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ABSTRACT. New bounds are developed for tﬁ‘ebyéev functional utilising an identity involv-
ing a Riemann-Stieltjes integral. A refinement of the classiehy3ev inequality is produced
for f monotonic non-decreasing,continuous and\ (g; t,b) — M (g;a,t) > 0, for ¢ € [a, b]
whereM (g; ¢, d) is the integral mean ové, d] .
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1. INTRODUCTION

For two given integrable functions da, b , define theCebysev functional (2, 3] 4])

1 1 1
@) T [ @@ - [ [
In [1], P. Cerone has obtained the following identity that involves a Stieltjes integral (Lemma
2.1,p. 3):

Lemma 1.1. Let f,g : [a,b] — R, wheref is of bounded variation ang is continuous on
la,b] , then theT (f, g) from (1.1) satisfies the identity,

1 b
(1.2) (9= / W (1) df (1),
where
(1.3) U ()= (t—a) A(t,b) — (b— 1) Aa,t),
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2 P. CERONE AND S.S. DRAGOMIR

with

(1.4) Afe,d) ::/ g (x)dz.

Using this representation and the properties of Stieltjes integrals he obtained the following
result in bounding the functiondl (-, -) (Theorem 2.5, p. 4):

Theorem 1.2. With the assumptions in Leminall.1, we have:

(sup [W ()] Vo (),
te(a,b]
1
(1.5) [T'(f,9) < (b—a) N LD ()] dt, for L — Lipschitzian;
f W (t)| df (t) for f monotonic nondecreasing,

where\/’ (f) denotes the total variation gf on [a, b] .

Ceronel[1] also proved the following theorem, which will be useful for the development of
subsequent results, and is thus stated here for clarity. The nofetionc, d) is used to signify
the integral mean of over|c, d] . Namely,

A
(16) Mgy =20 = L [
Theorem 1.3.Letg : [a,b] — R be absolutely continuous da, b| , then for
(1.7) D (g;a,t,b) :== M (g;t,b) — M (g;a,t),
( (5 19 - g € Lo [a,b];
b 1
t—a t)? | a
[ ) g € Ly o],
8 IPlgatdli<y g, ¢ € Lifa,
Ve (g), g of bounded variation;
( (5%) L, g is L — Lipschitzian.

Although the possibility of utilising Theorem 1.3 to obtain bounds/qn) , as given by[(1]3),
was mentioned in 1], it was not capitalised upon. This aspect will be investigated here since
even though this will provide coarser bounds, they may be more useful in practice.

A lower bound for theCebySev functional improving the classical result du€&bysev is
also developed and thus providing a refinement.

2. INTEGRAL INEQUALITIES

Now, if we use the functiog : (a,b) — R,

) dx Y9 (x)dx
(2.1) p(t) =D (g;a,t,b) = ftb_t f“fil ,
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then by [1.2) we may obtain the identity:

1
(b—a)”
We may prove the following lemma.

Lemma 2.1.If g : [a,b] — R is monotonic nondecreasing ¢m b] , theny as defined by (2]1)
iS nonnegative ofu, b) .

(2.2) T(f.9) =

b
/(t—a)(b—wu)df(t).

Proof. Sinceg is nondecreasing, we ha\fég (x)dx > (b—t)g(t) and thus froml)

(2.3) o(t)>g(t)— Ju f(_mzldx _ (= a)g(tt)_—afa g (z)dx >0

by the monotonicity of;. O

The following result providing a refinement of the classicabysev inequality holds.

Theorem 2.2. Let f : [a,b] — R be a monotonic nondecreasing function [anb] and g :
la,b] — R a continuous function ofu, b] so thaty (¢) > 0 for eacht € (a,b). Then one has

the inequality:
[ e-ol[ sewa [ ot

Proof. Sincey (¢) > 0 and f is monotonic nondecreasing, one has successively

b b xT)ax K xT)axr
TG0 = o | a0 [f'f Lot ]df<t)

1 b ftbg(:c)dx [lg(z)ds
= o [0 [ R

@ Tz ~(b-1)

> 0.

Jaro)

df (t)

1 b ftbg(x) dm‘ ‘fjg(;c) dg;‘
> o [a—a - [P - = )
1 b ftbg(g;)dw’ )fig(x)dx"
Z(b_a)g / (ta)(bt)[ e _ df (t)
:(b_la)z /abl(t—a) /tbg(:r)da: —(b—1) /:g(x)dx:df(t)
>0
and the inequality] (1]5) is proved. 0

Remark 2.3. By Lemmg 2.1, we may observe that for any two monotonic nondecreasing func-
tions f, g : [a,b] — R, one has the refinement Gebysev inequality provided b.4).

We are able now to prove the following inequality in termsfadnd the functionp defined

above in[(2.11).
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Theorem 2.4.Let f : [a,b] — R be a function of bounded variation and: [a,b] — R an
absolutely continuous function so thais bounded onja, b) . Then one has the inequality:

b

(25) 7(f.9)l < 7 el V (),

a

wherey is as given by[(2]1) and

¢l := sup | (t)]-
te(a,b)

Proof. Using the first inequality in Theorejn 1.2, we have

T (9l < 7 o \\P(t)!\a/(f)
= o o = (b—t)so(t)|\:/(f)
<G — s [(¢ = a) (b= 0] swp o (1) \/ (/)
<LV o,
since, obviouslysup, (.. [(t — a) (b — 1)] = ¢=2C. 0

The case of Lipschitzian functions: [a,b] — R is embodied in the following theorem as
well.

Theorem 2.5.Let f : [a,b] — R be anL—Lipschitzian function offu, b] andg : [a,b] — R an
absolutely continuous function ¢, b] . Then

4 —a)3 .
L if e Lola,b];

o

(26)  ITU9I<{ LO-a) [Bg+Lg+D]eel,. p>1, L+i=1
if o L,[a,0];

\ %H@”p if o€ Lia,b],

where|-|| , are the usual Lebesgye-norms onfa, b] and B (-, -) is Euler’s Beta function.

Proof. Using the second inequality in Theorém|1.2, we have

L b
7 (5.9)] < it == [ 6Dt 0wl
Obviously
b
/(b—t)(t—a)|gp()|dt< sup o (¢ |/ (t—a)(b—1t)dt
a te(a,b)
LI

giving the first result in[(216).
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By Holder’s integral inequality we have

/f(b—t) (t - a) o (6] dt < (/abw(tnpdtf (/j[(b—t) (t- ol ar)

= [lell, (b —a)* % [B(q+L.g+ D).

Qe

Finally,
b b
[ o-nu—ae@s sme-n@-al [ oo
a €la a
_(b— a)
lelly
and the inequality] (2]6) is thus completely proved. O

We will use the following inequality for the Stieltjes integral in the subsequent work, namely

b
en |[ ko o)
( sup |h(t |f|k: )| df (t)
te(a,b]
< (f | (6)|P df (¢ ) (f |k ()" df ( ))E, wherep > 1, - + 1 =1

sup [k (1)] f; [l ()| df (¢)
\ t€[a,b]
providedf is monotonic nondecreasing ahdk are continuous ofu, b] .

We note that a simple proof of these inequalities may be achieved by using the definition
of the Stieltjes integral for monotonic functions. The following weighted inequalities for real
numbers also hold,

max|a2| Z |b;| w;

n zfn

Z a; bzwz

i=1

(2.8) <

1 1
<Zwi|ai|p) (Zwi|bi|q) ,p> 1, %4_5:17
i=1 =1

wherea;, b; € Randw; > 0,i € {1,...,n}.
Using (2.7), we may state and prove the following theorem.

Theorem 2.6. Let f : [a,b] — R be a monotonic nondecreasing function fand] . If g is
continuous, then one has the inequality:

BINCIOAC

L b—t) (t — a)]" df ( )P df (
29 (g <) T (o= 0E-ard ) (& p'%i 1,|;f+ ;)_ :

(b1)2 sup lp (t |f (t—a)(b—1t)df (t).

. a,b]
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Proof. From the third inequality i (I|5), we have

@10 Tl s [ ROl

(b_lay/ (b=1)(t —a)[p@)|df (t).

Using (2.7), the inequality (2.9) is thus obtained. O

3. MORE ON CEBYSEV'S FUNCTIONAL

Using the representatiop (1.2) and the integration by parts formula for the Stieltjes integral,
we have (see alsol[4, p. 268], for a weighted version) the identity,

6 7(r9) = o | [0-0 ([ w-adsw)ari

(b—a)’
+ [e-a ([ o-wisw)aro]
The following result holds.

Theorem 3.1. Assume thaff : [a,b] — R is of bounded variation ang : [a,b] — R is
continuous and of bounded variation @nb] . Then one has the inequality:

(32) (5.0l < 5V @V ().

(3.3) T (f,9)] <

If g : [a,b] — R is continuous and monotonic nondecreasing, then

t€fa,b

+ s [i1-a [/tbgw)du—g(t)(b—wﬂ}\i/(f)

telab

@) Tl { sup [(0-1) [0 =)0~ [ g0

{0000~ a0

t€la,b]

+ sup [ng(U)du—g(t)(b—t)}} x Vo (),

te[a,b]

IN

i{sup [(6) — 25 2 9 (w) du

t€la,b]

+ sup [b—it g (u) du — g(t)} } Vo (f).

te[a,b]
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Proof. Denote the two terms i (3.1) by

b s [o-0 ([ - aww) o

L ::ﬁ/ab@—a) ([0-wisw)ar.

Taking the modulus, we have

and by

b

s g2 am |00 [ 6-aww]| Vo
and
L b b d b
b= Gz o) [ - wanl| Vo
However,
s =0)| [ (=g )| < s [(b—t) <t—a>\a/<g>]

t

< sup [(b—1)(t —a)] sup \/ (9)
t€lab] t€lad]

= 0=y )

a

and, similarly,

[ o=

sup l(t —a)

t€la,b]

Thus, from[(3.1),

T(F.0)l <10+ 1Bl < 5V @)V ()

a

and the inequality| (3]2) is proved.
If gis L—Lipschitzian, then we have

/t(u—a)dg(u) gL/t(u—a)du:L(tT_“)2
and ' '

/tb(b—u)dg(u) gL/tb(b—u)alu:L<[)T_t)2
and thus )

1< gt s [0=0) ¢~ o] V.
and

2 ( — CL) t€(a,b]

Bl < sl swp (- a) -0\ ().

J. Inequal. Pure and Appl. Math3(5) Art. 77, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

8 P. CERONE AND S.S. DRAGOMIR

Since

then

and, similarly,

Consequently

(0l <0+ 16l < D\ ()

a

and the inequality| (3]3) is also proved.
If g is monotonic nondecreasing, then

/at(u—a)dg(U) S/at(u_a)dQW)—(t—a)g(t)—/atg(u)du

and
/t (b —u)dg (u) S/t (b —u)dg (u) :/t g(u)du—g(t)(b—1).
Consequently,
1= G ap o (00 6= a9~ o[V
it s [(t= @) g () = [lo () du] V(9.
S ,

itil[lpb] [g (1) = 75 Jy 9 (w) dU] Vo (f),

and

1< s s [i=a [ [ sa-awe-0]| V9

e sup ([ g () du—g (56— ] V5 ().

tela,b]

IA

Lsup [55 g () du—g (0] V2 (),

te(a,b]

and the inequality (3]4) is also proved.

The following result concerning a differentiable functign [a, b — R also holds.
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Theorem 3.2. Assume thalf : [a,b] — R is of bounded variation ang : [a,b] — R is
differentiable on(a, b) . Then,

@5) IT(f.9)l
<o Y

sup [(6=0) (0= )19,

tela,b
+oup (0= 1)t =) 9] I o € Lala bl
tela,

{ sup [(6=0) (6= ) [0,

(D)7 | tefap)
% g if ¢ €L,lab
+ sup t—a)(b=1)" gl y,| ¢ I 9" € Lypla,b],
tela,
p>1,1 5 +1 i 1;

1 { up [(b —1)(t —a)’ Hg’lha,ﬂ,oo]

tela,b

t€la,b]

+ sup (6= a) (0= 07 0 } f o € Lola.b

/

1 .
5 19" lap1. if g€ Li[a,b];

b 1
2¢(q+1)(b—a)e -
\/ (f) X (2 i 1)l+2 ||g,||[a,b},p if g/ S LP [a7b] )
a q ?
p>1, % + é =1;
4(b—a) :
Y P € Lolod].

where the Lebesgue norms over an intefivad] are defined by

1l (/ e |pdt> l<p<o

1ll . a1,00 = €55 sup |h(8)].

te(e,d]

and

Proof. Sincey is differentiable or{a, b) , we have

[ =g

[ =g

(3.6)
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((t—a) Hg/H[a,t],l

IN

1
(i =) du) " gl p> 1 2+ =1

| [ (= a)dullg']] g0
((t—a) [19']] g

( +
= —%||g||atp’p>1’p+ :17

and, similarly,
(((b—1) Hg/H[t,b],l

(b— t)*l

(3.7) s

19/l P> 1, L1 = 1;

[ o]

b— 2
. ( gt) ||9/||[t,b},oo

With the notation in Theorein 3.1, we have on using|(3.6)

((b=t) (= a)llg'lljg.
1 b (b—t)(t +3 1,1 _ 1.
< 5z >2\a/(f)~t23113)] THQHWW p>1 545 =1
-1t
y
and from [3.7)
((t=a) =) [lg'llj14.1
RN (t—a)(b—t) "4 1,1
| 12| < (b—a)Z\/(f)‘til[ig] WHQHW,W p>Lp+i=1
Ry 7

Further, since
T (f,9)| < || + |L2],

we deduce the first inequality ip (3.5).
Now, observe that

sup [(b—t) (t—a)llg'lly, 1} < Sup [(b—1) (t—a)] sup [|g]|fn .

t€la,b b] te(a,b]

(b—a)”
= 1 lg ||[a,b},1’
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(b-t)t—a)s
sup 1 ||g ||[a,t]7p
t€[a,b] (g+ 1)«
1 1
< — sup [(b —t)(t— CL)H"] sup ||9/||[a,t},p
(q + 1) a t€(a,b] t€[a,b]
= My 119 | fupp
where
1
My = —— sup [(b—)(t—a)™*i]

(q + 1)5 t€la,b]

Consider the arbitrary functiop(t) = (b—t)(t—a)", r > 0. Thenp' (t) = (t—a)"
[(r+1)b+ a — (r + 2) t] showing that

(1 {a+@+1w} (b—a) " (r+ 1)
Sup = = o
te(a,b] p P r+2 (r+2) i
Consequently,
1 1 1
o4 =)t qlgt D (b—a)T
q 1 1 - 1 :
(g+1)7 (2q+1)**a (2¢+1)*"4
Also,
(b—1t)(t —a)’ 1
sup [ 5 19 a0 | < 5 suP [(0—1) (t = a)*] sup ||9'lljg.00
t€la,b] t€la,b] t€la,b]
2 (b - a)3 /
=T 97 g H[a,b],oo'
In a similar fashion we have
(b—a)®
sup | (¢ = a) (6= D) 1lg' 1] < 7 19 o
te€(a,b]

(t—a)(b—t""s alg+1D) G-t
sup 1 lg ||[t,b},p < or 1 lg ||[a,b],p7
telab) (q+ 1) (2¢+1)*"
and
(t—a)(b-t) 2(b—a)’
ﬁga[ 5 ol a0 | < =57 19 lap.00
and the last part of (3.5) is thus completely proved. O

Lemma 3.3. Letyg : [a,b] — R be absolutely continuous da, b] then for

(3.8) @ (t) = M(g;t,b) — M(g;a,t),
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with M (g; ¢, d) defined by[(Z]6),

( (539l 9 € Loc[a,b];
—=4r gl ¢ € Lala,b],
(B+1)P
a>1, é + % =1,
(3.9) 1Pl <9 11911, g € Ly[a,b];
Ve i(g), ¢ of bounded variation;
| (5%) L, g is L — Lipschitzian,
and forp > 1
( —a 1+1
(bT) P ||g/||oo ) g/ € Lo [a7 b] ;
p 1
b [(t—a)P+(b—t)° 15 P
(e [e=e=] ) ol o Lt
>1, 1+ 5 =1
(310) gl < . “Thatp
(b—a)r gl 9" € Li[a,0];
(b— a)% Ve (9). g of bounded variation;
b—a 141 . . .
[ (554) " L, g is L — Lipschitzian.

Proof. Identifying ¢ () with D (g; a, t,b) of (1.7) produces bounds f¢p (¢)| from (1.8). Tak-
ing the supremum overe [a, b] readily gives|(3.9), a bound fdjrp|| . -

The bound forf|||, is obtained from8) using the definition of the Lebesguaorms
over|a, b] . O

Remark 3.4. Utilising (3.9) of Lemma 33 i (2]5) produces a coarser upper bour|dfof, g)| .
Making use of the whole of Lemmnja 3.3 in (R.6) produces coarser bounds fpr (2.6) which may

prove more amenable in practical situations.
Corollary 3.5. Let the conditions of Theorgm 2.4 hold, then

( (53 9], 9" € Loca,b];

=gl ¢ € Lala,b],
(B+1)7
1 b a>1, é + % =1,
(3.11) GIESAVAGE RPN Jelijab:
Ve i(g), g of bounded variation;
| (52) L, g is L — Lipschitzian.
Proof. Using (3.9) in[(2.5) producep (3]11). O

Remark 3.6. We note from the last two inequalities ¢f (3]11) that the bounds produced are
sharper than those of Theor3.l, giving constants afd ; compared with; and - of
equations[(3]2) and (3.3). Fordifferentiable then we notice that the first and third results of
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(3.11) are sharper than the first and third results in the second cluster|of (3.5). The first cluster
in (3.5) are sharper where the analysis is done over the two subintgryvalsind(z, b).
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