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ABSTRACT. We prove some integral inequalities involving the Laplace transform. These are
sharper than some known generalizations of the Hilbert integral inequality including a recent
result of Yang.
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1. INTRODUCTION

By the Hilbert integral inequality we mean the following well-known result.

Theorem 1.1. Suppose > 1, ¢ = p/(p — 1), functionsf and g to be non-negative and
Lebesgue measurable ¢ oo) then

0 [ o ([ sora] [l

whereB is the beta function. The inequality is strict unlgser g are null.

The constani3 (%, %) = T cosec (%) is known to be the best possible. See [3, Chapter 9],

for the history of this result.

Many authors on integral inequalities follow the practice of Hardy, Littlewood and Polya [3]
of implicitly assuming all functions mentioned are measurable and non-negative. We intend to
make such conditions explicit. Further, if one of the integrals on the right of (1.1) is infinite
then the strict inequality gives the impression that the left side is finite. Recent authors such as
Yang [7] avoid this by adding the conditiois< [ f*(u)du < o0, 0 < [ ¢%(v)dv < oo
to give the strict inequality. Hence it becomes convenient to introduce a class of functions that
satisfy all the required condition8Ve define”(E') to be the class of functions: £ — R such
thatonF:
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2 T.C. FEACHEY

(1) fis measurable,

(2) fis non-negative,

(3) fis not null (hence positive on a set of positive measurg sp > 0) and

(4) fisintegrable (sof, f < c0).

Yang [ 7], [8] has recently found various inequalities related to that above. One of these (in

our notation) is
Theorem 1.2.1f p > 1,¢ = p/(p — 1), A > 2 — min(p, ¢) and (u — a)*~* fP(u) and (v —
a)l=*¢?(v) are in P(a, oo) then

]nyg“)zaiégggﬁggjxdudv

<B (p“_Q,q“_Q) an(u—a)l—kf(u)pdu]; [/aoo(v—a)l_’\g(v)qdv 3

b q

We will specifically write out the case = 0 since this case is equivalent to the complete
theorem.
Theorem 1.3.1f p > 1,q = p/(p — 1), A > 2 — min(p, ¢), '~ fP(u) andv'~*¢?(v) are in
P(0, 00) then

/000/000 % dudv

PAEAN=2 qEA=2\[ (™ F[ ® q}i
<B< PR . ){/0 w " f(u)Pdu /Ov g(v)idv| .

To show that Theoreim 1.3 implies Theorgm 1.2, change the varialaledv in Theoreni 1.3
to s = u + a andt = v + a and then replacé¢(s — a), g(t — a) by ¢(s) andi)(t) respectively.
Thus Theorerp 1]3 is equivalent to Theorlen] 1.2. Note also that for the\case Theorenj 1.3
reduces to Theorem1.1.

This paper will consider a further generalization of this inequality.

Theorem 1.4.1f p > 1, ¢ = p/(p — 1), b > —2, ¢ > —_ andu? =2 fP(u) and v?~4~2g4(v)
are in P(0, co) then

Y 1 1 1-b—2/p 1—-c—-2/q
(1.2) /0/0 (va()?i(ﬁ)dudv < B(b+5,c+§) [t =222 f ()], [0~ 1g(v)), -

This reduces to Theorem 1.3 for the case (A +p — 3)/p,c = (A +q¢—3)/q.

Theoreny 1.4 is itself a special case of the Hardy-Littlewood-Polya inequality, Proposition 319
of [3]. Recall that a functior (u, v) is homogeneous of degred if K (\u, \v) = ALK (u,v)
for allowedu, v, A. The inequality is
Theorem 1.5.1f p > 1, ¢ = p/(p — 1), ¢ and? are in P(0, co) and K (u, v) is positive on
(0,00) x (0,00), homogeneous of degred with

/ K(u, 1)u_%du =k
0

then

(1.3) / / K (u, v)$(u)p(v) dudv < & 6], 1]
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and

(1.4) ‘

/Kuv du

The constank is the best possible.
To obtain Theorem 114 substitute

< kloll,-

2 2
ub+5_1vc+5_1

Ku,v) = yeert

andep(u) = u' ™" f(u), ¥(v) = v' " ig(v).

In summary, we have a chain of generalizations:
Th[I3 (Hilbert)«<= Th[I:2 (Yang)= Th[I3« Th[I.2< Th[I.5 (HLP).

This paper presents a new inequality Theofem 2.1, sharper than Thieoilem 1.4, involving the
Laplace transform. Logically the implications are

ThiZ.2
Th[L3 (HLP)= ThZ3

In Sectior| 2 we state and prove this result. Sedtion 3 considers the extension of our theory to
the case of non-conjugateandgq. In that section, Theorem 1.1 generalizes to Thedrein 3.1,
Theorenj 1.p generalizes to Theoren 3.2 and Theprem 2.1 to Thgorem 3.4. The structure of the

section is
Th[2.2
Th[3.2 (Bonsall}= Th[3.3

} = ThZ1= Th[1.4

}:Th@

2. A SHARPER | NEQUALITY

Theorem 2.1.Suppose > 1,q = p/(p —1),b > —, ¢ > —_, supposer’ " f*(u) and
—9=249(y) are P(O oo) and F', G are the respective Laplace transforms ffand g, then

1 (&
2.1) // uﬂ b+c+1 v < g [P, 157G
2.2) <B<b+}—?,c+é) =202 f(w) |, [0,

q
To show that[(2]1) gives a considerably sharper bound fhan (1.2) consider the-ease 2,
b=c=0andf(z)=g(z)=e*. ThenF (s) =G (s)=1/(s+1)and
Is"F ()], = I5°G (s)l, = 1

while

1
1f1, = Nlgll, = 7
The right side of@l) is thus equal tavhile that of [1.2) is7.
Thecase =1 -2, ¢ =1—Zfor Theoren' has been considered by the authdr!in [6,
Theorem 15].
The proof uses the following identity

Theorem 2.2.1f « > —1, f and g are non-negative and measurable @ oo) with respective
Laplace transformg” and G then

(2.3) /000/000 Mdudv = ! /OOO s*F (s) G (s) ds.

u+v)etl ['(a+1)
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The proof is a simple application of Fubini’s theorem,

/0 §)ds = / / —s £ () du / e=*g(v) du
/ flu du/ g(v )dv/o st g

(u)g(v)
// U+U a+1 dudv
which is equation[(2]3).

Despite the simplicity of the proof of (4.3) and the obvious relation with Hilbert’s inequality,
we can find no explicit reference to this identity in the literature before thecasé in [6].
That case appears implicitly in Hardy’s proof of Widder’s inequality, [2]. Mulholland [5] used
the discrete analogue, namely

sz+n+1 /Zamx Za” o

to prove the series case of Hilbert’s inequality.
Theorenj 2.1 also depends on the following bound on Laplace transforms.

Theorem 2.3. Suppose > 1, a + Ilj > 0, zP7P2fP(z) is P(0,00) and F is the Laplace

transform off, then
1
|s*F(s)], < T (a + —> |
p
u qb2_1 -2

This is also a corollary of Theore@.S. For if we makgu,v) = e”»u”"» v "7 and
é(u) = u~ " » " f(u) then we obtain fro4)

1 1
v p <—> <T (a + —) ‘
v/, D

and a substitution = 1/v in the left side gives the theorem. We can find no direct mention of
this result although the last two formulae in Propositions 350/of [3] are special cases.
We may now prove Theorejn 2.1. Since- ¢ > —1, Theoren 2.2 gives

[ _flu)g() L
/0/0 mdd m/o SHF (s) G (s) ds.

Then by Hdlder’s inequality

00 00 U ) 1 b c
[ aiopstatot < sy PO, IO,

which is equation (2]1). Applying Theorgm P.3 to each norm, the right side of this is less than

T )

B @)

I'b+ %)F(c + é)
I'b+c+1)

' Tag(v)

Ju )

p q

and this is[(Z2.R).
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3. NON-CONJUGATE PARAMETERS

Here we consider inequalities of the type considered in Seffion 2 but whefre/(p —
1). (Henceforth we will usg@’ andq’ for the respective conjugates pfandq.) The earliest
investigation of this type seems to be Theorem 340 of Hardy, Littlewood and Palya, [3]. In our
notation this is

Theorem 3.1.Supposg > 1,¢ > 1, L+ > 1land\ =2 -
fPandg? are in P(0, co) then

/ / 7@o0) 4y < 11, ol

whereC' depends omp andq only.
Hardy, Littlewood and Polya did not give a specific value for the congtarn alternative
proof by Levin, [4] established that = B ( L L) suffices but the paper did not decide

5 — 5 (800 < X < 1); suppose

Ap' 0 Ag'
whether this was the best possible constant. This question remains open.
Just as Theorem 1.5 generalized Thedrern 1.1 to a general kernel, Bonsall [1] has generalized
the above result.
Theorem 3.2. Suppose > 1, q >1,1 + >1,A=2-1_1-grandy?arein P(0, cc) and

K (u,v) is positive on(0, o) X ) homogeneous of degreei with

/le ) VO g = |

then

3.1) | R oot dudo < 1 ol 1]
and

(3.2) / K (u,v)¢(u) du I<kAH¢Hp.

Since this theorem is more than that claimed by Bonsall we will repeat and extend his proof,
using the standard methods of [3] Section 9.3.
Sincep’ A andg’ A\ are conjugate,

K (u,0)¢(u)ih(v)
= lK(Ua V)7 (v) (E)m] [K(u,v)ql'qﬁf/(u) (EV%]

[

% [¢p(1—k)(u>¢q(l—k)(v)]
= Fi F5 F; say.

Then sincej; + & + (1 — A) = 1, Holder's inequality gives

1
7/

/0 OO/O OOK(U,U)’\qb(u)L/J(v)dudvg[ / Oo/ F¥ dudv] [ / / FY dudv]
]

= If I; I3

Ur
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Here
00 oo U\~ 7%
L= [ Ko ()7 dua
- /OOO/OOO K (2, 1)y (v)a™ 7% dadv = k || $]|7.
Similarly
I = /OO/OO K(1,2)¢"(v)2” #rdedu = k oll7
and -

=[] owret)dudo = olvl
0 J0
Substituting thesé;, gives

(3.3) / OO/O KN, 0)d(u) (v)dudv < K ] 4],

Note that equality in(3]3) can only occur if one of tRgis null or all are effectively propor-
tional, seel[B, Proposition 188]. The first possibility would contradict one of the hypotheses;
the alternative implies that for almost all

Ko (2) = Ktwow (1)

for almost allu. For such av, ¢*(u) = Au~' for some positive constam, contradicting

I#]],, < oo. Thus the inequality i3) is strict givin.l).

Finally we note that

/ $(v) do / K (u, 0) () du < K 6], 161,
0 0

for all v € L,. Equation|(3.R) follows by the converse of Holder’s inequality, [3, Proposition
191].
We next extend Theorejm 2.3 to non-conjugasandyg.

Theorem 3.3. Suppose > 1,¢ > 1, ;+ . > 1,A =2~ — ~anda + ; > 0; suppose
uPP=e=2/4) fr(y) is in P(0, 00) and F is the Laplace transform off, then

o+l [ & 1 A—a—2
ot (S ) [
This follows from Theorer 3|2 by substituting

K (u,v) = e” ¥/ (e/N+EA =1, =(@/N=(2/Ad)

p

s*F(s)

q

and
d(u) = u= O f (u)

givingk =T <% + %) and
< a2 A
KMu,v)p(u)du =v "7 F | —
0

v

and then equation (3.2) gives the required inequality.
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The case; = p’ gives\ = 1 and reduces to Theorgm P.3. Another known case occurs if
q = p (which required < p < 2)anda = 0 giving A = 2/p’ and

21 ﬁ
1l < (;) £

which is Proposition 352 of [3].

A third case of interest can be obtained by substituting I% — ql and introducing: = ¢
with » > p. Then Theorer 3|3 gives
1 1
TTA
AT (m) 111,

where\ = pi + 1. This is given in[[3] as Proposition 360 except that the constait’ (ﬁ)
is not specified there.
We can now extend Theorém P.1 to the case of non-conjugate parameters.

Theorem 3.4.Supposg > 1,9 > 1, + > 1, ¢ <r <p,b+ 5 >0andc+; > 0;

,,,/

uP(/P'=1/1"=0) £ () and v2(H/4=1/7=¢) g4(y)) are in P(0, 00) and supposé’, G are the Laplace

ka%*%F(as)

transforms off and g respectively, then

[ _fwg(v) ! b c
(34) /(; /0 mdﬂdv < m HS F(S) ! HS G<S)Hr

(3.5) < C|lur =7 f(u)

1
vd

_1_
T
Y
q

‘g(v)

p

wheref = ; + 5,7 = ; + and

1 1 b 1 C 1
C=pwytsrf | Z 4 — )1 =4+ =)0 1).
ﬁ7 <ﬁ+r’6> <7+m> e

The proof of [3.4) proceeds as that pf (2.1) except thand ¢ are replaced by’ andr
respectively. We then apply Theor3.3|t1‘3F(s)||T/. In that theorem replace by b, g by r
and\ = > + by 3 = - + 7, giving

b b+ b 1
| F(s)[l < B+ T (B + 57/) |
The condition! + 1 > 1 s satisfied because< p'. Alternatively if in Theore3 we replace
a by ¢, p by g andg’ by r with » > ¢ we obtain
1 1

[s°G(s)ll- < v+ 17 (E " _) |

vooar
Applying these to[(3]4) give$ (3.5) and completes the proof.
The question arises as to whether the constamt ) is better than Levin'&* (ﬁ, ﬁ)

inthecasé =+ — 1 =1
p '

1_1_
w7 f (u)

P

L For that case

g v

1 1 1 1
C = B ~aTh (—) r (-) Y\
B By’ g )

wheref = pi + Tl and~y = ql + % Experiments with Maple suggest that Levin’s constant is the

better one.
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