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Abstract

In this paper, we present several algorithms of the projection type to solve a
class of nonconvex variational problems.
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1. Introduction
The theory of variational inequalities is a branch of the mathematical sciences
dealing with general equilibrium problems. It has a wide range of applications
in economics, operations research, industry, physical, and engineering sciences.
Many research papers have been written lately, both on the theory and applica-
tions of this field. Important connections with main areas of pure and applied
sciences have been made, see for example [1, 12, 13] and the references cited
therein.

One of the typical formulations of the variational inequality problem found
in the literature is the following

(VI) Find a pointx∗ ∈ C andy∗ ∈ F (x∗) satisfying 〈y∗, x− x∗〉 ≥ 0,

for all x ∈ C,

whereC is a subset of a Hilbert spaceH andF : H ⇒ H is a set-valued
mapping. A tremendous amount of research has been done in the case where
C is convex, both on the existence of solutions of (VI ) and the construction of
solutions, see for example [7, 13, 15, 19]. Only the existence of solutions of (VI )
has been considered in the case whereC is nonconvex, see for instance [5]. To
the best of our knowledge, nothing has been done concerning the construction
of solutions in this case.

In this paper we first generalize problem (VI) to take into account the non-
convexity of the setC and then construct a suitable algorithm to solve the gen-
eralized (VI). Note that (VI ) is usually a reformulation of some minimization
problem of some functional over convex sets. For this reason, it does not make
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sense to generalize (VI) by just replacing the convex sets by nonconvex ones.
Also, a straightforward generalization to the nonconvex case of the techniques
used when setC is convex cannot be done. This is because these techniques
are strongly based on properties of the projection operator over convex sets and
these properties do not hold in general whenC is nonconvex. Based on the
above two arguments, and to take advantage of the techniques used in the con-
vex case, we propose to reformulate problem (VI) whenC is convex as the
following equivalent problem

(VP) Find a pointx∗ ∈ C : F (x∗) ∩ −N(C; x∗) 6= ∅,

whereN(C; x) denotes the normal cone ofC atx in the sense of convex analy-
sis. Equivalence of problems (VI) and (VP) will be proved in Proposition2.4be-
low. The corresponding problem whenC is not convex will be denoted (NVP).
This reformulation allows us to consider the resolution of problem (NVP) as
the desired suitable generalization of the problem (VI). We point out that the
resolution of (VI ) with C nonconvex is not, at least from our point of view, a
good way for such generalization. Our idea of the generalization is inspired
from [5] (see also [18]) where the authors studied the existence of generalized
equilibrium.

In the present paper we make use of some recent techniques and ideas from
nonsmooth analysis [5, 6] to overcome the difficulties that arise from the non-
convexity of the setC. Specifically, we will be considering the class of uni-
formly prox-regular sets (see Definition2.1) which is sufficiently large to in-
clude the class of convex sets,p-convex sets (see [8]), C1,1 submanifolds (pos-
sibly with boundary) ofH, the images under aC1,1 diffeomorphism of convex
sets, and many other nonconvex sets (for more details see [8, 10]).
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The paper is organized as follows: In Section2 we recall some definitions
and notation, and prove some useful results that will be needed in the paper. In
Section3 we propose an algorithm to solve problem (NVP) and prove its well-
definedness and its convergence under the uniform prox-regularity assumption
on C and the strong monotonicity assumption onF . The results proved in
Section3 are extended in Section4 in two ways: In the first one, we assume
thatF = F1 + F2, whereF1 is a strongly monotone set-valued mapping andF2

is a Hausdorff Lipschitz set-valued mapping not necessarily monotone. In this
caseF is not necessarily strongly monotone. In the second one, the setC is
assumed to be a set-valued mapping ofx. In this case, problem (NVP) becomes

(SNVP) Find a pointx∗ ∈ C(x∗) : F (x∗) ∩ −N(C(x∗); x∗) 6= ∅.
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2. Preliminaries
Throughout the paper,H will be a Hilbert space. LetC be a nonempty closed
subset ofH. We denote bydC (·) or d(·, C) the usual distance function to the
subsetC, i.e.,dC(x) := infu∈C ‖x− u‖. We recall (see [11]) that the proximal
normal coneof C atx is given by

NP (C; x) := {ξ ∈ H : ∃α > 0 s.t.x ∈ ProjC(x + αξ)},

where
ProjC(x) := {x′ ∈ S : dC(x) = ‖x− x′‖}.

Equivalently (see for example [11]), NP (C; x) can be defined as the set of all
ξ ∈ H for which there existσ, δ > 0 such that

〈ξ, x′ − x〉 ≤ σ‖x′ − x‖2 for all x′ ∈ (x + δIB) ∩ C.

Note that the above inequality is satisfied locally. In Proposition 1.1.5 of [11],
the authors give a characterization ofNP (C; x) where the inequality is satisfied
globally. For completeness, we reproduce that proposition as the following:-

Lemma 2.1. Let C be a nonempty closed subset inH, thenξ ∈ NP (C; x) if
and only if there existsσ > 0 such that

〈ξ, x′ − x〉 ≤ σ‖x′ − x‖2 for all x′ ∈ C.

We recall also (see [9]) that theClarke normal coneis given by

NC(C; x) = co [NP (C; x)],
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whereco[S] means the closure of the convex hull ofS. It is clear that one
always hasNP (C; x) ⊂ NC(C; x). The converse is not true in general. Note
thatNC(C; x) is always a closed and convex cone and thatNP (C; x) is always
a convex cone but may be nonclosed (see [9, 11]). Furthermore, ifC is convex
all the existing normal cones coincide with the normal cone in the sense of
convex analysisNCon(C; x) given by

NCon(C; x) := {y ∈ H : 〈y, x′ − x〉 ≤ 0, for all x′ ∈ C}.

We will present an algorithm to solve problem (NVP). The algorithm is an
adaptation of the standard projection algorithm that we reproduce below for
completeness (for more details concerning this type of projection and conver-
gence analysis in the convex case we refer the reader to [13] and the references
therein).

Algorithm 2.2.

1. Selectx0 ∈ H, y0 ∈ F (x0), and ρ > 0.

2. For n ≥ 0, compute: zn+1 = xn − ρyn and select:xn+1 ∈ ProjC(zn+1),
yn+1 ∈ F (xn+1).

It is well known that the projection algorithm above has been introduced in
the convex case ([13]) and its convergence proved. Observe that Algorithm2.2
is well defined provided the projection onC is not empty. The convexity as-
sumption onC, made by researchers considering Algorithm2.2, is not required
for its well definedness because it may be well defined, even in the nonconvex
case (for example whenC is a closed subset of a finite dimensional space, or
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whenC is a compact subset of a Hilbert space, etc.). Rather, convexity is re-
quired for its convergence analysis. Our adaptation of the projection algorithm
is based on the following two observations:

1. The sequence of points{zn}n that it generates must be sufficiently close
to C.

2. The projection operatorProjC(·) must be Lipschitz on an open set con-
taining the sequence of points{zn}n.

Recently, a new class of nonconvex sets, calleduniformly prox-regular sets
(see [17, 6]) (called proximally smooth sets in the original paper [10]), has been
introduced and studied in [10]. It has been successfully used in many noncon-
vex applications such as optimization, economic models, dynamical systems,
differential inclusions, etc. For such applications see [2, 3, 4, 5, 6]. This class
seems particularly well suited to overcome the difficulties which arise due to the
nonconvexity assumption onC. We take the following characterization proved
in [10] as a definition of this class. We point out that the original definition was
given in terms of the differentiability of the distance function (see [10]).

Definition 2.1. For a givenr ∈]0, +∞], a subsetC is uniformly prox-regular
with respect tor (we will say uniformlyr-prox-regular)(see [10]) if and only if
every nonzero proximal normal toC can be realized by anr-ball. This means
that for all x̄ ∈ C and all0 6= ξ ∈ NP (C; x̄) one has〈

ξ

‖ξ‖
, x− x̄

〉
≤ 1

2r
‖x− x̄‖2,

for all x ∈ C.
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We make the convention1
r

= 0 for r = +∞. Recall that forr = +∞
the uniformr-prox-regularity ofC is equivalent to the convexity ofC, which
makes this class of great importance.

The following proposition summarizes some important consequences of the
uniform prox-regularity needed in the sequel. For the proof of these results we
refer the reader to [10, 17].

Proposition 2.3. Let C be a nonempty closed subset inH and letr ∈]0, +∞].
If the subsetC is uniformlyr-prox-regular then the following hold:

i) For all x ∈ H with dC(x) < r, one hasProjC(x) 6= ∅;

ii) Let r′ ∈ (0, r). The operatorProjC is Lipschitz with rank r
r−r′

onCr′;

iii) The proximal normal cone is closed as a set-valued mapping.

iv) For all x ∈ C and all0 6= ξ ∈ NP (C; x) one has〈
ξ

‖ξ‖
, x′ − x

〉
≤ 2

r
‖x′ − x‖2 + dC(x′),

for all x′ ∈ H with dC(x′) < r.

As a direct consequence of Part (iii) of Proposition2.3, we haveNC(C; x) =
NP (C; x). So, we will denoteN(C; x) := NC(C; x) = NP (C; x) for such a
class of sets.

In order to make clear the concept ofr-prox-regular sets, we state the fol-
lowing concrete example: The union of two disjoint intervals[a, b] and[c, d] is

http://jipam.vu.edu.au/
mailto:bounkhel@ksu.edu.sa
mailto:bounkhel@ksu.edu.sa
http://jipam.vu.edu.au/


Iterative Schemes to Solve
Nonconvex Variational

Problems

Messaoud Bounkhel, Lotfi Tadj
and Abdelouahed Hamdi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 33

J. Ineq. Pure and Appl. Math. 4(14) Art. 1, 2003

http://jipam.vu.edu.au

r-prox-regular withr = c−b
2

. The finite union of disjoint intervals is alsor-
prox-regular and ther depends on the distances between the intervals (for more
concrete examples and for a general study of the class ofr-prox-regular sets we
refer to a forthcoming paper by the first author).

The following proposition establishes the relationship between (VI) and (VP)
in the convex case.

Proposition 2.4. If C is convex, then (VI) ⇐⇒ (VP).

Proof. It follows directly from the above definition ofNCon(C; x).

The next proposition shows that the nonconvex variational problem (NVP)
can be rewritten as the following nonconvex variational inequality:

(NVI) Find x∗ ∈ C y∗ ∈ F (x∗) s.t. 〈y∗, x− x∗〉+
‖y∗‖
2r

‖x− x∗‖2 ≥ 0,

x ∈ C.

Proposition 2.5. If C is r-prox-regular, then (NVI) ⇐⇒ (NVP).

Proof. (=⇒) Let x∗ ∈ C be a solution of (NVI), i.e., there existsy∗ ∈ F (x∗)
such that

〈y∗, x− x∗〉+
‖y∗‖
2r

‖x− x∗‖2 ≥ 0, for all x ∈ C.

If y∗ = 0, then we are done because the vector zero always belongs to any
normal cone. Ify∗ 6= 0, then, for allx ∈ C, one has〈

−y∗

‖y∗‖
, x− x∗

〉
≤ 1

2r
‖x− x∗‖2.
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Therefore, by Lemma2.1 one gets−y∗

‖y∗‖ ∈ N(C; x∗) and so−y∗ ∈ N(C; x∗),
which completes the proof of the necessity part.

(⇐=) It follows directly from the definition of prox-regular sets in Definition
2.1.

In what follows we will letC be a uniformlyr′-prox-regular subset ofH
with r′ > 0 and we will let r ∈ (0, r′). Now, we are ready to present our
adaptation of Algorithm2.2to the uniform prox-regular case.
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3. Main Results
3.1. F Strongly Monotone

Our first algorithm3.1below is proposed to solve problem (NVP).

Algorithm 3.1.

1. Selectx0 ∈ C, y0 ∈ F (x0), and ρ > 0.

2. For n ≥ 0, compute:zn+1 = xn − ρyn and select:xn+1 ∈ ProjC(zn+1),
yn+1 ∈ F (xn+1).

In our analysis we need the following assumptions onF :

AssumptionsA1.

1. F : H ⇒ H is strongly monotone onC with constantα > 0, i.e., there
existsα > 0 such that∀x, x′ ∈ C

〈y − y′, x− x′〉 ≥ α‖x− x′‖2, ∀y ∈ F (x), y′ ∈ F (x′).

2. F has nonempty compact values inH and is Hausdorff Lipschitz continu-
ous onC with constantβ > 0, i.e., there existsβ > 0 such that∀x, x′ ∈ C

H(F (x), F (x′)) ≤ β‖x− x′‖.

HereH stands for the Hausdorff distance relative to the norm associated
with the Hilbert spaceH defined by

H(A, B) := max{sup
a∈A

dB(a), sup
b∈B

dA(b)}.
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3. The constantsα andβ satisfy the following inequality:

αζ > β
√

ζ2 − 1,

whereζ = r′

r′−r
.

Theorem 3.2. Assume thatA1 holds and that for each iteration the parameter
ρ satisfies the inequalities

α

β2
− ε < ρ < min

{
α

β2
+ ε,

r

‖yn‖+ 1

}
,

whereε =

√
(αζ)2−β2(ζ2−1)

ζβ2 , then the sequences{zn}n, {xn}n, and{yn}n gen-
erated by Algorithm3.1converge strongly to somez∗, x∗, andy∗ respectively,
andx∗ is a solution of (NVP).

Proof. From Algorithm3.1, we have

‖zn+1 − zn‖ =
∥∥(xn − ρyn)−

(
xn−1 − ρyn−1

)∥∥
=

∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥ .

As the elements{xn}n belong toC by construction and by using the fact that
F is strongly monotone and Hausdorff Lipschitz continuous onC, we have:〈

yn − yn−1, xn − xn−1
〉
≥ α

∥∥xn − xn−1
∥∥2

,

and ∥∥yn − yn−1
∥∥ ≤ H(F (xn), F (xn−1)) ≤ β

∥∥xn − xn−1
∥∥
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respectively. Note that∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2

=
∥∥xn − xn−1

∥∥2 − 2ρ
〈
yn − yn−1, xn − xn−1

〉
+ ρ2

∥∥yn − yn−1
∥∥2

.

Thus, we obtain∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2

≤
∥∥xn − xn−1

∥∥2 − 2ρα
∥∥xn − xn−1

∥∥2
+ ρ2β2

∥∥xn − xn−1
∥∥2

,

i.e., ∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2 ≤ (1− 2ρα + ρ2β2)

∥∥xn − xn−1
∥∥2

.

So, ∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥ ≤ √

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ .

Finally, we deduce directly that:∥∥zn+1 − zn
∥∥ ≤ √

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ .

Now, by the choice ofρ in the statement of the theorem,ρ < r
‖yn‖+1

, we can
easily check that the sequence of points{zn}n belongs toCr := {x ∈ H :
dC(x) < r}. Consequently, the Lipschitz property of the projection operator on
Cr mentioned in Proposition2.3, yields∥∥xn+1 − xn

∥∥ =
∥∥ProjC(zn+1)− ProjC(zn)

∥∥
≤ ζ

∥∥zn+1 − zn
∥∥

≤ ζ
√

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ .
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Let ξ = ζ
√

1− 2ρα + ρ2β2. Our assumption(3) in A1 and the choice ofρ in
the statement of the theorem yieldξ < 1. Therefore, the sequence{xn}n is a
Cauchy sequence and hence it converges strongly to some pointx∗ ∈ H. By
using the continuity of the operatorF , the strong convergence of the sequences
{yn}n and{zn}n follows directly from the strong convergence of{xn}n.

Let y∗ andz∗ be the limits of the sequences{yn}n and{zn}n respectively. It
is obvious thatz∗ = x∗ − ρy∗ with x∗ ∈ C, y∗ ∈ F (x∗). We wish to show that
x∗ is the solution of our problem (NVP).

By construction we have, for alln ≥ 0,

xn+1 ∈ ProjC(zn+1) = ProjC(xn − ρyn),

which gives, by the definition of the proximal normal cone,

(xn − xn+1)− ρyn ∈ N(C; xn+1).

Using the closedness property of the proximal normal cone in (iii) of Proposi-
tion 2.3and by lettingn →∞ we get

ρy∗ ∈ −N(C; x∗).

Finally, asy∗ ∈ F (x∗) we conclude that−N(C; x∗)∩ F (x∗) 6= ∅ with x∗ ∈ C.
This completes the proof.

Remark 3.1. If C is given in an explicit form, then we select, for the starting
point, x0 in C. However, if we do not know the explicit form ofC, then the
choice ofx0 ∈ C may not be possible. Assume we know, instead, an explicit
form of aδ-neighborhood ofC, with δ < r/2. So, we start with a pointx0 in the
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δ-neighborhood and instead of Algorithm3.1, we use Algorithm3.3below. The
convergence analysis of Algorithm3.3 can be conducted along the same lines
under the following choice ofρ:

α

β2
− ε < ρ < min

{
α

β2
+ ε,

δ

‖yn‖+ 1

}
.

Indeed, ifx0 ∈ δ-neighborhood ofC, thenz1 := x0 − ρy0 and so

d(z1, C) ≤ d(x0, C) + ρ‖y0‖ < δ +
δ

‖y0‖+ 1
‖y0‖ < δ + δ = 2δ < r.

Therefore, we can projectz1 onC to getx1 ∈ C, and then all subsequent points
of the sequencexn will be in C.

Algorithm 3.3.

1. Selectx0 ∈ C + δB, with 0 < 2δ < r, y0 ∈ F (x0), and ρ > 0.

2. For n ≥ 0, compute:zn+1 = xn − ρyn and select:xn+1 ∈ ProjC(zn+1),
yn+1 ∈ F (xn+1).

Remark 3.2. An inspection of the proof of Theorem3.2shows that the sequence
{yn}n is bounded. We state two sufficient conditions ensuring the boundedness
of the sequence{yn}n:

1. The set-valued mappingF is bounded onC.

2. The setC is bounded and the set-valued mappingF has the linear growth
property onC, that is,

F (x) ⊂ α1(1 + ‖x‖)B,

for someα1 and for allx ∈ C.
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3.2. F Not Necessarily Strongly Monotone

We end this section by noting that our result in Theorem3.2 can be extended
(see Theorem3.5 below) to the caseF = F1 + F2 whereF1 is a Hausdorff
Lipschitz set-valued mapping, strongly monotone onC andF2 is only a Haus-
dorff Lipschitz set-valued mapping onC, but not necessarily monotone. It is
interesting to point out that, in this case,F is not necessarily strongly monotone
on C and so the following result cannot be covered by our previous result. In
this case Algorithm3.1becomes:

Algorithm 3.4.

1. Selectx0 ∈ C, y0 ∈ F1(x
0), w0 ∈ F2(x

0) andρ > 0.

2. For n ≥ 0, compute: zn+1 = xn − ρ(yn + wn) and select: xn+1 ∈
ProjC(zn+1), yn+1 ∈ F1(x

n+1), wn+1 ∈ F2(x
n+1).

The following assumptions onF1 andF2 are needed for the proof of the
convergence of Algorithm3.4.

AssumptionsA2.

1. F1 is strongly monotone onC with constantα > 0.

2. F1 andF2 have nonempty compact values inH and are Hausdorff Lips-
chitz continuous onC with constantβ > 0 andη > 0, respectively.

3. The constantsα, ζ, η, andβ satisfy the following inequality:

αζ > η +
√

(β2 − η2)(ζ2 − 1).
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Theorem 3.5. Assume thatA2 holds and that for each iteration the parameter
ρ satisfies the inequalities

αζ − η

ζ(β2 − η2)
− ε < ρ < min

{
αζ − η

ζ(β2 − η2)
+ ε,

1

ηζ
,

r

‖yn + wn‖+ 1

}
,

whereε =

√
(αζ−η)2−(β2−η2)(ζ2−1)

ζ(β2−η2)
, then the sequences{zn}n, {xn}n, and{yn}n

generated by Algorithm3.4 converge strongly to somez∗, x∗, andy∗ respec-
tively, andx∗ is a solution of (NVP) associated to the set-valued mapping
F = F1 + F2.

Proof. The proof follows the same lines as the proof of Theorem3.2with slight
modifications. From Algorithm3.4, we have∥∥zn+1 − zn

∥∥ =
∥∥[xn − ρ(yn + wn)]−

[
xn−1 − ρ(yn−1 + wn−1

]∥∥
≤

∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥ + ρ

∥∥wn − wn−1
∥∥ .

As the elements{xn}n belong toC by construction and by using the fact that
F1 is strongly monotone and Hausdorff Lipschitz continuous onC, we have:〈

yn − yn−1, xn − xn−1
〉
≥ α

∥∥xn − xn−1
∥∥2

,

and ∥∥yn − yn−1
∥∥ ≤ H(F1(x

n), F1(x
n−1)) ≤ β

∥∥xn − xn−1
∥∥ .

Note that∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2

=
∥∥xn − xn−1

∥∥2 − 2ρ
〈
yn − yn−1, xn − xn−1

〉
+ ρ2

∥∥yn − yn−1
∥∥2

.
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Thus, a simple computation yields∥∥xn − xn−1 − ρ(yn − yn−1)
∥∥2 ≤ (1− 2ρα + ρ2β2)

∥∥xn − xn−1
∥∥2

.

On the other hand, sinceF2 is Hausdorff Lipschitz continuous onC, we have∥∥wn − wn−1
∥∥ ≤ H(F2(x

n), F2(x
n−1)) ≤ η

∥∥xn − xn−1
∥∥ .

Finally,∥∥zn+1 − zn
∥∥ ≤ √

1− 2ρα + ρ2β2
∥∥xn − xn−1

∥∥ + ρη
∥∥xn − xn−1

∥∥ .

Now, by the choice ofρ in the statement of the theorem and the Lipschitz prop-
erty of the projection operator onCr mentioned in Proposition2.3, we have∥∥xn+1 − xn

∥∥ =
∥∥ProjC(zn+1)− ProjC(zn)

∥∥
≤ ζ

∥∥zn+1 − zn
∥∥

≤ ζ
(√

1− 2ρα + ρ2β2 + ρη
) ∥∥xn − xn−1

∥∥ .

Let ξ = ζ
(√

1− 2ρα + ρ2β2 + ρη
)

. Our assumption(3) inA2 and the choice

of ρ in the statement of the theorem yieldξ < 1. Therefore, the proof is com-
pleted.

Remark 3.3.

1. Theorem3.5 generalizes the main result in [15] to the case whereC is
nonconvex.

2. As we have observed in Remark3.1, Algorithm3.4may also be adapted to
the case where the starting pointx0 is selected in aδ-neighborhood of the
setC with 0 < 2δ < r.
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4. Extension
In this section we are interested in extending the results obtained so far to the
case where the setC, instead of being fixed, is a set-valued mapping. Besides
being a more general case, it also has many applications, see for example [1].
The problem that will be considered is the following:

(SNVP) Find a pointx∗ ∈ C(x∗) : F (x∗) ∩ −N(C(x∗); x∗) 6= ∅.

This problem will be called the Set-valued Nonconvex Variational Problem
(SNVP). We need the following proposition which is an adaptation of Theorem
4.1 in [6] (see also Theorem 2.1 in [4]) to our problem. We recall the following
concept of Lipschitz continuity for set-valued mappings: A set-valued mapping
C is said to be Lipschitz if there existsκ > 0 such that

|d(y, C(x))− d(y′, C(x′))| ≤ ‖y − y′‖+ κ‖x− x′‖,

for all x, x′, y, y′ ∈ H. In such a case we also say thatC is Lipschitz continuous
with constantκ. It is easy to see that for set-valued mappings the above concept
of Lipschitz continuity is weaker than the Hausdorff Lipschitz continuity.

Proposition 4.1. Let r ∈]0, +∞] and letC : H ⇒ H be a Lipschitz set-valued
mapping with uniformlyr-prox-regular values, then, the following closedness
property holds: “For anyxn → x∗, yn → y∗, andun → u∗ with yn ∈ C(xn)
andun ∈ N(C(xn); yn), one hasu∗ ∈ N(C(x∗); y∗)”.

Proof. Let xn → x∗, yn → y∗, andun → u∗ with yn ∈ C(xn) andun ∈
N(C(xn); yn). If u∗ = 0, then we are done. Assume thatu∗ 6= 0 (henceun 6= 0
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for n large enough). Observe first thaty∗ ∈ C(x∗) becauseC is Lipschitz
continuous. Asyn → y∗, for n sufficiently large,yn ∈ y∗ + r

2
B. Therefore, the

uniform r-prox-regularity of the images ofC and Proposition2.3(iv) give〈
un

‖un‖
, z − yn

〉
≤ 2

r
‖z − yn‖2 + dC(xn)(z),

for all z ∈ H with dC(xn)(z) < r. This inequality still holds forn sufficiently
large and for allz ∈ y∗ + δB with 0 < δ < r

2
, because for suchz,

dC(xn)(z) ≤ ‖z − y∗‖+ ‖y∗ − yn‖ ≤ δ +
r

2
< r.

Consequently, the continuity of the distance function with respect to both vari-
ables (becauseC is Lipschitz continuous) and the above inequality give, by
lettingn → +∞,〈

u∗

‖u∗‖
, z − y∗

〉
≤ 2

r
‖z − y∗‖2 + dC(x∗)(z) for all z ∈ y∗ + δB.

Hence,〈
u∗

‖u∗‖
, z − y∗

〉
≤ 2

r
‖z − y∗‖2 for all z ∈ (y∗ + δB) ∩ C(x∗).

This ensures, by the equivalent definition (given on page 2) of the proximal nor-
mal cone, thatu∗

‖u∗‖ ∈ N(C(x∗); y∗) and sou∗ ∈ N(C(x∗); y∗). This completes
the proof of the proposition.

In all that follows,C will be a set-valued mapping with nonempty closedr′-
prox-regular values for somer′ > 0. We will also letr ∈ (0, r′) andζ = r′

r′−r
.
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4.1. F Strongly Monotone

The next algorithm, Algorithm4.2, solves problem (SNVP).

Algorithm 4.2.

1. Selectx0 ∈ C(x0), y0 ∈ F (x0), and ρ > 0.

2. For n ≥ 0, compute:zn+1 = xn−ρyn and select:xn+1 ∈ ProjC(xn)(z
n+1),

yn+1 ∈ F (xn+1).

We make the following assumptions on the set-valued mappingsF andC:

AssumptionsA3.

1. F has nonempty compact values and is strongly monotone with constant
α > 0.

2. F is Hausdorff Lipschitz continuous andC is Lipschitz continuous with
constantsβ > 0 and0 < κ < 1 respectively.

3. For some constant0 < k < 1, the operatorProjC(·)(·) satisfies the condi-
tion∥∥ProjC(x)(z)− ProjC(y)(z)

∥∥ ≤ k ‖x− y‖ , for all x, y, z ∈ H.

4. Let λ be a sufficiently small positive constant such that0 < λ < r(1−κ)
1+3κ

.

5. The constantsα, β, ζ andk satisfy:

αζ > β
√

ζ2 − (1− k)2.
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Theorem 4.3. Assume thatA3 holds and that for each iteration the parameter
ρ satisfies the inequalities

α

β2
− ε < ρ < min

{
α

β2
+ ε,

λ

‖yn‖+ 1

}
,

whereε =

√
(αζ)2−β2[ζ2−(1−k)2])

ζβ2 , then the sequences{zn}n, {xn}n, and {yn}n

generated by Algorithm4.2 converge strongly to somez∗, x∗, andy∗ respec-
tively, andx∗ is a solution of (SNVP).

We prove the following lemma needed in the proof of Theorem4.3. It is of
interest in its own right.

Lemma 4.4. Under the hypothesis of Theorem4.3, the sequences of points
{xn}n and{zn}n generated by Algorithm4.2are such that:

zn andzn+1 ∈ [C(xn)]r := {y ∈ H : dC(xn)(y) < r}, for all n ≥ 1.

Proof. Observe that by the definition of the algorithm,

d(z1, C(x0)) = d(x0 − ρy0, C(x0)) ≤ d(x0, C(x0)) + ρ‖y0‖ ≤ λ.

Forn = 1, we have by (2),(3), and (4) ofA3,

d(z2, C(x1)) = d(x1 − ρy1, C(x1))

≤ d(x1, C(x1))− d(x1, C(x0)) + ρ‖y1‖
≤ κ‖x1 − x0‖+ λ,
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and by the Lipschitz continuity ofC, once again, and the first inequality of this
proof we get

d(z1, C(x1)) ≤ d(z1, C(x0)) + κ‖x1 − x0‖
= d(x0 − ρy0, C(x0)) + κ‖x1 − x0‖
≤ λ + κ‖x1 − x0‖.

On the other hand, we have

‖x1 − x0‖ ≤ ‖x1 − z1‖+ ‖z1 − x0‖
= d(z1, C(x0)) + ‖z1 − x0‖
= d(x0 − ρy0, C(x0)) + ρ‖y0‖ < 2λ.

Thus, we see that bothd(z2, C(x1)) andd(z1, C(x1)) are less than2κλ + λ
which is itself strictly less thanr. Similarly, we have for generaln,

d(zn+1, C(xn)) ≤ d(xn, C(xn)) + ρ‖yn‖ ≤ κ‖xn − xn−1‖+ λ

and

d(zn, C(xn)) ≤ d(zn, C(xn−1)) + κ‖xn − xn−1‖
≤ κ‖xn−1 − xn−2‖+ λ + κ‖xn − xn−1‖.

On the other hand,

‖xn − xn−1‖ ≤ ‖xn − zn‖+ ‖zn − xn−1‖
≤ d(zn, C(xn−1)) + λ

≤ d(xn−1, C(xn−1))− d(xn−1, C(xn−2)) + 2λ

≤ κ‖xn−1 − xn−2‖+ 2λ.
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Hence, using that‖x1 − x0‖ < 2λ, we get

‖xn − xn−1‖ ≤ 2λ(1− κn)

1− κ
.

Therefore,

d(zn+1, C(xn)) ≤ 2κλ(1− κn)

1− κ
+ λ

≤ λ
1 + κ− 2κn+1

1− κ

<
λ(1 + 3κ)

1− κ
< r,

and

d(zn, C(xn)) ≤ κ
∥∥xn−1 − xn−2

∥∥ + λ + κ
∥∥xn − xn−1

∥∥
≤ (κ2 + κ)

∥∥xn−1 − xn−2
∥∥ + 2λκ + λ

≤ (κ2 + κ)
2λ(1− κn−1)

1− κ
+ 2λκ + λ

≤ λ(1 + 3κ)

1− κ
< r.

This completes the proof.

Proof of Theorem4.3. Following the proof of Theorem3.2 and using the fact
thatF is strongly monotone and Hausdorff Lipschitz continuous, we get, from
Algorithm 4.2,

‖zn+1 − zn‖ ≤
√

1− 2ρα + ρ2β2‖xn − xn−1‖.
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On the other hand, by Lemma4.4, we havezn andzn+1 ∈ [C(xn)]r and so
Proposition2.3 yields thatProjC(xn)(z

n) andProjC(xn)(z
n+1) are not empty,

and the operatorProjC(xn)(·) is ζ-Lipschitz on[C(xn)]r. Then, by the assump-
tion (3) inA3,

‖xn+1 − xn‖ = ‖ProjC(xn)(z
n+1)− ProjC(xn−1)(z

n)‖
≤ ‖ProjC(xn)(z

n+1)− ProjC(xn)(z
n)‖

+ ‖ProjC(xn)(z
n)− ProjC(xn−1)(z

n)‖
≤ ζ‖zn+1 − zn‖+ k‖xn − xn−1‖

≤
[
ζ
√

1− 2ρα + ρ2β2 + k
]
‖xn − xn−1‖.

Let ξ = ζ
√

1− 2ρα + ρ2β2 + k. Our assumptions (4) and (5) inA3 and the
choice ofρ in the statement of the theorem yieldξ < 1. As in the proof of
Theorem3.2, we can prove that the sequences{xn}n, {yn}n, and{zn}n strongly
converge to somex∗, y∗, z∗ ∈ H, respectively. It is obvious to see thatz∗ =
x∗− ρy∗ with x∗ ∈ C(x∗), y∗ ∈ F (x∗). We wish to show thatx∗ is the solution
of our problem (SNVP).

By construction we have, for alln ≥ 0,

xn+1 ∈ ProjC(xn)(z
n+1) = ProjC(xn)(x

n − ρyn),

which gives, by the definition of the proximal normal cone,

(xn − xn+1)− ρyn ∈ N(C(xn); xn+1).

Using the closedness property of the proximal normal cone in Proposition4.1
and by lettingn →∞ we get

ρy∗ ∈ −N(C(x∗); x∗).
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Finally, asy∗ ∈ F (x∗) we conclude that−N(C(x∗); x∗) ∩ F (x∗) 6= ∅ with
x∗ ∈ C(x∗). This completes the proof.

4.2. F Not Necessarily Strongly Monotone

We extend Theorem4.3 to the caseF = F1 + F2, whereF1 is a Hausdorff
Lipschitz set-valued mapping strongly monotone andF2 is only a Hausdorff
Lipschitz set-valued mapping. In this case Algorithm4.2becomes:

Algorithm 4.5.

1. Selectx0 ∈ C(x0), y0 ∈ F1(x
0), w0 ∈ F2(x

0) and ρ > 0.

2. For n ≥ 0, compute: zn+1 = xn − ρ(yn + wn) and select: xn+1 ∈
ProjC(xn)(z

n+1), yn+1 ∈ F1(x
n+1), wn+1 ∈ F2(x

n+1).

The following assumptions onF1 andF2 are needed for the proof of the
convergence of Algorithm4.5.

AssumptionsA4.

1. The assumptions on the set-valued mappingC are as inA3.

2. F1 is strongly monotone with constantα > 0.

3. F1 and F2 have nonempty compact values and are Hausdorff Lipschitz
continuous with constantβ > 0 andη > 0, respectively.

4. The constantsα, β, η, ζ, andk satisfy the following inequality:

αζ > (1− k)η +
√

(β2 − η2)[ζ2 − (1− k)2].
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Theorem 4.6. Assume thatA4 holds and that for each iteration the parameter
ρ satisfies the inequalities

αζ − (1− k)η

ζ(β2 − η2)
−ε < ρ < min

{
αζ − (1− k)η

ζ(β2 − η2)
+ ε,

1− k

ζη
,

r

‖yn + wn‖+ 1

}
,

whereε =

√
[αζ−(1−k)η]2−(β2−η2)[ζ2−(1−k)2]

ζ(β2−η2)
, then the sequences{zn}n, {xn}n,

and {yn}n generated by Algorithm4.5 converge strongly to somez∗, x∗, and
y∗ respectively, andx∗ is a solution of (SNVP) associated to the set-valued
mappingF = F1 + F2.

Proof. As we adapted the proof of Theorem3.2 to prove Theorem3.5, we can
adapt, in a similar way, the proof of Theorem4.3to prove Theorem4.6.

Remark 4.1.

1. Theorem4.6generalizes Theorem3.5 in [14] to the case whereC is non-
convex.

2. As we have observed in Remark3.1, Algorithms4.2 and4.5 may be also
adapted to the case where the starting pointx0 is selected in aδ-neighborhood
of the setC(x0) with 0 < 2δ < r.

Example 4.1. In many applications (see for example [1]) the set-valued map-
ping C has the formC(x) = S + f(x), whereS is a fixed closed subset inH
and f is a point-to-point mapping fromH to H. In this case, assumption (3)
onC inA3 and the Lipschitz continuity ofC are satisfied provided the mapping
f is Lipschitz continuous. Indeed, it is not hard (using the relation below) to

http://jipam.vu.edu.au/
mailto:bounkhel@ksu.edu.sa
mailto:bounkhel@ksu.edu.sa
http://jipam.vu.edu.au/


Iterative Schemes to Solve
Nonconvex Variational

Problems

Messaoud Bounkhel, Lotfi Tadj
and Abdelouahed Hamdi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 29 of 33

J. Ineq. Pure and Appl. Math. 4(14) Art. 1, 2003

http://jipam.vu.edu.au

show that, iff is γ-Lipschitz then the set-valued mappingC is γ-Lipschitz and
satisfies the assumption (3) inA3 with k = 2γ. Using the well known relation

x̄ ∈ ProjS+v(ū) ⇐⇒ x̄− v ∈ ProjS(ū− v),

Algorithms4.2 and4.5 can be rewritten in simpler forms. For example, Algo-
rithm 4.5becomes

Algorithm 4.7.

1. Selectx0 ∈ (I − f)−1(S), y0 ∈ F1(x
0), w0 ∈ F2(x

0) and ρ > 0.

2. For n ≥ 0, compute: zn+1 = xn − f(xn) − ρ(yn + wn) and select:
xn+1 ∈ ProjS(zn+1) + f(xn), yn+1 ∈ F1(x

n+1), wn+1 ∈ F2(x
n+1).

HereI is the Identity operator fromH to H.

http://jipam.vu.edu.au/
mailto:bounkhel@ksu.edu.sa
mailto:bounkhel@ksu.edu.sa
http://jipam.vu.edu.au/


Iterative Schemes to Solve
Nonconvex Variational

Problems

Messaoud Bounkhel, Lotfi Tadj
and Abdelouahed Hamdi

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 30 of 33

J. Ineq. Pure and Appl. Math. 4(14) Art. 1, 2003

http://jipam.vu.edu.au

5. Conclusion
The algorithms proposed here can be extended to solve the following general
variational problem:

(g−SNVP) Find a pointx∗ ∈ H with

g(x∗) ∈ C(x∗) : F (x∗) ∩ −N(C(x∗); g(x∗)) 6= ∅,

whereg : H → H is a point-to-point mapping. It is obvious that (g−SNVP)
coincides with (SNVP) wheng = I. An important reason for considering this
general variational problem (g−SNVP) is to extend all (or almost all) the types
of variational inequalities existing in the literature in the convex case to the
nonconvex case by the same way presented in this paper. For instance, when the
set-valued mappingC is assumed to have convex values the general variational
problem (g−SNVP) coincides with the so-calledgeneralized multivalued quasi-
variational inequalityintroduced by Noor [16] and studied by himself and many
other authors.
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