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ABSTRACT. An approximate procedure for solving equilibrium problems is proposed and its
convergence is established under natural conditions. The result obtained in this paper includes,
as a special case, some known results in convex minimization and monotone inclusion fields.

Key words and phrasesEquilibrium, Proximal method, Minimization, Monotone inclusion.

2000Mathematics Subject Classificat/oRrimary, 90C25; Secondary, 49M45, 65C25.

1. INTRODUCTION AND PRELIMINARIES

Equilibrium problems theory has emerged as an interesting branch of applicable mathemat-
ics. This theory has become a rich source of inspiration and motivation for the study of a
large number of problems arising in economics, optimization, and operations research in a gen-
eral and unified way. There are a substantial number of papers on existence results for solving
equilibrium problems based on different relaxed monotonicity notions and various compactness
assumptions. But up to now only few iterative methods to solve such problems have been done.
Inspired by numerical methods developed by A. S. Antipin for optimization and monotone in-
clusion, and motivated by its research in the continuous case, we consider a class of equilibrium
problems which includes variational inequalities as well as complementarity problems, convex
optimisation, saddle point-problems, problems of finding a zero of a maximal monotone oper-
ator and Nash equilibria problems as special cases. Then, we propose and investigate iterative
methods for solving such problems.

To begin with, letH be a real Hilbert space and| the norm generated by the scalar product
(-,-). We will focus our attention on the following problem

(EP) findz € C suchthat F(z,2) >0 VzeC,

where(' is a nonempty, convex, and closed setbéndF : C' x C' — R is a given bifunction
satisfyingF'(z,z) = 0forall z € C.
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2 A. MOUDAFI

This problem has potential and useful applications in nonlinear analysis and mathematical
economics. For example, if we sdt(z,y) = ¢p(y) — p(z) Vr,y € C,p: C — R areal-
valued function, therlf{P) reduces to the followingninimization problensubject to implicit
constraints

(CO) findz € C suchthat ¢(7) < p(z) VreC.

The basic case ahonotone inclusioorresponds td(z,y) = supcp, (¢,y — =) with B :
C Z X a set-valued maximal monotone operator. Actually, the equilibrium prokgan) is
nothing but

(MI) findz € C suchthat 0 € B(Z).
Moreover, if B = T + N¢, then inclusion[M)) reduces to the classicahriational inequality
Vi) findz € C suchthat(T(z),x —z) >0 VzeC,

T being a univoque operator aig- standing for the normal cone .
In particular ifC'is a closed convex cone, then the inequallfy)( can be written as

(cp) findz e C T(z) e C*and(T'(z),z) =0,

whereC* = {z € X; (x,y) > 0Vy € C} is the polar cone t6’.

The problem of finding suchz is an important instance of the well-knowamplementarity
problemof mathematical programming.

Now, let P : C' — C be a given mapping, if we sét(x,y) = (xr — Px,y — ), then
is nothing but theproblem of finding fixed points aP. On the other hand, monotonicity of
F is equivalent to sayingPz — Py,z — y) < |r — y| which is clearly satisfied wheR is
nonexpansive.

Another example correspondsiash equilibriain noncooperative games. Léfthe set of
players) be a finite index set. For evérg I let C; (the strategy set of theth player) be a given
set, f; (the loss function of the-th player, depending on the strategies of all playes)-— R
a given function withC' := [[,, C;. Forz = (2;),, € C, we definer’ := (z;) ., ;- The
pointz = (7;),., € C' is called a Nash equilibrium if and only if for alle I the following
inequalities hold true:

NVE) fi@) < fi(@',y;) forally; € C;,

(i.e. no player can reduce his loss by varying his strategy alone).
Let us definet’ : C' x C' — R by

F(z,y) =Y (£, y:) — filx)) .
i€l
Thenz € C is a Nash equilibrium if, and only if; solves[€P).
Finally, the problem of finding theaddle pointof a convex-concave function, namely, the
point (z, p) that satisfies the inequalities

(SP) L(z,p) < L(z,p) < L(x, p),

forall z € Q andp € P, whereP and(@ are two closed and convex sets, can also be stated
as [EP). Indeed, let us introduce the normalized functiéfw, v) = L(z,p) — L(z,y), where
w = (z,y) andv = (x,p) and selC = @ x P, it follows that is equivalent tol P) and
that their sets of solutions coincide.

It is worth mentioning that the proper#(z, z) = 0 for all x € C'is trivially satisfied for all
the above examples. Furthermore, this reflects the name of the class of ganpessdns with
zero sum.

The following definitions will be needed in the sequel (see for example [5]).
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Definition 1.1. Let F' : C x C — R be a real valued bifunction.
(i) F'is said to be monotone, if

F(z,y) + F(y,x) <0, foreach z,ye C.
(i) F'is said to be strictly monotone if
F(z,y)+ F(y,x) <0, foreach z,y € C, withz # y.
(iif) F'is upper-hemicontinuous, if for all, y, z € C
lim sup F(tz + (1 —t)x,y) < F(z,y).

t—0+
One approach to solving€P) is the proximal method (seel[4] drl[7]), which generates the
next iterates;,; by solving the subproblem

(1.2) F(hi1,7) + A Tpp1 — T, @ — 2p0) >0 Vo € C.

In the light of Antipin’s research, we propose the following iterative method which works as
follows. Givenxy_q,x, € C and two parameters, € [0, 1] and X, > 0, find z;1; € C such
that

1.2) F(2pi1, ) + M Hoper — o — (2 — 231), 0 — 231) >0 Vo € C.

It is well known that the proximal iteration may be interpreted as a first order implicit dis-

cretisation of differential inclusion
du

(1.3) %(t) € PTx(_aF(u<t)7 -)u(t),

whereTz = cR(C — z) is the tangent cone @ atx € C and the operatoPy stands for the
orthogonal projection onto a closed convex EetWhile the inspiration for (1.2) comes from
the implicit discretization of the differential system of the second-order in time, namely

2
(1.4) o (0) 1 (1) € Pra(~0F(u(t), u(t)
wherey > 0 is a damping or a friction parameter.

Under appropriate conditions @r. and A\, we prove that if the solution sé&t is nonempty,
then for every sequende:,.} generated by our algorithm, there existszaa S such that{z; }
converges ta weakly in’H ask — oo.

Now, for developing implementable computational techniques, it is of particular importance
to treat the case whep (1.2) is solved approximately. To this end, we propose an approximate
method based on a notion which is inspired by the approximate subdifferential and more gen-
erally by thes-enlargement of a monotone operator (see for example [10]). This allows an
extra degree of freedom, which is very useful in various applications. On the other hand, by
settinge, = 0, the exact method can also be treated. More precisely, we consider the following
scheme: find z,.; € C such that

(1.5) F(zi1,2) + M Tyt — Yy @ — Tp) > —ex Vo € C,

whereyy := zy + ag(x) — x_1), Ak, i, £ @re nonnegative real numbers.
We will impose the following tolerance criteria on the tergnwhich is standard in the liter-
ature:

+oo
(1.6) Z)\kék < 400,
k=1

and which is typically needed to establish global convergence.
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The remainder of the paper is organized as follows: In Seftion 2, we present a weak conver-
gence result for the sequence generated by (1.5) under criterign (1.6). In $éction 3, we present
an application to convex minimization and monotone inclusion cases.

2. THE MAIN RESULT

Theorem 2.1.Let{z;} C C be a sequence generated py [1.5) under criteffion] (1.6), whRere
is monotone, upper hemicontinuous such thét, -) is convex and lower semicontinuous for
eachx € C. Assume that the solution set is nonempty and the parameters, \, and
ey, satisfy:

(1) 3X > 0 such thatvk € N* A\, > .

(2) 3a € [0,1] such thatvk € N* 0 < oy, < a.

If the following condition holds
“+00

(21) Z Oék’$k — $k71’2 < 400,

k=1
then, there exists which solves{ P) and such tha{z; } weakly converges tbask — +oo.

Proof. Let z be a solution offP). By settingz = x4, in (€F) and taking into account the
monotonicity ofF’, we get—F(z;1, ) > 0. This combined with[(1]5) gives

(Thi1 — 2 — ap(Tn, — 1), Tpa1 — T) < Apég-
Define the auxiliary real sequengg := 1|z, — |2 Itis direct to check that

_ 1 2
<xk+1 — Tk — Oék(Ik - wk—1)7$k+1 - $> = Pr+1 — Pkt §’$k+1 - Ik’

— Tk — Tp—1, Tpy1 — ),

and since

<$k — Tp—1, Tk41 — f> = <$k — Tp—1,Tk — f> + <$k — Tk—1, Tk41 — Ik)

1 2
= — Pk—1+ §|$k — Tp1|” + (Tp — Tp—1, Tpr1 — Tk),

it follows that

1
Ort1 — Pk — ou(r — 1) < _§|=Tk+1 — 2 ? + T — Th_1, T — k)

a
+ 7k|$k — Tp_1]? + M

1
2

ay + o
2

= |The1 — yil® + 2 — zp 1 | + Arer

Hence
1
(2.2) Qi1 — o — ar(pr — Pr-1) < _§|xk+1 — y]? + aglzr — 21 ]* + Aier
Settmg@k = QY — Pk—1 anddk = Oék’.’L'k — l’k,1|2 + A&, We obtain
Ort1 < by + 0 < ag[bk]+ + O,
where[t], := max(t,0), and consequently

[Ors1]+ < afOk]y + o,
with o € [0, 1] given by (2).
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The latter inequality yields

k—1

[Ort1]+ < oF [01]+ + Z ' Si,

1=0

and therefore

o0

S lbrale (il + D 6,

k=1
which is finite thanks to (3) an.l). Consider the sequence defingd:byy;, — ZL[@M.
Sinceyp, > 0 and>_" [0;], < +oo, it follows thatt, is bounded from below. But

k k

thr1 = ©t1 — [Okr1]+ — Z[ei]-‘r < Okl — Prr1 + Ok — Z[ei]-‘r = 1k,
i1 i=1

so that{t;} is nonincreasing. We thus deduce tkgat} is convergent and so igp;}. On the
other hand, from (2]2) we obtain the estimate

1
§‘Ik+1 —ukl® < o — Prr1 + i)y + .

Passing to the limit in the latter inequality and taking into account{bat converges|d;].
andJ, go to zero a% tends to+oo, we obtain

li — = 0.
k_{{{loo(ﬂ?kﬂ Yk)

On the other hand, from (1.5) and monotonicity/ofve derive
<{Ek+1 — Yk, T — l’k+1> + /\ké-fk Z F(:L',l‘k_H) Vo e C.

Now let z be a weak cluster point dfr; }. There exists a subsequenfcg, } which converges
weakly toz and satisfies

<xl/+1 — Y, T — xu—f—l) + AVZ':V Z F(ZL',ZL'V+1) VI S C

Passing to the limit, a8 — +oc, taking into account the lower semicontinuity Bf we obtain
0> F(z,z) Vx € C. Now, letz; = tx + (1 —t)Z, 0 < t < 1, from the properties of’
follows then for all

0 = F(l’t, .Z't)

< tF(xy, ).
Dividing by ¢t and lettingt | 0, we getz; — & which together with the upper hemicontinuity of
Fyields
F(z,z) >0 VzeC,

that is, any weak limit point is solution to the problen{P). The uniqueness of such a limit
point is standard (see for example[10, Theorem 1]). O

Remark 2.2. Under assumptions of Theor¢ém 2.1 and in view of its proof, it is clear{tha
is boundedif, and only if, there exists at least one solution[fd?).
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3. APPLICATIONS

To begin with, let us recall the following concept (see for exaniplé [10]): sFealargement
of a monotone operatdr, say7=(z), is defined as

3.1) T*(z) :={veHi{u—v,y—2) > — Vy,ueT(y)}
wheree > 0. SinceT is assumed to be maximal monotofi&(z) = T'(z), for anyz. Further-
more, directly from the definition it follows that

0<e <ey=T%x) CT%(x).

ThusT* is an enlargement df. The use of elements ifi° instead ofl" allows an extra degree
of freedom, which is very useful in various applications.

3.1. Convex Optimization. An interesting case is obtained by takiAgz, y) = ¢(y) — ¢(z),
© a proper convex lower-semicontinuous functipn X — R. In this casel{ P) reduces to the
one of finding a minimizer of the functiofi := ¢ + i¢, ic denoting the indicator function @f
and [1.5) takes the following form

(3.2) Me(Of ) (pg1) + Tpr — o — (g — 2p—1) 2 0.

Since the enlargement of the subdifferential is larger than the approximate subdifferential, i.e.
O.f C (0f)¢, we can write),, f(zx+1) C (Of)°*(zk+1), Which leads to the fact that the approx-
imate method

(3.3) MO, f(Tht1) + g1 — T — ag(xp — 25-1) 30,

whereod., f is the approximate subdifferential ¢f is a special case of our algorithm. In the
further case wherey, = 0 for all £ € N, our method reduces to the proximal method by
Martinet and we recover the corresponding convergence resuli (see [6]).

3.2. Monotone Inclusion. First, letus recall that by taking(z, y) = supecp, (§,¥y — ) Vy,x €
C, whereB : C=H is a maximal monotone operatof ) is nothing but the problem of
finding a zero of the operataB. On the other hand’ is maximal monotone according to
Blum’s-Oetlli definition, namely, for every(,z) € H x C

Fly,z) <(=Cy—z) VyeC = 0<F(z,y)+(-Cy—z) Vyel.

It should be noticed that a monotone function which is convex in the second argument and upper
hemi-continuous in the first one is maximal monotone.
Moreover, taking”' = H, F'(x,y) = supgcp, (§,y — ), leads to

Trp+1 € (I + )\kBEk)_1<LL’k — Oék.(l’k — xk—l));

which reduces in turn, when, = 0 anday, = 0 for all £ € N, to the well-known Rockafellar’s
proximal point algorithm and we recover its convergence result ([9, Theorem 1]).

It is worth mentioning that the proposed algorithm leads to new methods for finding fixed-
points, Nash-equilibria as well as solving variational inequalities.
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