it follows that

PR < [ b @i s [ b @)

v,u X

IThere is sometimes a change in notation with respe€t to [3].

J. Inequal. Pure and Appl. Math4(1) Art. 13, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HADAMARD INEQUALITY 5

Note that0 ¢ X, , because (0) < f (u); thus,(v, u) > 0. Consequently,

it (X h (@) < [ B () de

vES,(v,u)>0 X
Finally, note that by definition of,, f (u) < Ayh (f (u)) from which follows [3.1). O

Note that relation[(3]1) is only interestinguifs£ 0 since otherwise it is trivially true. Let us
definev, by
L if u£0
. u
(32) T = 1nfv€5,(v,u)20 % (Xv,u)
0 if u=0.

We obtain an alternative expression far, similar to that in[8]. Givernu € X\ {0}, set
B, ={veR": (v,u) > 1}, and forany € R", setX,” = {z € X : (v,z) > 1}.

Proposition 3.2. The following equality holds for everye X\ {0}:
inf (X)) = inf  p(X,.).

vEBy vES, (v,u)y>0

Proof. For everyv € B, we setv’ = v/ |[v|| and show thaX,, , C XF. Indeed, ifz € X,/ ,,
then we havev, z — u) > 0 hence(v,z) = (v,u) + (v,x —u) > 1, i.e.,xz € XI. Since
(v',u)y > 0, it follows that

(3.3) inf (X)) > inf  p(X,.).

vEDBy T weS(v,u)>0

To show equality, let € S be such thatv, u) > 0. Choosé > 0 such that (v,u) = 1 and
setv’ = tv. For everyr € X, one hagv’, z) > 1, hence,

(W oz —u)y =@ z)— (v u) > 0.

It follows that (v, z — u) > 0, i.e.,z € X,,. Thus, X} C X,, andv’ € B,. This shows

that in (3.3) equality holds. OJ
Proposition 3.3. If u < X then we also have the equalities
1 1 .
Ve = 3 = — (if u # 0)
1nfv65,<v,u>>0 K (Xvﬂt) MiNyes, (v,u)>0 K (Xv,u)

1
3.4 = —.
( ) ! minves 12 (Xv,u)

Proof. We first observe that, according to Lem@ M{XM) = 11 (X,,). The same lemma

entails thatinf,cg v uy>0 it (Xou) = infues wuy>o pt (Xo) and that this infimum is attained,

since the sefv € S': (v,u) > 0} is compact. In the same way, the infimum(in {2.2) is attained.
O

Whenevery < A, the constanty is sharp, in the sense that givene X, there exists a
nonnegative quasiconvex functighnsuch thatf (v) = v [, fdu. Indeed, since the minimum
in (3.4) is attained for some, € S, itis sufficient to takef to be the characteristic function of
X (see Corollary 2 ofi [3]). Analogous considerations can be made,f¢see Corollary 4
of [3]).

We now show the equality of and~, under a symmetry assumption:

Corollary 3.4. Suppose thaK has0 as center of symmetry, € int X\ {0} andp < A. If
i (A) = p(—A) for every Boreld C X, theny = ..
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Proof. For everyv € S such thatv,u) < 0, setv/ = —vandY = {z € X : (v,x + u) > 0}.
Since0 is a center of symmetry, one can check that — X, ,,.

If z € Ythen(v,z —u) = (v,x+u) —2(v,u) > 0. Thus,Y C X,, andu (X,,) >
1 (Y) = p(Xyu). It follows that the minimum in[(3]4) can be restrictedutas S such that
(v,u) > 0. Thus,y = 7.. 0
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