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ABSTRACT. We consider a class of algebraic inequalities for functions\adriables depending
on parameters that generalise the casé/df—convex functions. The functions in this class
are GA—convex only in a subdomain of definition yet the inequality &1 —convexity still
holds on the whole domain if suitable conditions are satisfied by the parameters. The method is
elementary and allows us to give further extensions to a large class of functions.

As an application we show the validity of andimensional generalization of a conjectured
inequality related to a problem given at the 42nd IMO held at Washington DC (USA) in 2001.
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1. INTRODUCTION

The property of convexity of a given functigh: / C R — JC R is one of the most powerful
tools in establishing a wide range of analytic inequalities. As shown in [1] depending on which
type of arithmetic ) or geometric () mean we consider respectively on the domain and the
co-domain of definition forf four classes of convex functions are distinguished. These are
the AA-convexity (the usual convex functions)(z, GA or GG-convexity. Although a more
general setting can be applied in the following, due to the geometric mean we shall assume
throughout that, J C (0, o0).

To be specificAG—convex functions (or log-convex functions) are those functipnd —
(0, 00) such that

(1.1) ryel, 0<a<l= f((l-a)z+ay) < f7(z) " (y).
This is equivalent thabg f is convex.
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2 RAZVAN A. SATNOIANU

G G-convex functions (or multiplicatively convex functions) are those functibns! —
(0, 00) such that

1.2) r,yel, 0<a<l=f (xl’o‘ya) < 77 (@) (y).

Finally, G A—convex functions are those functiofis / — (0, co) such that

(1.3) ryel, 0<a<l=— f(xl_ayo‘) <(I—-a)f(z)+af(y).

As can be checked rapidly every second order differentiable function satisfying
(1.4) 22 f" (z) + xf' (x) > 0 onits domain

is GA—convex. In particular this is true jf is a convex and increasing function.

In [1] C.P. Niculescu discussed the beautiful class of inequalities, which arise from the notion
of GG—convexity for functions. Clearly, a similar line of inquiry can be followed to analyse
the class of inequalities arising by considering the remaining types of convexity sueH as
and AG—convexity. In this paper we wish to extend the case&~>of—convexity for second
order differentiable functions for which inequalify (IL.4) is not satisfied in their entire domain
of definition. Clearly to do so there must be some extra conditions imposed. Here we establish
such conditions for the case when the functions depend also on extra parameters that obey given
constraints. These cases lead us to a generalisation 6fAheconvexity implicitly furnishing
analytic inequalities, which cannot be established by the use of a direct method such as (1.4).
Moreover, these results can in principle be extended to the other types of mean-convexity dis-
cussed above. In the first part we present the general result. As an illustration we establish
ann-dimensional generalisation of an algebraic problem, which for the particular case of three
variables, has appeared as a conjecture in relation to a proposed problem at the 42nd IMO held
in Washington DC, USA 2001 [2]. The three variable conjecture has also appeared recently as
proposal 10944 in the American Mathematical Monthly [3].

2. THE MAIN RESULT

Suppose that : (0,00) — (0, 00) is a second order differentiable function witH () > 0
on its domain. Ley : (0,00) — (0,00), g(z) = 2*f" (x) + zf' (x). Suppose that there is
0 < r < 1 with g(r) = 0 such thaty < 0 on (0,7) andg > 0 on (r,00). Further consider
h: (0,00)" — (0,00) defined by

h(zy,..oxn) =Y f (@) —nf (1),

forall z,...,z, > 0 with
(2.1) [[z=1
k=1

Finally assume that the components of the critical poinfssibject to[(2.]1) can take at most
two different values. That is there ate< b such that{z,,...,z,} = {a,b} at any critical
point of componentézy, o, - - - , ,) Of h.
Theorem 2.1.If the above conditions are satisfied and, for every 1,...,n, we have
(2.2) lim h(z1,...,2,) >0

x—0

thenh (xy,...,x,) > 0forall zy,...,z, > 0Owith [[}_, ) = 1.
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Proof. First note that. is a continuous function defined on a bounded set from below therefore
there is a valuen > —oo such thath > m for all zy, ..., 2, > 0 with [[}_, zx = 1. We shall
show thatrn > 0 which will prove the theorem. Moreover, from (2.2), this is certainly true
along the boundary of the domain, i.e. in the limit whgn— 0 for somek = 1,...,n. Let

K:{(:El,...,xn) T1y..., Xy, >0, Haskzl}.
k=1

To end the proof it remains to establish the assertion in the interiar. of
To do so we shall look at the extremum pointshofThese are found from the critical points.
By hypothesis their components can take at most two different values. That is

oh
=0,i=1,....n= {2 ... 2% ={a,b
at the critical points. Due to symmetry we can assume without restrictionrthat- - - < z0
anda < b. Therefore there exists < ¢ < n such thatr) = 2§ = --- = 2) | = a and
2y =l = --- = a9 = b (wheng = 1 we use the convention thaf = 0). Note that[(2.1l)

implies thatb > 1. Also note that if = 1 then there is nothing to prove as in this case the
conclusion follows by applying conditiof (1.4) to the minimum point (or directly jial (2.1)).
Next consider

(2.3) hi(a,b) = (¢ —1) f(a) + (n—q+1) f(b) —nf(1).
Note that via[(2.]l) we have that
(2.4) at et = 1.

We shall show that, (a,b) > 0 for all a,b > 0 satisfying [2.4). Via[(2]4) this is equivalent to
showing that

n+l—q

(25) m() = (= 1) f (55" ) + (n =g+ 1) f () =nf (1) 2 0,
A simple calculation gives that) (b) = 0 iff 4} (b) = A} (bnﬁgq bi-a. Because > 1 and
f"is increasing the last equality is possible only wihes 1 in which case[(2]5) becomes an
equality. Moreover; (1) = 25 (f" (1) + f(1)) = 0 which follows from condition (1.4)
applied tog atz = 1 and the fact that < 1. This shows thak, = 1 is a minimum point forh,
and that[(2.p) is true at this point. Therefore it is true for all other paintsl.

Finally, this establishes that the assertion is true at the minimum poirfitared consequently
this proves that the conclusion is true at all the interior points of the dokiaWve have already
verified it on the boundary ok so the proof is finished. O

3. AN APPLICATION

In a recent note [4] we gave a solution to a conjectured inequality in three positive variables
which in turn is a generalisation of the 2nd problem given at the 42nd IMO held at Washington
DC (USA) in 20011[2]. The statement of the IMO problem was:

Problem 1. Prove that

(3.1) a b C >

+ +
Va2 +8bc Vb2 +8ca 2+ 8ab
for all positive real numbers, b andc.

At the end of the official IMO solution the author of the above proposed problem conjectured
the following more general inequality:
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Conjecture 3.1. For anya, b, ¢ > 0 and X\ > 8, the following inequality holds
a b c 3
+ + 2 :

Vaz+ M be Vb2 +dca A+ ab T V14

Using a direct calculatory method [4] we established the validity of (3.2). The same inequal-
ity has also been recently published as a proposanmer. Math. Month.[3]. Recently we
learned about an algebraic solution[to [3.2) that was obtained by Sava Grozdev (the team leader
of the Bulgarian IMO team) |5]. However, his solution is very particular to the case of three

positive numbers and so cannot be extended to the general casaedbles. In this direction
we have proposed in/[4] the following extension|of {3.2) toithdimensional case.

Conjecture 3.2.

n xn_l n—1
3.3 1+ A L >n
59 Z <( ) 277 A T -

(3.2)

i=1
foralln>1,2;,>0,i=1,...,nandany\ > n"! — 1,

Inequality [3.8) has attracted interest (see [6]).In [6], Lagrange’s method is used to show the
validity of (3.3) but again the method is not amenable to further generalisation. Here we shall
show that Conjectuiie 3.2 follows naturally from our main result above. However, before we do
this it is useful to appreciate the strength[of[3.3). First one can proceed as in [1] and exploit the
property that the left hand side in (B.3) is homogeneous imthariables. Therefore with the

natural transformationy; = Hzifjfi, i =1,...,n,0ne can reduce the problem to showing that
Theorem 3.3.
- 1 n
3.4 >
54 2T 2 VI

foralln > 1andy, > 0,i=1,...,n with the property[ [/, v; = 1 and any\ > n"~' — 1.

There are some obvious suggestions to tagkle (3.4). A naive approach would be to apply the
AM — GM inequality which would give that thelM/ of the left hand side of (3]3) is larger
than(1 + XY VT2, (14 Az,) ") However, the last expression is less than 1 rather
than bigger to it (which is what we would have needed in order to oljtaij (3.4)) as can be easily
checked by applying once more tle\/ — G M inequality. Direct use of convexity properties
does not appear too inspired either. For example the function generating the general term of
the left hand side ir] (3]4) is convex. Therefore Jensen’s inequality yields that the left hand side
in ) is larger tham (1 + (2) -7, xi)*l/("*l). However, theAM — GM inequality with
[T.-, vi = 1yields that

1 A — e
1 o > (14 (2 ,
n (14 X) > ( +(n)2$1>

=1

so (3.4) cannot be established in this simple way either.

Note that whem = 1,2 (3.4) is trivial and forn = 3 the validity of [3.4) was established
in [4, 5] as discussed above. In this note we shall establish the validity of ineqiality (3.4) in
general.

Proof of Theorer 3|3The cases = 1,2 are immediate and we leave them as an exercise for
the reader to attempt. In the following we shall discuss the case wher2. For anyn > 1
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andz, A > 0let f (z) = (14 Az) "V Itis easy to see that is a decreasing and convex
function ofz > 0 for any A > 0. Indeed we have that:

(3:5) fr(x)=—=X(n— 1)*1 (1+ )\x)*n/(nfl) <0

(3.6) F (@) = N0 (n—1)72 (14 Az)” @070 5 g

for all z > 0 and for any\ > 0, n > 1. Furthermore it is easy to see that

(14 )72/ (=)
/\2

Therefore on the interval = (%, 00) f is GA—convex From the hypothesis we also have
that

(3.7) 22 f" (z) + o f (x) = 2\ (14+2zX—n).

(3.8) Hy = 1.

Therefore[(3.4) becomes
(3.9) hh (1,92, yn) = D f () = nf (1) 20
k=1

forally; > 0, i = 1,...,n satisfying [3.9) and alh > n"~* — 1.
It is easy to see that the critical points/of subject to conditior] (3]8) must satisfy the equal-

itiesd (y1) = d(y2) = -+ = d (yn), Whered (y) = W Now d is strictly monotonous

on each of/ andR — J so we deduce that the critical points/gf in (3.9) can attain at most
two different values, let us sayandb, « < b. Moreover, [(3.B) give$ > 1. At this stage we
see that, with the possible exception of condition|(2.2), all the hypothesis of Thgorem 2.1 are
satisfied in our case and so the conclusion follows for all the interior points of the domain.

We still need to check the behaviour on the frontier of the domain, that is the behaviour of
hh in ) whena — 0 or (equivalently)) — oc. Because(llig[l]f (a) = 1, blij&f (b) = 0 we

have to check that — 1 > nf (1) = n (1 + Az)~""~" which is obviously true owing to the
condition that\ > n"~! — 1. Equality takes place whep= 2 and\ = n"~! — 1. This verifies
also that hypothesi$ (2.2) holds in our case.

These facts then establish inequalfty [3.9) for all critical poipts> 0, ¢ = 1,...,n and
A > n"~L — 1. Therefore the proof finishes by applying Theofem 2.1. O

Theorem 3.4.For anya, 3 > 0, n > 1 with 3 > (n"~! — 1) « we have the inequality

1

n .T?_l n—1 _%1
(3.10) > ((m?l AT m) >n(a43) 1.

=1

The proof follows easily from Theorem 2.1 in a similar manner as in the proof of Theorem
[3.3. A significantly extended version of Theorem| 3.3 can in fact be established.

Theorem 3.5.

(3.11) S+ dy) = (14N
i=1
foraln>1,p> 1,4, >0,i=1,...,nsuchthaf [, y; = 1 and any\ > n” — 1.
The proof of this general inequality is absolutely similar to that in Thegrem 3.3. In fact it can
be done almosid litteramby replacing the exponeiit — 1) by p in the arguments used in the
proof of Theoren 3]3.
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Theorems$ 3]3 ar{d 3.5 also imply the validity of the following dual fornj of(3.3).
Theorem 3.6.

n

(3.12) Z <<a+)\5) JPE > » -

— Hk#xk—i-)\x?*l
foralln>1,p>1,2;,>0,i=1,...,n,a,06>0and any\ > n? — 1.

Proof. (3.12) follows from [(3.1D) {(3.31) via the transformation— 1/z;,i =1,...,n. O
Corollary 3.7. If o, 8 > O with 3 > (n"! — 1) a then

n

(3.13) S (a+ Bap) 7T 2 n(a+ B) T
i=1
foralln > 1,2; >0,i=1,...,nsuchthaf [}, z; = 1.
Proof. In (3.13) multiply both the denominator and the numerator of each term from the left
hand side byr;, 7 = 1, ..., n, respectively. O
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