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Abstract

In this paper, we present several algorithms of the projection type to solve a
class of nonconvex variational problems.
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The theory of variational inequalities is a branch of the mathematical sciences
dealing with general equilibrium problems. It has a wide range of applications
in economics, operations research, industry, physical, and engineering sciences.
Many research papers have been written lately, both on the theory and applica-
tions of this field. Important connections with main areas of pure and applied
sciences have been made, see for exampled, 1=] and the references cited

therein. . . Lo . . Iterative Schemes to Solve
One of the typical formulations of the variational inequality problem found Nonconvex Variational
in the literature is the following Problems
Messaoud Bounkhel, Lotfi Tad]
(VI) Find a pointz* € C andy* € F(z*) satisfying (y*, 2z — 2*) > 0, and Abdelouahed Hamdi
forallz € C,

Title Page
whereC' is a subset of a Hilbert spadé and F : H — H is a set-valued Contents
mapping. A tremendous amount of research has been done in the case where
C is convex, both on the existence of solutions\éf)(and the construction of b dd
solutions, see for examplé,[13, 15, 19. Only the existence of solutions of () < >
has been considered in the case whlis honconvex, see for instancg.[ To
the best of our knowledge, nothing has been done concerning the construction Go Back
of solutions in this case. Close

In this paper we first generalize problewil | to take into account the non- Quit

convexity of the se€’ and then construct a suitable algorithm to solve the gen-
eralized {/I). Note that /1) is usually a reformulation of some minimization Page 3 of 33
problem of some functional over convex sets. For this reason, it does not make

J. Ineq. Pure and Appl. Math. 4(14) Art. 1, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bounkhel@ksu.edu.sa
mailto:bounkhel@ksu.edu.sa
http://jipam.vu.edu.au/

sense to generaliz&/() by just replacing the convex sets by nonconvex ones.
Also, a straightforward generalization to the nonconvex case of the techniques
used when set’ is convex cannot be done. This is because these techniques
are strongly based on properties of the projection operator over convex sets and
these properties do not hold in general whéns nonconvex. Based on the
above two arguments, and to take advantage of the techniques used in the con-
vex case, we propose to reformulate problénh) (whenC' is convex as the
following equivalent problem

. . Iterative Schemes to Solve
(VP) Find a pointz* € C' : F(CB*) N —N(C; CE*) 7& (Z), Nonconvex Variational
] Problems
whereN (C'; ) denotes the normal cone ©fatx in the sense of convex analy- o
Messaoud Bounkhel, Lotfi Tad]

sis. Equivalence of problems() and (VP) will be proved in Propositiod.4be- and Abdelouahed Hamdi
low. The corresponding problem whéhis not convex will be denoted (NVP).
This reformulation allows us to consider the resolution of problem (NVP) as
the desired suitable generalization of the probléfh).( We point out that the
resolution of {/1) with C' nonconvex is not, at least from our point of view, a Contents
good way for such generalization. Our idea of the generalization is inspired

Title Page

from [5] (see also [¢]) where the authors studied the existence of generalized 4 dd

equilibrium. 4 >
In the present paper we make use of some recent techniques and ideas from Go Back

nonsmooth analysis[ 6] to overcome the difficulties that arise from the non- Close

convexity of the setC. Specifically, we will be considering the class of uni-
formly prox-regular sets (see Definitiahl) which is sufficiently large to in- Quit
clude the class of convex setsconvex sets (seel]), C'! submanifolds (pos-
sibly with boundary) offf, the images under@!:! diffeomorphism of convex
sets, and many other nonconvex sets (for more detailsise@]).

Page 4 of 33

J. Ineq. Pure and Appl. Math. 4(14) Art. 1, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bounkhel@ksu.edu.sa
mailto:bounkhel@ksu.edu.sa
http://jipam.vu.edu.au/

The paper is organized as follows: In Sectibwe recall some definitions
and notation, and prove some useful results that will be needed in the paper. In
Section3 we propose an algorithm to solve problem (NVP) and prove its well-
definedness and its convergence under the uniform prox-regularity assumption
on C and the strong monotonicity assumption 6in The results proved in
Section3 are extended in Sectiohin two ways: In the first one, we assume
that "' = F + F5, whereF} is a strongly monotone set-valued mapping &hd
is a Hausdorff Lipschitz set-valued mapping not necessarily monotone. In this
casefF’ is not necessarily strongly monotone. In the second one, th€' set Iterative Schemes to Solve
assumed to be a set-valued mapping.ofih this case, problem (NVP) becomes ML T

Problems

Messaoud Bounkhel, Lotfi Tad]
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Throughout the papef{ will be a Hilbert space. Let’ be a nonempty closed
subset ofH/. We denote byl (-) or d(-, C) the usual distance function to the
subset’, i.e.,dc(z) := inf,cc ||z — ul|. We recall (see[1]) thatthe proximal
normal coneof C' atz is given by

NP(Ciz):={¢ € H: 3a > 0s.t.x € Projo(r + af)},

where
Projo(z) :={2" € S: de(x) = ||z — 2||}.

Equivalently (see for examplée. []), N¥(C;x) can be defined as the set of all
¢ € H for which there exist, 9 > 0 such that

& 2 —2) <ol —2|? forall 2’ € (z+0B)NC.

Note that the above inequality is satisfied locally. In Proposition 1.1.54f [
the authors give a characterizationof (C; ) where the inequality is satisfied
globally. For completeness, we reproduce that proposition as the following:-

Lemma 2.1. Let C' be a nonempty closed subsetfih thené € N7 (C;z) if
and only if there exists > 0 such that

(&,2) —2) < o|l2’ —z|)?* forall 2’ € C.
We recall also (se€]) that theClarke normal conés given by

N(C;x) =720 [NP(C; )],
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whereco[S| means the closure of the convex hull 8f It is clear that one
always hasN?(C;z) ¢ NY(C;z). The converse is not true in general. Note
that N (C; z) is always a closed and convex cone and tH&(C’; x) is always

a convex cone but may be nonclosed (sg€ []). Furthermore, ifC' is convex

all the existing normal cones coincide with the normal cone in the sense of
convex analysisV“*"(C; x) given by

N (Cyx):={ye H: (y,a' —2) <0, forall 2’ € C}.

We will present an algorithm to solve problem (NVP). The algorithm is an
adaptation of the standard projection algorithm that we reproduce below for
completeness (for more details concerning this type of projection and conver-
gence analysis in the convex case we refer the readerlapd the references
therein).

Algorithm 2.2.

1. Selectr’ € H, y° € F(2°), and p > 0.

2. Forn > 0, compute: z"™! = z" — py™ and selectz" ™! € Projc(z"),
yn-‘rl c F(In+1).

It is well known that the projection algorithm above has been introduced in
the convex case {[J]) and its convergence proved. Observe that Algorithéh
is well defined provided the projection a@nis not empty. The convexity as-
sumption onC', made by researchers considering Algorithra is not required

for its well definedness because it may be well defined, even in the nonconvex

case (for example whefi' is a closed subset of a finite dimensional space, or
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whenC' is a compact subset of a Hilbert space, etc.). Rather, convexity is re-
quired for its convergence analysis. Our adaptation of the projection algorithm
is based on the following two observations:

1. The sequence of poinfs"}, that it generates must be sufficiently close
to C.

2. The projection operatoProjc(-) must be Lipschitz on an open set con-
taining the sequence of poings™},,.

Recently, a new class of nonconvex sets, caliedflormly prox-regular sets
(see (L7, 6]) (called proximally smooth sets in the original papér]), has been
introduced and studied in.{]. It has been successfully used in many noncon-
vex applications such as optimization, economic models, dynamical systems,
differential inclusions, etc. For such applications s&e3[ 4, 5, 6]. This class
seems particularly well suited to overcome the difficulties which arise due to the
nonconvexity assumption afi. We take the following characterization proved
in [10] as a definition of this class. We point out that the original definition was
given in terms of the differentiability of the distance function (sed)[

Definition 2.1. For a givenr €]0, +o00|, a subseC' is uniformly prox-regular
with respect ta- (we will say uniformly--prox-regular)(see [0)]) if and only if
every nonzero proximal normal {@ can be realized by an-ball. This means
that forallz € C and all0 # ¢ € NP(C; z) one has

1
<|é—|r‘> < el

forall x € C.
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We make the conventiof;l = 0 for r = +00. Recall that forr = +o00

the uniformr-prox-regularity ofC' is equivalent to the convexity af', which
makes this class of great importance.

The following proposition summarizes some important consequences of the
uniform prox-regularity needed in the sequel. For the proof of these results we

refer the reader tol]), 17].

Proposition 2.3. Let C' be a nonempty closed subsetdnand letr €]0, +oo].
If the subset is uniformlyr-prox-regular then the following hold:

i) Forall z € H withdc(x) < r, one hasProjc(x) # 0;
i) Letr’ € (0,7). The operatorProjc is Lipschitz with rank—— on C,.;
iii) The proximal normal cone is closed as a set-valued mapping.

iv) Forall z € C'and all0 # ¢ € N¥(C; z) one has

5 / > 2 / 2 /
—— 7 —x) < —|z' —z||* + de(x'),
<H§H r
forall 2’ € H withde (') <.

As a direct consequence of Part (iii) of Propositibd we haveN® (C; z) =
NP(C;z). So, we will denoteN (C; z) := NY(C;x) = NF(C;z) for such a
class of sets.

In order to make clear the conceptieprox-regular sets, we state the fol-
lowing concrete example: The union of two disjoint intenald] and|c, d] is
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r-prox-regular withr = %b The finite union of disjoint intervals is alse
prox-regular and the depends on the distances between the intervals (for more
concrete examples and for a general study of the clasgpadx-regular sets we
refer to a forthcoming paper by the first author).

The following proposition establishes the relationship betwgépgnd (VP)

in the convex case.
Proposition 2.4. If C'is convex, then\(l) <= (VP).
Proof. It follows directly from the above definition a¥ " (C'; ). O

The next proposition shows that the nonconvex variational problem (NVP)
can be rewritten as the following nonconvex variational inequality:

(NVI) Findz* € Cy* € F(z")s.t. (y",x —x™) + ”ng |z — 2*||* > 0,
xeC.
Proposition 2.5. If C'is r-prox-regular, then{VIl) <= (NVP).

Proof. (=) Let z* € C be a solution of I{V1), i.e., there existg* € F(x*)
such that ||

(y*,z —x*) + g H |z —2*||> >0, forallz € C.
T

If yv* = 0, then we are done because the vector zero always belongs to any

normal cone. Ify* # 0, then, for allx € C, one has

¥ 1
<—€,x—x*> < Yoo
T %
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Therefore, by Lemma.1one gets:“; € N(C;z*) and so—y* € N(C;a7),
which completes the proof of the necessity part.

(«<=) It follows directly from the definition of prox-regular sets in Definition
2.1 O

In what follows we will letC' be a uniformlyr’-prox-regular subset off
with " > 0 and we will letr € (0,7"). Now, we are ready to present our
adaptation of Algorithn2.2to the uniform prox-regular case.
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Ouir first algorithm3.1 below is proposed to solve problem (NVP).
Algorithm 3.1.
1. Select’ € C,y" € F(z"), and p > 0.

2. Forn >0, Compute:szrl = 2" — py" and selectz™! € PrOjC(ZnJrl)’ Iterative Schemes to Solve
yn+1 c F(x”“). Nonconvex Variational
Problems

In our analysis we need the following assumptionsFon Messaoud Bounkhel, Lotfi Tadi

Assumptions.A;. and Abdelouahed Hamdi

1. F : H = H is strongly monotone on' with constaniv > 0, i.e., there

existsa > 0 such thatvz, 2’ € C Title Page
Contents
(y—y o —2) > alls —2'|]°, Yy € F(z), y € F(2').
44 44
2. F has nonempty compact valuesihand is Hausdorff Lipschitz continu- < >
ous onC' with constants > 0, i.e., there existg > 0 such that/z, 2’ € C
Go Back
H(F(z), F(2')) < Bllz — 2]l
Close
Here’H stands for the Hausdorff distance relative to the norm associated Quit

with the Hilbert spacédf defined by
H(A, B) := max{supdg(a),supda(b)}.

acA beB

Page 12 of 33
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3. The constants and satisfy the following inequality:

&C>ﬁ\/c2_17

where( =

r/—r"

Theorem 3.2. Assume thatd; holds and that for each iteration the parameter
p satisfies the inequalities

i)
B yrl+1S

wheree = \/(ao‘zc_ﬂﬁ;(cz—l), then the sequencds™},, {z"},, and{y"}, gen-
erated by AlgorithnB.1 converge strongly to some, z*, andy* respectively,
andz* is a solution of (NVP).

— €< p<min
> B

Proof. From Algorithm3.1, we have

|27 =2 = (2" = py™) — (2" = py" )|

As the elementg§z"}, belong toC' by construction and by using the fact that
Fis strongly monotone and Hausdorff Lipschitz continuougornve have:

<yn . yn—ljxn o xn—1> > Hxn —

and
|y" =" | < H(F(@), F(a") < 3 ||a" — 2|
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respectively. Note that

n—1 n n—1 H2

—p(y" —y
— Hxn . In—lHZ . 2p <yn o yn—lyxn . In—1> + p2 Hyn . yn—1||2 )
Thus, we obtain

Hx" —x

n—1 n n—1 H2

—py" —y
< lo =0 = 2pa ot — a4 2 o — 0

Hx" —x

Iterative Schemes to Solve
Nonconvex Variational

Problems
n n— n n—1112
||$ — 2" = p(y" =y H (1 —2pa + p*B%) H$ —x 1” : Messaoud Bounkhel, Lotfi Tadj
and Abdelouahed Hamdi
So,
Hxn — 2" — p(y" — yn_l)” < \/1 — 2pa + p*3° Hlﬂ - xn_lH : Title Page
Finally, we deduce directly that: .
It = =" < V1= 200 4 282 [ — 271 “« | »
Now, by the choice op in the statement of the theorem,< m we can < >
easily check that the sequence of poifit§}, belongs toC, = {z € H :
dc(x) < r}. Consequently, the Lipschitz property of the projection operator on Go Back
C, mentioned in PropositioA.3, yields Close
Hx”“ — x”” = HProjc(z”H) — Projc(z”)H Quit
< CHZTH_I —Z”H Page 14 of 33

2122 n n—1
< CV/1—2pa+ p2f Hx —x H
J. Ineq. Pure and Appl. Math. 4(14) Art. 1, 2003
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:bounkhel@ksu.edu.sa
mailto:bounkhel@ksu.edu.sa
http://jipam.vu.edu.au/

Leté = (/1 — 2pa + p232. Our assumptiori3) in .A; and the choice of in
the statement of the theorem yiejd< 1. Therefore, the sequende™}, is a
Cauchy sequence and hence it converges strongly to somezpoitH. By
using the continuity of the operatar, the strong convergence of the sequences
{y"}, and{z"}, follows directly from the strong convergence{af"},.

Lety* andz* be the limits of the sequencésg™},, and{z"}, respectively. It
is obvious that* = 2* — py* with 2* € C, y* € F(z*). We wish to show that
x* 1s the solution of our problem (NVP).

By construction we have, for all > 0,

2" € Proje(2""") = Projo(a" — py"),
which gives, by the definition of the proximal normal cone,
(ZBn _ :L,n-i-l) _ pyn c N(C;$n+1).

Using the closedness property of the proximal normal cone in (iii) of Proposi-
tion 2.3and by letting: — oo we get

py* € =N(C;z").

Finally, asy* € F(z*) we conclude that N (C; z*) N F(z*) # 0 with 2* € C.
This completes the proof. m

Remark 3.1. If C'is given in an explicit form, then we select, for the starting
point, z° in C. However, if we do not know the explicit form @f then the
choice ofz € C may not be possible. Assume we know, instead, an explicit
form of ad-neighborhood of’, with§ < /2. So, we start with a point’ in the
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d-neighborhood and instead of Algorithdnl, we use Algorithn3.3below. The
convergence analysis of Algorithén3 can be conducted along the same lines

under the following choice of:
a <p< m'n{ a + 0 }
— — € myq — +€-——"-,.
Pty gy

Indeed, ifx” € §-neighborhood of’, thenz! := 2° — py° and so

d(z',C) < d(2°,C) + plly°] < § + LlHyOH <0+6=20<r

ly°ll +

Therefore, we can projeet onC to getz! € C, and then all subsequent points
of the sequence”™ will be in C.

Algorithm 3.3.
1. Selectz’ € C' + 0B, with 0 < 2§ < r,y" € F(2"), and p > 0.

2. For n > 0, compute:z"*! = 2" — py™ and selectax™ € Projo(z"),
yn+1 c F(l’nJrl).

Remark 3.2. An inspection of the proof of Theoréh® shows that the sequence

{y"}. is bounded. We state two sufficient conditions ensuring the boundedness

of the sequencéy”},.:
1. The set-valued mapping is bounded or'.

2. The seC is bounded and the set-valued mappidpas the linear growth
property onC', that is,

F(z) Car(1+[z)B,
for somex; and for allz € C.
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We end this section by noting that our result in Theoiican be extended
(see Theorend.5 below) to the caséd’ = F; + F, where F; is a Hausdorff
Lipschitz set-valued mapping, strongly monotone(band F; is only a Haus-
dorff Lipschitz set-valued mapping afi, but not necessarily monotone. It is
interesting to point out that, in this cagéjs not necessarily strongly monotone
on C and so the following result cannot be covered by our previous result. In
this case Algorithn8.1becomes:

Algorithm 3.4.
1. Select® € C, y° € Fi(2%), w° € Fy(2°) andp > 0.

2. For n > 0, compute: 2" = z" — p(y™ + w™) and select: 2! €
Proje(2"™), y"™ € Fy(a"™h), wth € Fy(a™th).

The following assumptions of’; and F; are needed for the proof of the
convergence of Algorithrs.4.

AssumptionsA,.
1. F1 is strongly monotone o6’ with constanty > 0.

2. F} and F;, have nonempty compact values ihand are Hausdorff Lips-
chitz continuous o’ with constant? > 0 andn > 0, respectively.

3. The constants, ¢, n, andg satisfy the following inequality:

al >n+ /(8 —n?2) (¢ —1).
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Theorem 3.5. Assume thatd, holds and that for each iteration the parameter
p satisfies the inequalities

a6 =1 € < p<mi { a6 =1 +e L r }
a2 9\ P min § ——o— 5+ ) )
(8% = n?) CB=mn* ¢y +wr] +1
wheres = \/(O‘C_");(géﬁz_z;ﬁ)(@_l) then the sequencés™},,, {a: b, and{y"},,
generated by Algorithn3.4 converge strongly to some, x*, andy* respec-

tively, andx* is a solution of (NVP) associated to the set valued mapping
F=F +F Iterative Schemes to Solve
— 41 2- Nonconvex Variational
Problems

Proof. The proof follows the same lines as the proof of TheoBegwith slight

3 ; H Messaoud Bounkhel, Lotfi Tad]
modifications. From Algorithn3.4, we have vt f

||Zn+1 _ ZnH — H[xn _ p<yn + wn)] _ [xn—l _ p(yn—l 4 wn—l] ||
= Hxn — 2" = py" ~ Z/n_l)H +p Hwn - w"_lH . Title Page
As the elementgz™},, belong toC' by construction and by using the fact that Contents
F7 is strongly monotone and Hausdorff Lipschitz continuougornve have: pp >
<yn_yn71’xn_$nfl> zaHxn_xnleQ’ < >
and Go Back
[y =" < H(R "), FE") < B|a" — 2" Close
Note that .
Quit

2" = 2" = p(y" — v Y|

_ Hxn _ xn—1H2 —2p <yn _ yn—1’xn . xn—1> +p2 Hyn . yn—1||2‘
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Thus, a simple computation yields
o™ — 2 — p(y" — y" Y| < (1 - 2pa + p252) ||z — 2"
On the other hand, sindg, is Hausdorff Lipschitz continuous afi, we have
|w™ = w" || < H(Fa(a™), Fa(a" 1) < ||2™ — 2™ 7]

Finally,
741 = 27 < VT Bpa s 72 o — 0|+ g — .
Now, by the choice op in the statement of the theorem and the Lipschitz prop- fterative Schemes to Sove
erty of the projection operator ari. mentioned in Propositiod.3, we have Problems
|2"*" = 2" || = || Proje(2""") — Proje(2")|| Messaoud Bounkhel, Lotfi Tadj

and Abdelouahed Hamdi
< (]2 =2

<¢ (\/1 —2pa+p252+m7) |z — 2| Title Page
Leté = ¢ <\/1 — 2pa + p23? + ,077). Our assumptioi3) in A, and the choice Contents
of p in the statement of the theorem yield< 1. Therefore, the proof is com- <44 44
pleted. O < >
Remark 3.3. Go Back
1. Theorem3.5 generalizes the main result in §] to the case wher&' is Close
Nnonconvex.
Quit

2. As we have observed in Rem&k, Algorithm3.4may also be adapted to
the case where the starting poirtt is selected in @-neighborhood of the Page 19 of 33
setC'with0 < 20 < r.
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In this section we are interested in extending the results obtained so far to the
case where the sét, instead of being fixed, is a set-valued mapping. Besides
being a more general case, it also has many applications, see for exdainple [
The problem that will be considered is the following:

(SNVP) Find a point* € C(z*) : F(2*) N =N (C(x*); 2*) # 0.
This problem will be called the Set-valued Nonconvex Variational Problem Itel(leglr\]/foﬁ\fgfr\n/:ﬁ;t?oiglve
(SNVP). We need the following proposition which is an adaptation of Theorem Problems
4.1in [5] (see also Theorem 2.1 iri]) to our problem. We recall the following .
. . .. . . Messaoud Bounkhel, Lotfi Tad]
concept of Lipschitz continuity for set-valued mappings: A set-valued mapping and Abdelouahed Hamdi
C'is said to be Lipschitz if there exists> 0 such that
d(y, C(2) — d(y/, C@))| < ly = y'll + sl = 2/|, Tie Page
Contents
forall z,2',y,y € H. Insuch a case we also say tlais Lipschitz continuous
with constant. It is easy to see that for set-valued mappings the above concept « dd
of Lipschitz continuity is weaker than the Hausdorff Lipschitz continuity. < >
Proposition 4.1. Letr €]0, 00| and letC' : H = H be a Lipschitz set-valued Go Back
mapping with uniformly--prox-regular values, then, the following closedness Close

property holds: “For anyz” — x*,y" — y*, andu™ — u* withy" € C(a™) _
andu™ € N(C(z");y™), one hau* € N(C(z*);y*)". Quit

. P 20 of 33
Proof. Let 2" — z*,y* — y*, andu” — wu* with y"* € C(2") andu™ € 2o Co s

N(C(z™);y™). If u* =0, then we are done. Assume thét# 0 (henceu” # 0
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for n large enough). Observe first that € C(2*) because” is Lipschitz
continuous. Ag/" — y*, for n sufficiently largey™ € y* + $B. Therefore, the
uniform r-prox-regularity of the images a@f and Propositior2.3(iv) give

u" 2
T _ "y < Z a2 d o ’
(e =) < 2l = 07 4 oo 2

for all = € H with d¢(,»)(2) < 7. This inequality still holds for sufficiently
large and for alk € y* + dB with 0 < § < 7, because for such

Iterative Schemes to Solve

N r -
deem(2) < e =yl +lly" =yl <o+ 5 < Nonconvex Variational

Consequently, the continuity of the distance function with respect to both vari-  messaoud Bounknhel, Lotfi Tadj
ables (becaus€' is Lipschitz continuous) and the above inequality give, by and Abdelouahed Hamdi
lettingn — +oo,

o 9 Title Page
<m,z—y*> < ;||z—y*||2—l—dc(x*)(z) forall z € y* + ¢B. Contents
Hence, 4« 4 4
U* * 2 * |2 * * 4 >
2=y ) <[z —y*||7 forallz e (y" +0B)NC(x7).
[Jur|] r Go Back
This ensures, b}/ the equivalent definition (given on page 2) of the proximal nor- Close
mal cone, that: € N(C(z*);y*) and sou* € N(C(z*);y*). This completes _
the proof of the proposition. O Quit

. . . Page 21 of 33
In all that follows,C' will be a set-valued mapping with nonempty closéd J

prox-regular values for somé > 0. We will also letr € (0,7/) and¢ = -~
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The next algorithm, Algorithm.2, solves problemENVP).
Algorithm 4.2.

1. Selectz’ € C(2°), y° € F(2°), and p > 0.

2. Forn > 0, computez"*! = 2" —py" and selectz" " € Projc(n)(z"*),
y"tt e F(znh).

Iterative Schemes to Solve

We make the following assumptions on the set-valued mapgingsdC": Nonconvex Variational

Problems
AssumptionsAs;.
p 'AS Messaoud Bounkhel, Lotfi Tad]

. . and Abdelouahed Hamdi
1. F has nonempty compact values and is strongly monotone with constant

a > 0.
: . , : L . : , Title Page
2. F'is Hausdorff Lipschitz continuous ard is Lipschitz continuous with
constants? > 0 and0 < » < 1 respectively. G
3. For some constarit < £ < 1, the operato’rojc . (-) satisfies the condi- S S
tion < >
HPTOjc(x)(Z) — Projc(y)(z)H <kl|z—vyl|, forall z,y,z€ H. Go Back
Close
4. Let A be a sufficiently small positive constant such that A < ’"ﬁ‘g:). Quit

5. The constants, 3, ¢ andk satisfy:

al > /2 — (1 — k)2
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Theorem 4.3. Assume thatd; holds and that for each iteration the parameter
p satisfies the inequalities

a < p<mi { a N A }
— —e<p<min{—+e——>2,
3 3 ynll + 1

wheree — YOO'=FIC-U0) o the sequencds™™},, {¢"}., and {4}
generated by Algorithrd.2 converge strongly to somg, z*, andy* respec-
tively, andz* is a solution of GNVPH.

We prove the following lemma needed in the proof of Theorefn It is of
interest in its own right.

Lemma 4.4. Under the hypothesis of Theorefn3, the sequences of points
{z"},, and{z"}, generated by Algorithm.2 are such that:

Z"andz"t € [C(2™)), == {y € H : dcm)(y) <r}, foralln>1.
Proof. Observe that by the definition of the algorithm,
d(z',C(2") = d(=" — py’,C(a")) < d(2", C(a”)) + plly°l| < .
Forn = 1, we have by (2),(3), and (4) od;,

(22, C (") = d(z" — py', C(z"))
<d(z',C(a")) —d(x',C(2°)) + plly"|
< hllat — 2% + A,
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and by the Lipschitz continuity af’, once again, and the first inequality of this

proof we get
d(z',C(a")) < d(z",C(2") + klla' —2°
= d(z° — py°,C(2%)) + &l|z" — 27|
< A+ w2zt — 2.
On the other hand, we have
ot — 2% < [lat — 2 + ||zt — 2
=d(z',C(") + ||z' = 2°
=d(a® — py°, C(2°)) + plly°|| < 2A.

Thus, we see that boti(z?, C(x!')) andd(z!,C(z!)) are less tharzk)\ + )
which is itself strictly less than. Similarly, we have for general,

(2", C(a™)) < d(z", C(a")) + plly"|| < Klla" — 2" + A
and
d(z",C(a")) < d(2",C(a" ) + klla" — 2"
< gllz™ = 2" 4+ A+ k2" — 2™
On the other hand,
o = 2" < fl2" = 2+ )2 — 2
<d(z",C(z" )+ A
<d(z" 1, O™ ) —d(a" 7, O™ %)) + 2\
< Klla™ Tt — 27| + 2.
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Hence, using thatz!' — 2°|| < 2, we get

n n— 2)‘(1 _Hn>
e
Therefore,
2KA(1 — K"
(=", O(a™) < %ﬁ“) +A
_ n+1
< )\14—& 2K
- 11—k
A1+ 3k)
< ——= <
1—k
and
d(Zn,C([En)) S Hxn—l o n—QH +)\+ K Hxn o xn—l”
< (K* + K) Hx x”_QH +2X 6+ A
2X(1 — k"1
R e e BP S W
1—r
< A1+ 3k) _
1—k
This completes the proof. O

Proof of Theoremt.3. Following the proof of Theoren3.2 and using the fact
that F' is strongly monotone and Hausdorff Lipschitz continuous, we get, from
Algorithm 4.2,

|27 = 2" < V1= 2pa + p2 32| — 2.
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On the other hand, by Lemm&4, we have:" andz"** € [C(z")], and so
Proposition2.3yields thatProjc ) (2") and Projce»)(z"') are not empty,
and the operataProjc(.»(-) is ¢-Lipschitz on[C(z")],. Then, by the assump-
tion (3) in Asj,

n+l n+1>

||z 2" = || Projcn(z — Projen-1)y(2")||
< | Projeeny(z"") — Projoeny(z")|
+ | Projc @y (2") — Projen-1(2")||

< |l = 2| 4 e — 2|
< [C\/l — 2pa + p?3% + k] ™ — 2" 1.

Let & = (/1 — 2pa + p23% + k. Our assumptions (4) and (5) i3 and the
choice ofp in the statement of the theorem yigfd< 1. As in the proof of
TheorenB.2, we can prove that the sequenges},,, {y"},, and{z"}, strongly
converge to some*, y*, z* € H, respectively. It is obvious to see that =
x* — py* with z* € C(2*), y* € F(z*). We wish to show that* is the solution
of our problem ENVP).

By construction we have, for all > 0,

2" € Projoen (2"t = Projogm (2" — py™),
which gives, by the definition of the proximal normal cone,
(xn _ mﬂr‘rl) _ pyn c N(C(l_n);xn+1>.

Using the closedness property of the proximal normal cone in Proposition
and by lettingn — oo we get

py" € —N(C(z");27).
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Finally, asy* € F(z*) we conclude that- N(C(x*);z*) N F(a*) # 0 with
x* € C(z*). This completes the proof. O

We extend Theorem.3to the casel’ = F| + F5, where F; is a Hausdorff
Lipschitz set-valued mapping strongly monotone dnids only a Hausdorff
Lipschitz set-valued mapping. In this case Algorithré becomes:

Algorithm 4.5.
1. Selectz’ € C(z°), 3° € Fi(2°), w° € Fy(2) and p > 0.

2. For n > 0, compute: 2" = 2™ — p(y™ + w") and select: z"™! €
Projony(z"t), y"tt € Fi(a™t), w"t € Fy(a"t).

The following assumptions oA} and F, are needed for the proof of the
convergence of Algorithm.5.

Assumptions.A,.
1. The assumptions on the set-valued mapgingre as inAs.
2. Fy is strongly monotone with constant> 0.

3. F; and F, have nonempty compact values and are Hausdorff Lipschitz
continuous with constarit > 0 andn > 0, respectively.

4. The constants, (3, n, ¢, andk satisfy the following inequality:
a¢ > (1= k) + /(82 = n?)[¢2 = (1 - k)?].
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Theorem 4.6. Assume thatd, holds and that for each iteration the parameter
p satisfies the inequalities

af — (1= k)n
C(#?—n?)

—€<p<min{

al—(1—Fk)n 1—k r }
@=w) T yrw 1)

[a¢—(1—k)n]>— (8% —n?)[¢*>— (1—k)?] n n
wheres — ¥ = , then the sequencds™},,, {z"}.,

and {y"}, generated by 7Algorithn4.5 converge strongly to somg, z*, and
y* respectively, and:* is a solution of ENVH associated to the set-valued
mappingF = F; + Fs.

Proof. As we adapted the proof of Theoredr? to prove Theoren3.5, we can
adapt, in a similar way, the proof of Theoreh8to prove Theoremd.6. m

Remark 4.1.

1. Theorem4.6 generalizes Theore®5in [14] to the case wher€’ is non-
convex.

2. As we have observed in Remarld, Algorithms4.2 and4.5 may be also
adapted to the case where the starting paihis selected in @-neighborhood
of the set”(z°) with 0 < 26 < .

Example 4.1.In many applications (see for exampld) the set-valued map-
ping C' has the formC'(z) = S + f(z), whereS is a fixed closed subset i
and f is a point-to-point mapping froni/ to H. In this case, assumption (3)
onC'in A3 and the Lipschitz continuity @f are satisfied provided the mapping

f is Lipschitz continuous. Indeed, it is not hard (using the relation below) to
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show that, iff is y-Lipschitz then the set-valued mappifigs ~-Lipschitz and
satisfies the assumption (3).4y with £ = 2~. Using the well known relation

T € Projsyy(u) <= T —v € Projs(u —v),

Algorithms4.2 and 4.5 can be rewritten in simpler forms. For example, Algo-
rithm 4.5becomes

Algorithm 4.7.
1. Selectz’ € (I — f)71(S), y° € Fi(2°), w° € F»(2°) and p > 0.

2. For n > 0, compute: 2" = 2" — f(2") — p(y" + w") and select:
xn+1 c PTOj5(2n+1) + f(l’n), yn+1 c Fl(anrl)’ wnJrl c FQ(Z‘TL+1>.

Here is the Identity operator fron#/ to H.
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The algorithms proposed here can be extended to solve the following general
variational problem:

(y—SNVP) Find a point:* € H with
g(z*) € C(z7) : F(z*) N =N (C(z"); g(x7)) # 0,

whereg : H — H is a point-to-point mapping. It is obvious that{SNVP) O S .
coincides with GNVP) wheng = I. An important reason for considering this Nonconvex Variational
general variational problemy (- SNVP) is to extend all (or almost all) the types Problems

of variational inequalities existing in the literature in the convex case to the  Messaoud Bounkhel, Lotfi Tadj
nonconvex case by the same way presented in this paper. For instance, when the "¢ Abdelouahed Hamdi
set-valued mapping' is assumed to have convex values the general variational
problem —SNVP) coincides with the so-callegeneralized multivalued quasi- Title Page
variational inequalityintroduced by Noor¢] and studied by himself and many
other authors.
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