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Abstract

In this paper, using Griiss’ and Chebyshev's inequalities we prove several in-
equalities involving Taylor's remainder.
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This paper is a continuation of our papél.[ As in [4], our goal is to prove
several integral inequalities involving Taylor’s remainder. Our method is similar
to that used in4]. However, while in Jl] we deduced our inequalities from
Steffensen’s inequality, in the present paper we use Griuss’ and Chebyshev’s
inequalities. We are thankful to Professor S.S. Dragomir who pointed out that
Griss’ and Chebyshev's inequalities were used earlier by G.A. Anastassiou and
S.S. Dragomir?], [ 2] to obtain results on Taylor’s remainder different from but N
. . K Some Integral Inequalities

related to the results of this paper. The main results of this paper are Theorems invoiving Taylor's Remainder. Ii
2.1and3.1

In what followsn denotes a non-negative integer. We will denotédy (c, x)
thenth Taylor’'s remainder of functiori(z) with centerc, i.e.
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Proof. Observe that:

/b (b o x)n+1 f(nJrl)(x)dx
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The following inequality is called Griss’ inequality][
Let F'(xz) andG(z) be two functions defined and integrable[arnb]. Further
let
m< Fx) <M and ¢ <G(z)<P

for eachz € [a, b], wherem, M, ¢, ® are constants. Then

bF(x)G(x)dx— ! bF(x)dx- bG(m)dm
/ ) ree |

b—a Some Integral Inequalities
(M_m) (CD _90)' Involving Taylor's Remainder. Il

<
—a
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Theorem 2.1.Let f(x) be a function defined dn, b] such thatf (z)eC" " ([a, b])
andm < f+Y(z) < M for eachz € [a,b], wherem and M are constants.

Then Title Page
Contents
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Proof. SetF(z) = f)(x), G(z) = L2 Thenm < F(z) < M and

(n+1)
0<G(z) < (b(;i)f;l. By Griiss’ inequality,

(b — x)"t! b S
[ e = [ [
b—a (b—a)"*!
- 4 ' (n+1)! (M—m)
Using Lemmal.1, we obtain
b 1 b — qg)t2
/a Ry g 2) = 5— [F™(b) = f*(a)] - %
(b — a)n+2
S gy Mo

That provesZ.1).
To prove @.2), we setF'(z) = f™+Y(z), G(z) = % and continue as

in the proof of £.1). ]

Now we consider the simplest cases of Theofeinamely the cases when
n=0or1l.

Corollary 2.2. Let f(x) be a function defined dn, b] such thatf(z) € C? ([a, b])
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andm < f"(x) < M for eachz € [a,b], wherem and M are constants. Then

2(0) + 0,

(2.3) -

f(x)de — f(a)(b—a) -

b 2 / b /
@) |[ s so-a+ LDy
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“ Contents
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Proof. To obtain ¢.3) and @.4) we taken = 1in (2.1) and @.2) of Theorem < >
2.1 Taking half the sum of4.3) and @.4), we obtain £.5). O
Go Back
Remark 2.1. Takingn = 0in (2.1) and 2.2), we obtain that ifn < f'(x) < M
on[a, b], then Slost
UOES{0 (b—a)’ o
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This inequality is weaker than a modification of lyengar’s inequality due to
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The following is Chebyshev’s inequality]

Let F, G : [a,b] — R be integrable functions, both increasing or both

decreasing. Then

/abF(x)G(x)dw > bia/abF@)diU‘/abG(x)dx.

If one of the functions is increasing and the other decreasing, then the above

inequality is reversed.

Theorem 3.1.Let f(z) be a function defined dn, b] such thatf (z) cC™*+Y ([a, b]).

If £("+1(x) is increasing orfa, b], then,

fO®) = D (a) 2
3.1 - T D) (b—a)"*
W (b — ) (g
/ R, ¢(a,x)dx — 1 ((71+2f)‘ ( )(b—a)"Jrl
and

b () (p) — £ (g
32) 0< (—1)<"+1>/ R, (b, x)dx — / (;2+§)! ( )(b—a)"+1
fUD(b) = fD(a)
<
- 4(n+1)!

(b—a)".
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If f(*+1(x) is decreasing ofu, b], then

(3.3) 0< /ab R, t(a,x)dx — A <(12 4__ ;‘)(!”)(a) (b—a)"*
< f("+l)i‘g;1{;’;+l)(b) (b—a)"t?
and
< (—1)n+h /ab R, (b, x)dx — f(")((brz :L éf)(r)(a) (b— a)+!
<0

Proof. SetF(z) = f"*V(z) andG(z) = % ThenF(z) is increasing
andG(x) decreasing ofu, b]. Using Chebyshev’s inequality fdf(z) andG (z)
and (L.1), we obtain right inequality in3.1). Left inequality in @3.1) follows
readily from @.1), if we take into account that singé™*"(z) is increasing on
[a,b], f*V(a) < fO+D)(z) < fO+1(p) for all 2 € [a, b].

To prove B.2), setF(z) = f™+Y(z) andG(z) = % The rest of the
proof is the same as in the proof &f.{). '

The proofs of 8.3) and (3.4) are similar to those of3(1) and (3.2) respec-
tively, and we omit them. ]

We now consider the simplest cases of TheoBeinnamely the cases when
n=0orl.
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Corollary 3.2. Let f(x) be a function defined dn, b] such thatf (z) € C? ([a, b]).
If f”(z) is increasing ofa, b], then

_f/l( ) f//( )

(3.5) 3 (b — a
2f'(a) + f'(b)
< b — / f(z)dx 5 (b—a)
Some Integral Inequalities
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Remark 3.2. Takingn = 0 in TheorenB.1, we obtain that iff’(x) is increasing
on [a, b], then

/ — ' (a b
CPIICES (GRS UESLO P iy e
SFIGES U

Let us compared.8) with the following Hermite-Hadamard’s inequality][ Some Integral Inequallies

If f(x) is convex ora,b] (in particular if f'(x) exists and increasing on Involving Taylor's Remainder. Ii
[a, b]), then Hillel Gauchman
a+b I f(a)+ f(b)
f ( 5 ) < b—a/a f(z)dx < I Title Page
. . . . . . Contents
We see that the right inequality i&.Q) is the same as the right Hermite-Hadamard’s
inequality. However, it can be easily proved that the left inequalityiB)(is <44 44
weaker than the left Hermite-Hadamard’s inequality. < >
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