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Abstract

Some interesting inequalities proved by Dragomir and van der Hoek are gener-
alized with some remarks on the results.
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The aim of this paper is to discuss and improve some inequalities provep in [
and [2]. Dragomir and van der Hoek proved the following inequalityif [

Theorem 1.1 ([l], Theorem 2.1.(ii)). Letn be a positive integer and > 1 be a
real number. Let us defir@(n,p) = > ., i#/ nP™!, thenG(n+1,p) < G(n,p)
for eachp > 1 and for each positive integer.

The most general result obtained ifj ps a consequence of Theordmi is
the following:

Theorem 1.2 ([L], Theorem 2.8.). Letn be a positive integey > 1 and x;,
i=1,...,nreal numbers such that < x; < M, withm # M. LetG(n,p) =
Sor 7/ nPt1, then the following inequalities hold

n p+l
1
pHl - o
(1.1) G(n,p) | mn™ + T = m)r (zzlxz mn)
< Zz’pxi
i=1
< G(n,p)

p+1 _ ‘
Mn O —m)p <Mn lez>

The inequality {.1) is sharp in the sense th&t(n, p), depending om and
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p, cannot be replaced by a bigger constant so thd) (vould remain true for
eachz; € [0, 1].

For M = 1 andm = 0, from (1.1), it follows that (with assumptions listed
in TheoremLl.?2)

n p+l n n
G(n,p) <Z J3z> < Zipxi < G(n,p) [ n*! — (n - sz)
i=1 i=1 i=1

p+1

Let us also mention the inequalities obtained for the special;caseé: Commentls on S?tr_ne Analytic
nequalities
1 1 n 2 llko Brnetic and Josip Pecaric
12) -1+ - i
a2 5(1+1) >
9 Title Page
n 1 1 n n
< 1w < = [ 1+ — 2n T; — T; i Contents
<Sinsg (i) (25 (5]
<44 >
The sharpness of inequalities §) could be proven directly by putting = 1 < S
foreveryi=1,...,n.
For > "  z; = 1, from (1.2), the estimates of expectation of a guessing Go Back
function are obtained inl]: Close
1 1 = 1 1 Quit
1.3 —1+—- < wi < - 1+—)(2n—1).
(1.3) 2< n>_; _2< n>( ) Page 4 of 11
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Inequalities {.3) are obviously not sharp, since for> 2

n

=1
and

n n 1 1
;< i=n< =11 — 2n —1).
;zx n;x n 2(+n)(n )

More generally, forS = Y | z;, n > 2, the obvious inequalities

n

(1.4) zn:ixi>zn:xizs, Zimi<nzn:xi:n5
=1

i=1 ; =1 =1

give better estimates thafh.p) for S < 1.
We improve the inequalityl(2) with a constant depending not only an
butond_" | x;. Our first result is a generalization of Theorém.
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We generalize Theorem 1 by taking

> i /() N
F(n,p,a) ===2"—=, 1) =(i+a)?
(n,p,0) = Z2E0E @) = (i+a)
instead ofG(n, p). Obviously, we havé’(n, p,0) = G(n, p). By obtaining the
same result as that mentioned in Theoremwith F' instead ofz, we can find
a for which we obtain the best estimates for inequalities of tyip#) (

Theorem 2.1.Letn > 2 be an integer angh > 1, a > —1 be real numbers.

Let us definef'(n,p,a) = > | (i+a)?/n(n+ a)?, thenF(n + 1,p,a) <
F(n,p,a) foreachp > 1,a > —1 and for each integen > 2.

Proof. We compute
F<n>p7 G) - F(” + 1ﬂp7 a)
_ Z?:l(i + a)p 22_11 (Z + a)p

n(n 4+ a)p (n+1)(n+14a)

~ 1 1 1
—;(z—l—a) (n(n—l—a)l’_(n—i—l)(n—i—l—l—a)?’)_n—i—l
1 (n+1)(n—|—1+a)p—n(n—|—a)p_1)'

= F

So, we have to prove

(n+14a)?
(n+1)(n+1+a)?—n(n+a)r’

F(n,p,a) >
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or equivalently, (fom > 2),

(2.1) n

=1

We prove inequalityZ.1) for each positive integer by induction. Fom = 1

we have

1>

which is obviously true.

Z(z’+a)p > (

n(n+a)’(n+1+a)?
n+1)(n+1+a)—n(n+a)P

(24 a)?
22+ a)p — (1+a)’

Let us suppose that for somethe inequality

n

=1

holds.
We have

n+1 n

n(n+a)P(n+1+a)?

Z(Ha)p = (n+1)(n+1+a) —n(n+a)

di+taP=> (i+al+(n+1+a)

i=1 i=1

n(n+a)’(n+1+a)?

“m+(n+14+a)P—nn+a)p

(n+1)(n+1+a)*

T (n+D(n+1+ap—n(n+ap

+ (n+1+a)’
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In order to show

s (n+1D)(n+1+a)P(n+2+a)

2 2 ey ay — (n+ D+ 1Ty

=1

we need to prove the following inequality

(n+1+a)
m+1)(n+14+a)—n(n+a)r

(n+24a)?
“(n+2)n+2+aP—(n+1)(n+1+a)p’

(n+1+a)+nn+a)
n+1

(n+2+a) > (n+1+a)?.
or
(n+2+a)(n+1+a)’+n((n+2+a)(n+a))”
n+1
Sincef(z) = (z + a)? is convex forp > 1 andx > —a, applying Jensen’s
inequality we have
L>(m+2+@m+1+@+nm+2+@m+a0p
> n 1 )

where L. denotes the left hand side i8.9). To prove @.2) it is sufficient to
prove the inequality

(2.2)

> (n+1+a).

(n+24+a)n+1+a)+nn+2+a)(n+a)>n+1Dn+1+a)
which is true fora > —1. O
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Remark 2.1. We did not allowh = 1, sinceF'(1, p, —1) is not defined.
Following the same idea given in][ we can derive the following results:

Theorem 2.2.Let F(n,p,a) be defined as in Theoretnl, z; € [0,1] fori =
I,...,nandS =>"", z;, then

(2.3) F(n,p,a)-S- f(9)

< Zf(z’)a:,- < F(n,p,a)- (nf(n) = (n = 5)f(n = 5)),

wheref(n) = (n + a)?.

Proof. The first inequality can be proved in exactly the same way as was done

in [1] (Th.2.3). The second inequality follows from the first by putting=
1 —z; € [0,1], and thenr; = a;. O

The special case of this result improves the inequalit9)(

Corollary 2.3. Letn > 2 be an integerx; € [0,1] fori = 1,...,n and
S =31,z then

1 1 SN vix; 1 (2n+1
2.4 14+ =)< &=L <o -1).
(2:4) 2(*5)— 52 —2( S >
Proof. Leta = —1 andp = 1. We computeF(n, 1, —1) = 1. Inequality ¢.4)
now follows from @.3) after some computation. O
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We can now compare inequalitie®.4) and (L.2); the estimates in 4) are
obviously better.

In comparing with obvious inequalitie$.d), the estimates ir2(4) are better
for S > 1 (they coincide forS = 1).
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