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ABSTRACT. Inthis paper, we use the technique of updating the solution to suggest and analyze a
class of new splitting methods for solving general variational inequalities. It is shown that these
modified methods converge for pseudomonotone operators, which is a weaker condition than
monotonicity. Our method includes the two-step forward-backward splitting and extragradient
methods for solving various classes of variational inequalities and complementarity problems as
special cases.

Key words and phrasesvariational inequalities, Resolvent operators, Iterative methods, Convergence, Fixed points.

2000Mathematics Subject Classificat o49J40, 90C33.

1. INTRODUCTION

Variational inequalities theory is a branch of mathematics with a wide range of applications
in industrial, physical, regional, social, pure and applied sciences, seel[1] — [18]. Variational
inequalities have been extended and generalized in many different directions using new and
novel techniques. A useful and significant generalization is called the general mixed varia-
tional inequality or variational inequality of the second type. In recent years, several numerical
methods for solving variational inequalities have been developed. It is a well known fact that
the projection method and its variant forms including the Wiener-Hopf equations cannot be ex-
tended for mixed variational inequalities involving the nonlinear terms. These facts motivated
us to use the technique of the resolvent operators. In this technique, the given operator is de-
composed into the sum of two (or more) monotone operators, whose resolvents are easier to
evaluate then the resolvent of the original operator. Such type of methods are called the opera-
tors splitting methods. This can lead to the development of very efficient methods, since one can
treat each part of the original operator independently. In the context of variational inequalities,
Noor [9,[10] has used the resolvent operator technique to suggest and analyze some two-step
forward-backward splitting methods. A useful feature of the forward-backward splitting meth-
ods for solving variational inequalities is that the resolvent step involves the subdifferential of
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the proper, convex and lower semicontinuous part only, the other part facilitate the problem
decomposition. If the nonlinear term involving the general mixed variational inequalities is
proper, convex and lower-semicontinuous, then it has been shown [8]] — [10] that the general
mixed variational inequalities are equivalent to the fixed point and resolvent equations. These
alternative formulations have been used to develop a number of iterative type methods for solv-
ing mixed variational inequalities. Nodr/[9, 10] used the technique of updating the solution in
conjunction with resolvent operator techniques to suggest a number of splitting type algorithms
for various classes of variational inequalities. It has been shown [13] that the convergence
of such type of splitting and predictor-corrector type algorithms requires the partially relaxed
strongly monotonicity condition, which is weaker than cocoercivity. In this paper, we suggest
and analyze a class of forward-backward splitting algorithms for a class of general mixed varia-
tional inequalities by modifying the associated fixed-point equation. The new splitting methods
are self-adaptive type methods involving the line search strategy, where the step size depends
upon the resolvent equation and the direction of searching is a combination of the resolvent
residue and the modified extraresolvent direction. Our results include the previous results of
Noor [9,/10], Wang et al.[[18] and Han and La [4] for solving different classes of variational
inequalities as special cases. Our results can be viewed as novel applications of the technique
of updating the solution as well as a refinement and improvement of previously known results.

2. PRELIMINARIES

Let H be a real Hilbert space whose inner product and norm are denotéd-pgnd ||-|
respectively. Letk’ be a nonempty closed convex setdh Lety : H — R U {400} be a
function.

For given nonlinear operatois g : H — H, consider the problem of finding € H such
that

(2.1) (Tu, g(v) — g(u)) + p(g(v)) —¢(g(u)) >0,  forallg(v) € H.

The inequality of type[(2]1) is called the general mixed variational inequality or the general
variational inequality of the second kind. If the functigt-) is a proper, convex and lower
semicontinuous function, then probleim (2.1) is equivalent to findikgH such that

0 € Tu+ 0p(g(u)),

which is known as the problem of finding a zero of the sum of two (maximal) monotone op-
erators and has been studied extensively in recent years. We remarkgtat/if the identity
operator, then problerm (2.1) is equivalent to finding H such that

(2.2) (Tu,v —u) + p(v) — p(u) >0, forallv € H,

which are called the mixed variational inequalities. It has been shown that a wide class of linear
and nonlinear problems arising in finance, economics, circuit and network analysis, elasticity,
optimization and operations research can be studied via the mixed variational inequalities (2.1)
and [2.2). For the applications, numerical methods and formulations of general mixed varia-
tional inequalities, seé [1] +[3],[7] +110],[13],[17] and the references therein.

We note that ifp is the indicator function of a closed convex $€in H, that is,

0, ifue K

() = I (u) = |
+o00, otherwise,

then problem[(2]1) is equivalent to findimge H, g(u) € K such that
(2.3) (T'u, g(v) — g(u)) >0, forall g(v) € K.
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The inequality of the type] (2.3) is known as tbgeneral variational inequalitywhich was
introduced and studied by Noar [5] in 1988. It turned out that the odd-order and nonsymmetric
free, unilateral, obstacle and equilibrium problems can be studied using the general variational
inequality [2.B), see [5./6, 12, 14,]15].

From now onward, we assume that the operatisronto X andg—! exists unless otherwise
specified.

If K* ={ue H: (u,v) > 0,forallv € K} is a polar cone of a convex co€in H, then
problem [2.8) is equivalent to findinge H such that

(2.4) glu) e K, Tue K*,and (Tu,g(u)) =0,

which is known as thgeneral complementarity problenvhich was introduced and studied by
Noor [5] in 1988. We note that if(u) = u — m(u), wherem is a point -to-point mapping, then
problem [2.4) is called the quasi(implicit) complementarity problem, see the references for the
formulation and numerical methods.

For g = I, the identity operator, probler (2.3) collapses to: find K such that

(2.5) (Tu,v —u) >0, forallv € K,

which is called the standard variational inequality, introduced and studied by Stampacchia [16]
in 1964. For recent results, séé [1] —=[18].

It is clear that problems (2.2) { (2.5) are special cases of the general mixed variational in-
equality [2.1). In brief, for a suitable and appropriate choice of the operatoys¢ and the
spaceH, one can obtain a wide class of variational inequalities and complementarity problems.
This clearly shows that problern (2.1) is quite general and unifying. Furthermore, problém (2.1)
has important applications in various branches of pure and applied sciencés, see [1] —[18].

We now recall some well known concepts and results.

Definition 2.1. For allu, v,z € H, an operatofl’ : H — H is said to be:
(). g-monotoneif
(Tu—"Tv,g(u) = g(v)) =0
(il). g-pseudomonotone
(Tu,g(v) —g(u)) >0 implies (Tv,g(v) —g(u)) > 0.

Forg = I, where! is the identity operator, Definitign 3.1 reduces to the classical definition
of monotonicity and pseudomonotonicity. It is known that monotonicity implies pseudomono-
tonicity but the converse is not true, see [2]. Thus we conclude that the concept of pseudomono-
tonicity is weaker than monotonicity.

Definition 2.2. If A is a maximal monotone operator dh then for a constang > 0, the
resolvent operator associated wihs defined as

Ja(u) = (I +pA)~*(u), forallve H,

where! is the identity operator. It is well known that the operatbis maximal monotone if
and only if the resolvent operatol, is defined everywhere on the space. The operaiois
single-valued and nonexpansive.

Remark 2.1. It is well known that the subdifferentidly of a proper, convex and lower semi-
continuous functiorp : H — R U {co} is @ maximal monotone operator, so

Jo(u) = (I +0¢) *(u), forallue H,

is the resolvent operator associated withand is defined everywhere.
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Lemma 2.2. For agivenz € H, u € H satisfies
(2.6) (u—2z,v—u) + pp(v) — pp(u) >0, forallve H

if and only if
u=Jyz,
whereJ, is the resolvent operator.

We remark that if the proper, convex and lower semicontinuous funegti@nan indicator
function of a closed convex sét in H, thenJ, = Py, the projection offf onto K. In this case
Lemmd 2.2 is equivalent to the projection lemma, 5ee [8].

Related to the general mixed variational inequality|(2.1), we now consider the resolvent equa-
tions. Letk, = I — J,, whereJ, is the resolvent operator. For given nonlinear operators
T,g9: H— H,we consider the problem of findinge H such that

(2.7) Tg 'Jyz+p 'Raz = 0.

Equation of the typg (2]7) is called the resolvent equation, which was introduced and studied
by Noor [8]. Note that ifp(-) is an indicator function of a closed convex $étin H, then the
resolvent equations are equivalent to the Wiener-Hopf equation. For applications and numerical
methods of the resolvent equations, see [8] - [10] and the references contained therein.

3. MAIN RESuULTS

In this section, we use the resolvent equations technique to suggest a modified resolvent
method for solving general mixed variational inequalitjes](2.1). For this purpose, we need the
following result, which can be proved by using Lemmg 2.2.

Lemma 3.1. The general mixed variational inequalify (2.1) has a solutios H if and only if
u € H satisfies

(3.1) 9(u) = Jy[g(u) — pT'u],
whereJ,(u) = (I + pdy)~! is the resolvent operator.

Lemma 3.1 implies that problens (2.1) and [3.1) are equivalent. This alternative equivalent
formulation has played an important part in suggesting several iterative methods for solving
general mixed variational inequalities and related problems| see [8, 9].

We define the resolvent residue vector by
(3.2) R(u) = g(u) = Jplg(u) — pTu].

Invoking Lemma 3.]1, one can easily show that H is a solution of[(2.1) if and only if. € H
is a zero of the equation
(3.3) R(u) = 0.

We also need the following known result, which can be proved by using Lgmrpa 3.1, which
shows that the general mixed variational inequality|(2.1) is equivalent to the resolvent equation

22).

Lemma 3.2. [6] The general mixed variational inequalify (2.1) has a unique solutienH if
and only ifz € H is a unique solution of the resolvent equatipn2.7), where

(3.4) g(u) = Jyz, and z=g(u)— pTu.
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Using 3.2) and[(3]4), the resolvent equation|(2.7) can be written in the form:

(3.5) R(u) — pTu+ pTg~ " J,lg(u) — pTu] = 0.
Invoking Lemm4 3.]1, one can show that H is a solution of[(2.]1) if and only if: € H is a
zero of the equation (3.5).
Using the technique of updating the solution, one can rewrite the equatidn (3.1) in the form;
(3.6) g(w) = Jo[J,lg(u) — pTu] — pTg~" Jy[g(u) — pTul],
or equivalently,
3.7) 9(u) = Jylg(w) — pTw],
(3.8) g(w) = Jylg(u) — pTul.

Invoking Lemma 3.]1, one can easily show that H is solution of equatiorj (2] 1) if and only
if w € H is a zero of the equation

(3.9) g(u) — J [ [g(u) — pTu] — pTg~ ", g(u) — pTul] = g(u) — Jylg(w) — pTw] = 0.
The fixed-point formulation[ (3]6) 4 (3.8) can be used to suggest and analyze the following
iterative methods for solving general variational inequalifies (2.1).

Algorithm 3.1. For a givenuy € H, compute the approximate solutiat) ., by the iterative
schemes
g(wn) - Jtp[Q(“n) - pTun]7

(1) = Jolg(wy) — pTwy], n=0,1,2...,
which is known as the predictor-corrector method, see Naar |9, 13].
Algorithm 3.2. For a givenu, € H, compute the approximate solutiar) ., by the iterative
schemes

9(uns1) = Jo[Jp[g(un) — pTun] — pTg™" Jplg(un) — pTu]

= J I — pTg "I, [I — pTg g(un), n=0,1,2,...
which is known as the two-step forward-backward splitting algorithm. Note that the order of
and.J, has not been changed. For the convergence analysis of Algérithm 3.2, see Noor [9, 13].

By rearranging the terms, one can use the fixed-point formulgtioh (3.6) to suggest and analyze
the following method for solving the general mixed variational inequalifies (2.1).

Algorithm 3.3. For a givenuy, € H, computeu,, ., by the iterative scheme
9(unsr) = (I + pTg™ ") "I = pTg™ I = pTg~ ]+ pTg~ }g(un), n=0,1,2...,

which is again a two-step forward-backward splitting type method and is similar to that of Tseng
[17]. Noor [13] has studied the convergence analysis of Algorithms B.I|— 3.3 for the partially
relaxed strongly monotone operator, which is a weaker condition than cocoercivity.

Using Lemma 32, we can rewrite the resolvent equafiorj (2.7) in the following useful form:
(3.10) D(u) =0,
where
D(u) = R(u) — pTu+ pTg~" J,[g(u) — pTu]
(3.11) = R(u) — pTu + pTw.

Invoking Lemm4 3.]1, one can show that H is a solution of[(2.]1) if and only if: € H is a
zero of the equation (3.1L.0).
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In this paper , we suggest another method involving the line search strategy, which includes
these splitting type methods as special cases. For a given positive canstemtrewrite the
equation[(3.6), using (3.2), in the following form.

9(u) = Jolg(u) — afg(u) — g(w) + pTw}]
= Jolg(u) — a{R(u) + pTw}]

(3.12) = Jolg(u) — ad(u)],
where
(3.13) d(u) = R(u) + pTw = R(u) + pTg [g(u) — pTu].

This fixed-point formulation enables us to suggest the following iterative method for general
mixed variational inequalitie (4.1).

Algorithm 3.4. For a givenuy € H, compute the approximate solutiat) ., by the iterative
schemes.
Predictor step.

(3.14) 9(wn) = Jo[g(un) — ppTunl,
wherep,, satisfies
(3.15) pn(Tty — Twy, R(uy)) < o||R(un)|]?, o€ (0,1).

Corrector step.

(3.16) 9(tuni1) = Jo[g(un) — and(u,)], n=0,1,2...
where
(3.17) d(un) = R(u) + puTy,
~ (R(un), D(un))
(5.19) = T

whereq,, is the corrector step size. Note that the corrector stepesjzén (3.18) depend upon
the resolvent equatiop (3]10).

If the proper, convex and lower-semicontinuous functids an indicator function of a closed
convex setk in H,, thenJ, = Py, the projection ofi onto K and consequently Algorithm
[3.4 collapses to:

Algorithm 3.5. For a givenu, € H, compute the approximate solutiat) ., by the iterative
schemes
Predictor step.

9(wn) = Pglg(un) — pnTun],
wherep,, satisfies
pn{Tu, — Tw,, R(u,)) < o||R(un)||?, o€ (0,1).
Corrector step.
9(uns1) = Prlg(u,) — andy(u,)], n=0,1,2...
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where

di(un) = R(up) + pnTwy,

o — (R(un), Di1(un))
[l (un ) ||?

Dy (uy,) = R(up) — pTuy + pTwy,.
Algorithm[3.4 appears to be a new one even for general variational inequélities (2.3). Note that
for o, = 1, Algorithm(3.4 is exactly Algorithni 3]1, which is mainly due to Noor [9] 10]. For
g = I, the identity operator, we obtain new improved versions of previously known algorithms
of Wang et al. [[18] and Han and Lo![4] for variational inequalities and related optimization

problems. This clearly shows that Algoritim 3.4 is a unifying one and includes several known
and new algorithms as special cases.

For the convergence analysis of Algorithm|3.4, we need the following results.
Lemma 3.3.If w € H is a solution of[(2.]1) and” is g-pseudomonotone, then

(3.20) (g(u) — g(@).d(u)) > (1—o)|R(u)|?, forallue H.
Proof. Letu € H be a solution of[(2]1). Then
(T'u, g(v) — g(w)) + ¢(g9(v)) — g(u) 2 0, forallve H,

which implies

(3.21) (Tv, g(v) — g(w)) + ¢(g(v)) — pg(u) = 0,
sinceT is g-pseudomonotone.
Takingg(v) = J,[g(u) — pTu] = g(w), (Whereg(w) is defined by[(3/8)) in (3.21), we have

(Tw, g(w) — g(u)) + (g(w)) —(g(a)) = 0,
from which, we have
(3.22) (9(u) — g(u), pTw) = p(R(u), Tw) + pp(g(w)) — pp(g(w)).
Settingu = g(w), z = g(u) — pT'w andv = g(u) in (2.6), we have
(9(w) — g(u) + pTu, g(u) — g(w)) + pp(g(u)) — pe(g(w)) = 0,

from which, we obtain

(9(u) = g(u), R(u)) = (R(u), R(u) — pTu) — pp(g(a)) + pe(g(w))

+ p(Tu, g(u) — g(u)).

(3.23) = (R(u), R(u) — pTu) — pp(g(u)) + pp(g(w)),
where we have used the fact that the operata pseudomonotone.

Adding (3.22) and[(3.23), we have
{9(u) = g(u), R(u) + pTw) = (g(u) — g(), d(u))

(3.24) > (R(u), D(u))
= (R(u), R(u) — pTu + pTw)
> | R(w)|)* = p(R(u), Tu — Tw)
(3.25) > (1= o) R(u)]f?, using [3:IF),
the required result. O
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Lemma 3.4.Letu € H be a solution of (2]1) and let, ., be the approximate solution obtained
from Algorithn{3.4. Then

e RIS ki LACO1
(3.26) l9(unt1) = g(@]" < llg(un) — g(@)]] )

Proof. From (3.16),[(3.20) and (3.24), we have
lg(tnsr) = g(@1* < llg(un) — 9(@) — cnd(un)|?
< llg(un) = g(@)|I* = 200 (g(u) — g(a), d(un))
+ apld(un) |
< llg(un) — g(@)|* = an(R(un), D(un))
< llg(un) — g(@|* = an (1 = o) || R(un)||*

< lg(un) — g(a? - L= T

the required result. O

—glu
—glu

Theorem 3.5.Letg : H — H be invertible and lef{ be a finite dimensional space.udf,
is the approximate solution obtained from Algorithm| 3.4 and H is a solution of[(2.[1), then
lim,, o u, = .

Proof. Letw € H be a solution of[(2]1). Fron (3.5), it follows that the sequefi¢g(u) —
g(u,)||} i1s nonincreasing and consequently, } is bounded. Furthermore, we have

o0

>- L= P < gtua) - gt

n=0

which implies that

(3.27) lim R(u,) = 0.

n—oo

Leta be the cluster point ofu,, } and the subsequenge,,, } of the sequencéu,, } converge to
@ € H. SinceR(u) is continuous, so

R(1) = lim R(uy;) =0,

Jj—oo

which implies that: solves the general mixed variational inequaljty (2.1) by invoking Lemma

[3.1. From[(3.2p), it follows that

lg(uns1) = g@|* < llg(un) — g(@)[|*.
Thus it follows from the above inequality that the sequefcg}l has exactly one cluster point
u and
Tim_ g(un) = g(@).

Sinceg is invertible, then

lim (u,) = a,

n—oo

the required result. O
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