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ABSTRACT. The theorem proved in this paper is a generalization of some results, concerning
integrability of trigonometric series, due to R.P. Boas, L. Leindler, etc. This result can be con-
sidered as an example showing the utility of the notion of power-monotone sequences.
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1. INTRODUCTION

Several authors have studied the integrability of the series
(1.2) g(x) = Z b, sin nx
n=1

requiring certain conditions on the sequerag} (see[1] —[[6] and([9] —[14]).

For example R.P. Boas inl[2] proved the following result for|(1.1):
Theorem 1.1.1f b, | 0thenfor0 < v < 1, 27 7g(x) € L[0,n] if and only if} "> n7~1b,
converges.

This theorem had previously been proved for= 0 by W.H. Young [14] and was later
extended by P. Heywood|[6] fdr< v < 2.

Further generalization was given by AljEa, R. Bojan€ and M. Tomg in [1]], by using the
so called slowly varying functions.
A positive, continuous function defined df, oo) is called slowly varying ifLL((tj)) — 1, if
x — oo forallt > 0.

They proved among others the following results:
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2 J. NEMETH

Theorem 1.2.Let L(z) be a convex, non-decreasing showly varying functiom,, If 0, then
L(1/z)g(x) € L(0,x] if and only if}>°  n~'L(n)b, converges.

Theorem 1.3. Let L(x) be a slowly varying function. 16, | 0 and0 < v < 2, then
7L (1) g(z) € L[0, 7] if and only if>>>° , n?~'L(n)b,, converges.

Later the monotonicity condition ofb,,} was changed to more general ones by S.M. Shah
[11] and L. Leindler[[9]. Before formulating a result of this type we need a definition due to L.
Leindler.

A sequence = {c¢,} of positive numbers tending to zero is of rest bounded variation, or
briefly R BV S, if it has the property

(12) Z |Cn - Cn+1| < K(C)Cm

for all natural numbemn, whereK (c) is a constant depending only en
Using this notion L. Leindler ([9]) proved

Theorem 1.4.Let{b,} € RfBVS.1f0 <~ <1and
(1.3) > b, < oo,
n=1

thenz=7g(x) € L(0; 7).
The aim of the present note is to give further generalization of above mentioned theorems by
using the concept of the so called quagpower-monotone sequence changing the function
to more general one. We deal only with the sufficiency of the conditions because only this point
of the proofs has interest in showing up the utility of the qu&apiower-monotone sequences,
the proof of the necessity, in general, goes on the same way as in the earlier cited papers.
First we need some definitions before formulating our result and the lemmas used in the
proof.
Following L. Leindler we shall say that a sequence= {~,} of positive terms is quasi
(B-power-monotone increasing (decreasing) if there exists a natural nuvnberN (3, ~) and
constant’ := K (3,7) > 1 such that

(1.4) Knﬁ')/n > mﬂ'ym (nﬂ'yn < Kmﬁ'ym)

holds for anyn > m > N.

Here and in the sequek’ and K; denote positive constants that are not necessarily the same
of each occurrence.

If (L.4) holds with3 = 0 then we omit the attributes-power”.

Furthermore, we shall say that a sequence {, } of positive terms is quasi geometrically
increasing (decreasing) if there exist natural numbers: u(v), N := N(v) and a constant
K := K(v) > 1 such that

1
(1.5) Tntp = 2y, and 7, < K1 (7n+u < 5%1 and v, < K’Yﬂ)

hold for alln > N.

A sequence~, } is said to be bounded by blocks if the inequalities
(1.6) alfgﬁ) <, < agfgé), 0<a; <ag <o

hold for any2* < n < 281 k=1,2,..., where

'™ = min(yok, yor+1) and FE\Z) := max(Yak, Yok+1).
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Finally, for a given sequendy, }, v(z) will denote the following function:

. 1 . . 1 1
v(x) =, if x=—,n>1; linearon the interval =1
n n+1'n

2. RESULT

Theorem 2.1.Let{b,} € Ry BV S and{~,} such thaty,n~2" is quasi-monotone decreasing
for somes > 0. If
2.1) I, < oo

n=1 n
theny(x)g(z) € L(0; 7.
Remark 2.2. This result is a generalization of Theorém|1.4 since in| (23)s replaced by
v, and the cas@® < v < 1is extending to0 < v < 2. Furthermore the sufficiency parts
of Theoren{ 1.p and 1].3 are also special cases of our Theorem in a few respects: namely the
monotonicity of {b,} is changed to the property dt; BV.S and as we will prove later for
any slowly varying function.(z) and for0 < v < 2 the sequencén”L(n)n2*¢} is quasi-
monotone decreasing for some> 0) thereforen” L(n) can be replaced by, } (0 < v < 2).
Moreover using our result it turns out that the convexity and monotonicity conditiordgon
can be dropped in the case of Theofen) 1.2. For example our result contains statement of the
type Ly rpgnbn < 00 = 10g1l9(x) € L[0; 7], too.

3. LEMMAS

We need the following lemmas.

Lemma 3.1. ([8]) A positive sequencéy, } bounded by blocks is quasipower-monotone
decreasing with a certain positive exponetitand only if the sequencly,. } is quasi geomet-
rically decreasing.

Lemma 3.2. ([7]) For any positive sequenee:= {~, } the inequalities

(3.1) d <Ky (m=12,.. ;K >1),

or

(32) D <Ky (m=12..K>1),
n=1

hold if and only ify is quasi geometrically decreasing or increasing, respectively.
Lemma 3.3. If {~,,} has the same property as in Theoten] 2.1, then

(3.3) Y<Ky % forall n,
k=1

and

(3.4) Y < K-n? forall n.

These statements immediately follow from the definitidnpf.
Lemma 3.4.1f {b,} € R{ BVS and [2.]) is satisfied then

(35) Z’bn_bn+l|z% <00
n=1 k=1
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Proof. Using the definition of?; BV S (see[(1.R)) we have from (2.1) that

Z%Zwk—b;ﬁ_ﬂ < Q0.

n=1 k=n
Now changing the order of summation we get|3.5). O
4. PROOFS

Proof of Theorerm 2]1Since{b,,} is of bounded variation, the functias{z) is continuous ex-
cept perhaps at 0 ([15, p. 4]), so we are concerned only with a neighbourhood of 0.
We shall writec(x) := 1 — cos z. Then by Abel transformation ([3, p. 5]) we have

Z b [c{(n + 2)z} — ¢(nz)]

ég(x) N sinx

— ,1 [—b2c(x) + bsc(2x) + Z(bn—l — bni1)c(ne)

Sinx
n=3

Sincesinz ~ x asz — 0, so it is enough to prove the existence of

(4.2) / Z|bn 1 — bus1|c(nz)dz.

and the integrability ofy(x)c(x)/xz andvy(x)c(2x) /.
Applying Levi's theorem, the existence ¢f (#.1) will follow from

4.2) Z b1 — n+1|/ c(nx)dr < co.

Divide the integralfo1 v(x)Le(nx)dx into two parts for a fixedh:

1/n 1
(4.3) /01 ,Y(m)éc(n:v)dx = /0 'y(x)ic(nx)dw + /1 ) 'y(x)ic(na:)dw =1 + I,

In the estimate of; we use that from the property dfy,,} assumed in Theorefm 2.1 it fol-
lows that{ 22 } is geometrically decreasing and so by Lenjma 3.1 (3.1) can be applied for this
sequence. So in the last step using|(3.3) also, we get that

1/n
(4.4) I, = /0 v(x) )dx

2
3
5

||~ 8|

(1 — cosnx)dx

1/n 1 — cosnz
2
— T - ™ dr
/0 (@) n2x?

N
=
3
)
=
\_/

8
S

1/n
< K1n2/ vy(z)xdx
0
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> 1\ 1
<kt (1) s
—'\k)k

> 1\ 1

< Ksn? Z Y (?) 1

I=[log n]

Now we estimatd,:
! 1

(4.5) I, = / v(x)—c(nx)dz
1/n

! 1
< 2/ v(x)—dx
1

o

- 1\ 1
SK;7<E> T
—Ki%.

k=1

Since [(4.8),[(4]4)[ (4]5) with (3.5) give (4.2), so the intedral|(4.1) exists. Finally the integrability
of v(x)c(x)/x and~y(x)c(2x) /2 can be proved by the same way that was used in the estimate
of I; in (4.4), applying still[[3.4).

Thus the proof of Theorefn 2.1 is complete. O

Proof of Remark 2]2The only fact we need to show that the sequepcd.(n)n 2"} is quasi
monotone decreasing for somé> 0), where0 < v < 2 and L(z) is an arbitrary slowly
varying function. According to Lem@.l it is enough to prove that the seqyencéL(n)}

is bounded by blocks and th&2""~? L,(2")} is a quasi geometrically decreasing sequence.
It is obvious that for the sequende”~2L(n)} (1.6) is equivalent to the existence of positive
constantds, K, such that

L(2F +¢)
4. Ki<— <K
hold for arbitraryk and1 < ¢ < 2%, But since from the definition of ()
. L(tr)
(.1 ST

is uniformly satisfied in the ratioon the interval[l, 2] (seel[1, p. 69]) thereforé (4.6) holds.
In order to prove that for the sequerg"—2 L(2") the propertie5) hold it is enough to
show that there exist natural numbgrand N and a constank” > 1 such that

(4.8) (LM < (@) L)
and
(4.9) (L) < K(@)LEY)
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hold if n > N.
However, [(4.8) is equivalent to
LErtey 1, 5
. _~ <= AT

and if (2277)* > 2 then by using[(4]7)[ (4.10) holds if is large enough, which givep (4.8).
Finally since[(4.P) can be obtained by using a similar argument as before, Remark 2.2 is proved.
0
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