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ABSTRACT. Recently Hadamard-type inequalities for nonnegative, evenly quasiconvex func-
tions which attain their minimum have been established. We show that these inequalities remain
valid for the larger class containing all nonnegative quasiconvex functions, and show equality of
the corresponding Hadamard constants in case of a symmetric domain.
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1. I NTRODUCTION

The well-known Hadamard inequality for convex functions has been recently generalized to
include other types of functions. For instance, Pearce and Rubinov [2], generalized an earlier
result of Dragomir and Pearce [1] by showing that for any nonnegative quasiconvex function
defined on[0, 1] and anyu ∈ [0, 1], the following inequality holds:

f (u) ≤ 1

min (u, 1− u)

∫ 1

0

f (x) dx.

In a subsequent paper, Rubinov and Dutta [3] extended the result to then-dimensional space,
by imposing the restriction that the nonnegative functionf attains its minimum and is not just
quasiconvex, but evenly quasiconvex. The purpose of this note is to establish the inequality
without these restrictions, and to obtain a simpler expression of the “Hadamard constant” which
appears multiplied to the integral. To be precise, given a convex subsetX of Rn, a Borel
measureµ on X and an elementu ∈ X, we show that any nonnegative quasiconvex function
satisfies an inequality of the formf (u) ≤ γ

∫
X

fdµ whereγ is a constant. An analogous
inequalityf (u) ≤ γ∗

∫
X

fdµ is obtained for all quasiconvex nonnegative functions for which

ISSN (electronic): 1443-5756

c© 2003 Victoria University. All rights reserved.

133-02

http://jipam.vu.edu.au/
mailto:nhad@aegean.gr
http://www.syros.aegean.gr/users/nhad/
http://www.ams.org/msc/


2 N. HADJISAVVAS

f (0) = 0 (under the assumption that0 ∈ X). We obtain simple expressions for the constantsγ
andγ∗ and show that they are equal, under a symmetry assumption.

In what follows,X is a convex, Borel subset ofRn, µ is a finite Borel measure onX, andλ
is the Lebesgue measure. As usual,µ � λ means thatµ is absolutely continuous with respect
to λ. The open (closed) ball with centeru and radiusr will be denoted byB (u, r) (B (u, r)).
We denote byS the sphere{x ∈ Rn : ‖x‖ = 1} and set, for eachv ∈ S, u ∈ R,

(1.1) Xv,u = {x ∈ X : 〈v, x− u〉 > 0} .

2. I NEQUALITY FOR QUASICONVEX FUNCTIONS

The following proposition shows that the Hadamard-type inequality for nonnegative evenly
quasiconvex functions that attain their minimum, established in [3], is true for all nonnegative
quasiconvex, Borel measurable functions.

Proposition 2.1. Let f : X → R∪{+∞} be a Borel measurable, nonnegative quasiconvex
function. Then for everyu ∈ X, the following inequality holds:

(2.1) inf
v∈S

µ (Xv,u) f (u) ≤
∫

X

fdµ.

Proof. Let L = {x ∈ X : f (x) < f (u)}. ThenL is convex andu does not belong to the
relative interior ofL. We can thus separateu andL by a hyperplane, i.e., there existsv ∈ S
such that∀x ∈ L, 〈x, v〉 ≤ 〈u, v〉. Hence, for everyx ∈ Xv,u, f (x) ≥ f (u). Consequently,

µ (Xv,u) f (u) ≤
∫

Xv,u

fdµ ≤
∫

X

fdµ

from which follows relation (2.1). �

Note that ifµ = λ, then we do not have to assumef to be Borel measurable. Indeed, any
convex subset ofRn is Lebesgue measurable since it can be written as the union of its interior
and a subset of its boundary; the latter is a Lebesgue null set, thus is Lebesgue measurable.
Consequently, every quasiconvex function is Lebesgue measurable since by definition its level
sets are convex.

It is possible thatinfv∈S µ (Xv,u) = 0. In this case relation (2.1) does not say much. We can
avoid this ifu ∈ int X andµ does not vanish on sets of nonzero Lebesgue measure:

Proposition 2.2. Assumptions as in Proposition 2.1.

(i) If u ∈ int X andλ � µ, theninfv∈S µ (Xv,u) > 0.
(ii) If u /∈ int X andµ � λ, theninfv∈S µ (Xv,u) = 0.

Proof. (i) Let ε > 0 be such thatB (u, ε) ⊆ X. For eachv ∈ S andx ∈ B
(
u + ε

2
v, ε

2

)
,

the triangle inequality yields

‖x− u‖ ≤
∥∥x−

(
u + ε

2
v
)∥∥ +

∥∥ ε
2
v
∥∥ < ε

hencex ∈ X. Also,

〈v, x− u〉 =
〈
v, x−

(
u + ε

2
v
)〉

+
〈
v, ε

2
v
〉
≥ −‖v‖

∥∥x−
(
u + ε

2
v
)∥∥ + ε

2
> 0.

Consequently,x ∈ Xv,u, i.e.,B
(
u + ε

2
v, ε

2

)
⊆ Xv,u. Hence,

inf
v∈S

λ (Xv,u) ≥ λ
(
B

(
u + ε

2
v, ε

2

))
= λ

(
B

(
0, ε

2

))
> 0.

By absolute continuity,infv∈S µ (Xv,u) > 0.
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HADAMARD INEQUALITY 3

(ii) Sinceu /∈ int X, we can separateu andX by a hyperplane. It follows that for some
v ∈ S, the setXv,u is a subset of this hyperplane, henceλ (Xv,u) = 0 which entails that
µ (Xv,u) = 0.

�

Let us set

(2.2) γ =
1

infv∈S µ (Xv,u)
,

where we make the convention1
0

= +∞. Then we can write (2.1) in the form

(2.3) f (u) ≤ γ

∫
X

fdµ.

The following Lemma will be useful for obtaining alternative expressions of “Hadamard
constants” such asγ and showing their sharpness. In particular, it shows thatXv,u could have
been defined (see relation (1.1)) by using≥ instead of>. Let

(2.4) Xv,u = {x ∈ X : 〈v, x− u〉 ≥ 0}

be the closure ofXv,u in X.

Lemma 2.3. If µ � λ, then

(i) µ (Xv,u) = µ
(
Xv,u

)
;

(ii) The functionv → µ (Xv,u) is continuous onS.

Proof. (i) We know thatλ ({x ∈ Rn : 〈v, x− u〉 = 0}) = 0; consequently,λ
(
Xv,u\Xv,u

)
=

0 and this entails thatµ
(
Xv,u\Xv,u

)
= 0.

(ii) Suppose that(vn) is a sequence inS, converging tov. Let ε > 0 be given. Choose
r > 0 large enough so thatµ

(
X\B (u, r)

)
< ε/2. Let us show that

lim
n→∞

λ
(
Xvn,u ∩B (u, r)

)
= λ

(
Xv,u ∩B (u, r)

)
.

For this it is sufficient to show thatlimn→∞ λ (Xn) = 0 whereXn is the symmetric
difference((Xv,u\Xvn,u) ∪ (Xvn,u\Xv,u))∩B (u, r). If x ∈ Xn then‖x− u‖ ≤ r and

(2.5) 〈v, x− u〉 > 0 ≥ 〈vn, x− u〉

or

(2.6) 〈vn, x− u〉 > 0 ≥ 〈v, x− u〉 .

If, say, (2.6) is true, then〈v, x− u〉 ≤ 0 < 〈vn − v, x− u〉+〈v, x− u〉 ≤ ‖vn − v‖ r+
〈v, x− u〉 thus |〈v, x− u〉| ≤ ‖vn − v‖ r. The same can be deduced if (2.5) is true.
Thus the projection ofXn onv can be arbitrarily small; sinceXn is contained inB (u, r)
this means thatlimn→∞ λ (Xn) = 0 as claimed.

By absolute continuity,limn→∞ µ
(
Xvn,u ∩B (u, r)

)
= µ

(
Xv,u ∩B (u, r)

)
. Since

|µ (Xvn,u)− µ (Xv,u)| ≤
∣∣µ (

Xvn,u ∩B (u, r)
)
− µ

(
Xv,u ∩B (u, r)

)∣∣
+

∣∣µ (
Xvn,u\B (u, r)

)∣∣ +
∣∣µ (

Xv,u\B (u, r)
)∣∣

≤
∣∣µ (

Xvn,u ∩B (u, r)
)
− µ

(
Xv,u ∩B (u, r)

)∣∣ + ε,

it follows that limn→∞ |µ (Xvn,u)− µ (Xv,u)| ≤ ε. This is true for allε > 0, hence
limn→∞ µ (Xvn,u) = µ (Xv,u).

�
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4 N. HADJISAVVAS

We now obtain an alternative expression for the “Hadamard constant”γ, analogous to the
one in [3]. Foru ∈ X define

A+
u = {(v, x0) ∈ Rn ×X : 〈v, u− x0〉 ≥ 1} .

Further, givenv ∈ Rn andx0 ∈ X set1

X+
v,x0

= {x ∈ X : 〈v, x− x0〉 > 1} .

Proposition 2.4. The following equality holds for everyu ∈ int X:

γ =
1

inf(v,x0)∈A+
u

µ
(
X+

v,x0

) .

Proof. For every(v, x0) ∈ A+
u , we setv′ = v/ ‖v‖. For eachx ∈ Xv′,u, 〈v, x− u〉 > 0

holds. Besides,(v, x0) ∈ A+
u implies that〈v, u− x0〉 ≥ 1. Hence,〈v, x− x0〉 = 〈v, x− u〉 +

〈v, u− x0〉 > 1 thusx ∈ X+
v,x0

. It follows thatXv′,u ⊆ X+
v,x0

; consequently,

(2.7) inf
(v,x0)∈A+

u

µ
(
X+

v,x0

)
≥ inf

v∈S
µ (Xv,u) .

To show the reverse inequality, letv ∈ S be given. Sinceu ∈ int X, we may findx0 ∈ X such
that〈v, u− x0〉 > 0. Chooset > 0 so that forv′ = tv one has〈v′, u− x0〉 = 1. The following
equivalences hold:

x ∈ X+
v′,x0

⇔ 〈v′, x− x0〉 > 1

⇔ 〈v′, x− u〉+ 〈v′, u− x0〉 > 1

⇔ 〈v′, x− u〉 > 0

⇔ 〈v, x− u〉 > 0

⇔ x ∈ Xv,u.

Thus, for everyv ∈ S there exists(v′, x0) ∈ A+
u such thatXv,u = X+

v′,x0
. Hence equality holds

in (2.7). �

3. I NEQUALITY FOR QUASICONVEX FUNCTIONS SUCH THAT f(0) = 0.

Whenever0 ∈ X andf (0) = 0, another Hadamard-type inequality has being obtained in [3],
assuming thatf is nonnegative and evenly quasiconvex. We generalize this result to nonnegative
quasiconvex functions and compare with the previous findings. Leth : R+ → R+ be increasing
with h (c) > 0 for all c > 0 andλh := supc>0

c
h(c)

< +∞ (we follow the notation of [3]).

Proposition 3.1. Letf : X → R∪ {+∞} be Borel measurable, nonnegative and quasiconvex.
If 0 ∈ X andf (0) = 0, then for everyu ∈ X,

(3.1) inf
v∈S,〈v,u〉≥0

µ (Xv,u) f (u) ≤ λh

∫
X

h (f (x)) dµ.

Proof. If f (u) = 0 we have nothing to prove. Suppose thatf (u) > 0. Coming back to the
proof of Proposition 2.1, we know that there existsv ∈ S such that∀x ∈ Xv,u, f (x) ≥ f (u);
henceh (f (x)) ≥ h (f (u)), from which it follows that

µ (Xv,u) h (f (u)) ≤
∫

Xv,u

h (f (x)) dµ ≤
∫

X

h (f (x)) dµ.

1There is sometimes a change in notation with respect to [3].
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HADAMARD INEQUALITY 5

Note that0 /∈ Xv,u becausef (0) < f (u); thus,〈v, u〉 ≥ 0. Consequently,

inf
v∈S,〈v,u〉≥0

µ (Xv,u) h (f (u)) ≤
∫

X

h (f (x)) dµ.

Finally, note that by definition ofλh, f (u) ≤ λhh (f (u)) from which follows (3.1). �

Note that relation (3.1) is only interesting ifu 6= 0 since otherwise it is trivially true. Let us
defineγ∗ by

(3.2) γ∗ =


1

infv∈S,〈v,u〉≥0 µ (Xv,u)
if u 6= 0

0 if u = 0.

We obtain an alternative expression forγ∗, similar to that in [3]. Givenu ∈ X\ {0}, set
Bu = {v ∈ Rn : 〈v, u〉 ≥ 1}, and for anyv ∈ Rn, setX+

v = {x ∈ X : 〈v, x〉 > 1}.
Proposition 3.2. The following equality holds for everyu ∈ X\ {0}:

inf
v∈Bu

µ
(
X+

v

)
= inf

v∈S,〈v,u〉>0
µ (Xv,u) .

Proof. For everyv ∈ Bu we setv′ = v/ ‖v‖ and show thatXv′,u ⊆ X+
v . Indeed, ifx ∈ Xv′,u,

then we have〈v, x− u〉 > 0 hence〈v, x〉 = 〈v, u〉 + 〈v, x− u〉 > 1, i.e., x ∈ X+
v . Since

〈v′, u〉 > 0, it follows that

(3.3) inf
v∈Bu

µ
(
X+

v

)
≥ inf

v∈S,〈v,u〉>0
µ (Xv,u) .

To show equality, letv ∈ S be such that〈v, u〉 > 0. Chooset > 0 such thatt 〈v, u〉 = 1 and
setv′ = tv. For everyx ∈ X+

v′ one has〈v′, x〉 > 1, hence,

〈v′, x− u〉 = 〈v′, x〉 − 〈v′, u〉 > 0.

It follows that 〈v, x− u〉 > 0, i.e.,x ∈ Xv,u. Thus,X+
v′ ⊆ Xv,u andv′ ∈ Bu. This shows

that in (3.3) equality holds. �

Proposition 3.3. If µ � λ then we also have the equalities

γ∗ =
1

infv∈S,〈v,u〉>0 µ (Xv,u)
=

1

minv∈S,〈v,u〉≥0 µ
(
Xv,u

) (if u 6= 0)

γ =
1

minv∈S µ
(
Xv,u

) .(3.4)

Proof. We first observe that, according to Lemma 2.3,µ
(
Xv,u

)
= µ (Xv,u). The same lemma

entails thatinfv∈S,〈v,u〉>0 µ (Xv,u) = infv∈S,〈v,u〉≥0 µ (Xv,u) and that this infimum is attained,
since the set{v ∈ S : 〈v, u〉 ≥ 0} is compact. In the same way, the infimum in (2.2) is attained.

�

Wheneverµ � λ, the constantγ is sharp, in the sense that givenu ∈ X, there exists a
nonnegative quasiconvex functionf such thatf (u) = γ

∫
X

fdµ. Indeed, since the minimum
in (3.4) is attained for somev0 ∈ S, it is sufficient to takef to be the characteristic function of
Xv0,u (see Corollary 2 of [3]). Analogous considerations can be made forγ∗ (see Corollary 4
of [3]).

We now show the equality ofγ andγ∗ under a symmetry assumption:

Corollary 3.4. Suppose thatX has0 as center of symmetry,u ∈ int X\ {0} andµ � λ. If
µ (A) = µ (−A) for every BorelA ⊆ X, thenγ = γ∗.
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6 N. HADJISAVVAS

Proof. For everyv ∈ S such that〈v, u〉 < 0, setv′ = −v andY = {x ∈ X : 〈v, x + u〉 > 0}.
Since0 is a center of symmetry, one can check thatY = −Xv′,u.

If x ∈ Y then〈v, x− u〉 = 〈v, x + u〉 − 2 〈v, u〉 > 0. Thus,Y ⊆ Xv,u andµ (Xv,u) ≥
µ (Y ) = µ (Xv′,u). It follows that the minimum in (3.4) can be restricted tov ∈ S such that
〈v, u〉 ≥ 0. Thus,γ = γ∗. �
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