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ABSTRACT. In the present paper, by virtue of new analysis technique, we will establish several
strong convergence theorems for the modified Ishikawa and Mann iteration schemes with errors
for a class of asymptotically demicontractive mappings in arbitrary real normed linear spaces.
Our results extend, generalize and improve the corresponding results obtained by Igbokwe [1],
Liu [2], Osilike [3] and others.
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1. INTRODUCTION

Let X be a real normed linear space andJaienote thenormalized duality mappingfom
X into 2% given by

J@)={f e X" (z, f) =lzI*=fII"}, z€X,

where X* denotes the dual space af and (-,-) denotes the generalized duality pairing of
elements betweeX and X™.
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Let F(T) denote the set of all fixed points of a mappifigLet C' be a nonempty subset of
X.

A mappingT : C — C'is said to bek-strictly asymptotically pseudocontractivéth a
sequencék,} C [0,00), k, > 1 andk, — 1 asn — oo if there exists: € [0, 1) such that

(1.1) |1T"e = T"y|)* < kalle — yl* + K l|(x = T"2) — (y = T"y)||”

foralln > 1andzx,y € C.
The mappindl’ is said to beasymptotically demicontractiweith a sequencék,,} C [1,0)
andlim,, .. k, = 1if F(T) # () and there exist& € [0, 1) such that

(1.2) 1Tz — pl|* < kplle — pl* + kllo — T"z|”

foralln > 1,2 € C'andp € F(T).

The classes of-strictly asymptotically pseudocontractive and asymptotically demicontrac-
tive mappings, as a natural extension to the class of asymptotically non-expansive mappings,
were first introduced in Hilbert spaces by L[u [5] in 1996. By using the modified Mann iter-
ates introduced by Schul[4] 5], he established several strong convergence results concerning
an iterative approximation to fixed points bfstrictly asymptotically pseudocontractive and
asymptotically demicontractive mappings in Hilbert spaces. In 1998, Odilike [3], by virtue of
normalized duality mapping, first extended the concepissifictly asymptotically pseudocon-
tractive and asymptotically demicontractive maps from Hilbert spaces to the much more general
Banach spaces, and then proved the corresponding convergence theorems which generalized the
results of Liu [2].

A mappingT : C — C'is said to bek-strictly asymptotically pseudocontractivath a
sequencek,} C [0,00), k, > 1 andk, — 1 asn — oo if there existk € [0,1) and
j(x —y) € J(z — y) such that

(1.3) (I =T"z = (I =T")y,j(x —y))
(1= BT =T — (T =Ty = S (8 = 1)z —

N | —

foralln > 1andx,y € C.

The mappind is called arasymptotically demicontractive mappinith a sequencék,, } C
0, 00), lim,, ..o k, = 1if F(T) # () and there exist € [0,1) andj(x — y) € J(z — y) such
that

@8 =T ) 2 50— K)o Tl — S0 = 1) - pl?

| —

foralln > 1,2 € Candp € F(T).
Furthermorel is said to beuniformly L-Lipschitzianif there is a constant > 1 such that

(1.5) [Tz = T"y|| < Lz -y

forall z,y € C andn > 1.

Remark 1.1. The definitions above may be stated in the setting of a real normed linear space. In
the case oX being a Hilbert space], (1.1) arjd ([L.2) are equivalenttg (1.3)and (1.4), respectively.

Recall that there are two iterative schemes with errors which have been used extensively by
various authors.
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Let X be a normed linear spac€,be a nonempty convex subset®fand? : C' — C' be a
given mapping. Then theodified Ishikawa iteration schenfe,, } with errorsis defined by

T € C,

Ty = (1 — o)y + T (Yn) + wn, n > 1,

where{«,}, {3.} are some suitable sequences/inl] and {u,}, {v,} are two summable
sequences iX .

With X, C, {«,,} andx, as above, thenodified Mann iteration schen{e:,,} with errorsis
defined by

xr1 € C,
(1.6)
Tor1 = (1 —ap)zn + 0, T () + upy, n > 1.

Let X, C'andT be as in above. Lda, }, {b,}, {c.}, {a.}, {0/} and{c, } be real sequences
in [0, 1] satisfyinga,, + b, + ¢, = 1 = a, + b, + ¢, and let{u,} and{v,} be bounded
sequences iiW'. Define themodified Ishikawa iteration schemés,,} with errors generated
from an arbitraryr; € C as follows:

Yn = AnTp + bnTn(In) +c i, n>1,
2.7)
Tpi1 = @y + 0, Ty, + v, n>1.

In particular, if we seb,, = ¢,, = 0 in (1.7), we obtain the modified Mann iteration scheme
{z,,} with errors given by

X € C,
(1.8)

/ / /
Tpy1 = QL Ty + 0, T 2, + v, n>1.

Osilike [3] proved the following convergence theorems festrictly asymptotically demi-
contractive mappings:
Theorem 1.2.[3] Letg > 1 and letE be a realg-uniformly smooth Banach space. Li€tbe a
nonempty closed convex and bounded subsktarid7 : K — K be a completely continuous
and uniformlyL-Lipschitzian asymptotically demicontractive mapping with a sequéhgcle C
[1,00) foralln > 1,k, — Llasn — coand> > (k,> — 1) < oco. Let{a,} and{3,} be real
sequences ifv, 1] satisfying the conditions:
(i) 0 <e<cua,®! < 3{g(1—Fk)(1+ L)@ 2} —eforall n > 1and for some > 0,
(i) >0, Bn < o0.
Then the sequender,,} defined by(!.6) with v,, = 0 andw, = 0 for all n > 1 converges
strongly to a fixed point of".
Very recently, Igbokwel[2] extended the above Theofem 1.2 to Banach spaces. More pre-
cisely, he proved the following results:
Theorem 1.3.[2] Let £’ be a real Banach space arfd be a nonempty closed convex subset of
E. LetT : K — K be a completely continuous and uniforniyLipschitzian asymptotically
demicontractive mapping with a sequerdég} C [1,00) foralln > 1, k, — 1asn — oo and
S>> (k2 — 1) < oo. Let the sequencgr,, } be defined byfl.7)) with the restrictions that

() an+by,+c,=1=da,+b, +c,
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(i) 22,20 b, = o0,
iii) 3200, (V)? < 00, 322 ¢l < 00, 3. b, < coandYC e, < oc.
Then the modified Ishikawa iteratidm,, } defined by(l.6]) and converges strongly to a
fixed pointp of T'.

It is our purpose in this paper to extend and improve the above Thgorém 1.3 from Banach
spaces to real normed linear spaces. In the case of Banach spaces, we use the Cdnddion
replace the assumption thatis completely continuous.

In the sequel, we will need the following lemmas:

Lemma 1.4. Let X be a normed linear space ard be a nonempty convex subset'of Let
T : C — C be a uniformlyL-Lipschitzian mapping and the sequerfeg } be defined by1.7).
Then we have

(1.9) | Tz — xpl| < | T2 — 2| + L1+ LT 20y — 20|
+ L1+ L)ey 4 llvn—1 — zn]
+ L1+ L)eqorlltnr —
+ Le oy — T oy, n>1.
Proof. See Igbokwel[1, Lemma 1]. O

Lemma 1.5. Let X be a normed linear space and be a nonempty convex subset'of Let

T : C — C be a uniformlyL-Lipschitzian and asymptotically demicontractive mapping with a
sequencék, } such thatt, > 1and) ° (k, — 1) < co. Let the sequencgr,, } be defined by
with the restrictions

o oo oo oo
Zb;b:oo, Z(b;b)2<oo, Zc;l<oo, ch<oo.
n=1 n=1 n=1 n=1

Then we have the following conclusions:

(i) lim, o ||z, — p|| exists for any € F(T).
(i) lim, . d(z,, F(T)) exists.
(iii) liminf, . ||z, — Tx,| = 0.

Proof. It is very clear that{(1]7) is equivalent to the following:

Yn = (L = bp)xy, + 0,T™(xy) + cn(uy — ), n>1,
(1.10)
Tpr1 = (1 =0)x, + 0, Ty, + ¢ (v, — x,), n>1.

Foranyp € F(T), let M > 0 be such that
M = max{sup{||un — pl|}, sup{[[vn —pll}}-
Observe first that
(1.11) [yn = Il < (1= ba)llzn = pll + bnLllzn — pll + cn(M + |20 — pl])
< (14 D)llan —pll + M

and
(1.12) 1Ty — @l < Ly — pll + [0 = pll

< LI + L)[|zn — pll + M] + ||z — pl|

< [1+4 L(1 + L)]||z, — p|| + ML.
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Observe also that
(1.13) [Zn+1 = Yall < Nz = yull + G117 yn — pll + [l — pll]
+ culllvn = pll + llyn — pll]
< [bn(1+ L)+ cll|lzn — pl| + (cn + ¢, )M
+ [0, (1 + L) + ¢ J[(1 + L)z — pll + M]
S O'nHQJn - p“ + Sns
where
0n = [bn(14+ L) + ¢, + b, (L + L)+ c,)(1+ L)
and
Go=M[b, (1+ L)+ 2, + ¢l
Thus we have
(1.14) |ns1 = 2all S VNT"y = 2l + (M + i — )
< bpoullzn = pll + 6o + (M + [z, — ).
Using iterates[(1.10), we have
(L.15)  Jurs = pl® < 2w — pllll@nss — pl = Uyl@n — T"nr i (@01 — )
+ C%(Un — T, J(Tni1 — )|
1 1 .
< §H$n _p”2 + §”xn+1 - pH2 - b;1<37n+1 —T"vp11, j(Tns1 — D))
+ b{n <xn+1 — T+ T Y — Tn$n+1>j($n+1 - p))
+ (M + [z — pl)#nsr = pll,
which implies that
(1.16) | Zni1 — p”2 < |lzn — p||2 — (1= Kb, |2n — T”$n+1||2
+ 0 (k= Dllznr = pl* + 200, (2041 — 24|
+ 1T = Tyl @041 — 2
+ 20, (M + ||z — pl)|#nr1 — pll-
Substituting[(1.12) 4 (1.14) in (1.L.6) and, after some calculations, we obtain
(1.17) [@ner = pl* < (L4 y)llzn = plI* = (1= B)b [lenrs — T @ ||
for all very largen, where the sequende, } satisfies thad >~ v, < co. A direct induction
of (1.17) leads to
(1.18) |Zns1 — p||2 < ||z _p“2 + My, = b |20 — T”:Bn+1||2,
which implies thatim,, ., ||z, — p|| exists by Tan and Xu[7, Lemma 1] and so this proves the

claim (i). The claim (ii) follows from[(1.18).
Now, we prove the claim (iii). It follows fron (1.18) that

o0
D W wnpr = Trapa | < 00

n=1
and hence

liminf ||z, — T"2p4]| =0
since}_ b, = oo. Therefore, we havéminf, . ||z, — T"z,|| = 0 by (1.7) and so
liminf, .« ||z, — T'z,|| = 0 by Lemmg 1.4. This completes the proof. O
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A mapping? : C' — C with a nonempty fixed point sét(7") in C' will be said to satisfy the
Condition(A) on C' if there is a nondecreasing functigh: [0,00) — [0,00) with f(0) = 0
andf(r) > 0forall r € (0, 00) such that

| = Tal| = f(d(z, F(T)))

forallz € C.

2. THE MAIN RESULTS

Now we prove the main results of this paper.

Theorem 2.1.Let X be a real normed linear spacé; be a nonempty closed convex subset of
X andT : C' — C be a completely continuous and uniforniiyLipschitzian asymptotically
demicontractive mapping with a sequedég} C [1, c0) suchthat:, > 1and) °  (k,—1) <

0. Let the sequencgr,, } be defined byf1.7)) with the restrictions

Zb;:oo, Zb;2<oo, Zc;<oo, ch<oo.
n=1 n=1 n=1 n=1
Then{z, } converges strongly to a fixed poinbf 7.

Proof. It follows from Lemmg 1.5 that

liminf ||z, — Tx,| = 0.
SinceT is completely continuous, we see that there exists an infinite subsegliengesuch
that {x,, } converges strongly for some € C' andTp = p. This shows thap € F(T).

However,lim, ., ||z, — p|| exists for anyp € F(T") and so we must have that the sequence
{z,,} converges strongly tp. This completes the proof. O

Theorem 2.2.Let X be a real Banach spacé; be a nonempty closed convex subseY and

T : C — C be a uniformlyL-Lipschitzian and asymptotically demicontractive mapping with a
sequencék, } C [1,00) such thatk, > 1 and)_ > (k, — 1) < oo. Let the sequencgr, } be
defined by(L.7) with the restrictions

Zb; = 00, Zbﬁf < 00, ZC; < 00, ch < 00.

n=1 n=1 n=1 n=1
Suppose in addition that’ satisfies the ConditioiA), then the sequencgr,} converges
strongly to a fixed poing of 7.
Proof. By Lemmg 1.5, we see that

liminf ||z, — Tx,| = 0.
SinceT satisfies the ConditiofA), we have
liminf f(d(z,, F(T))) =0

and hence

liminf d(z,,, F(T)) = 0.

n—oo

By Lemm4 1.5 (ii), we conclude tha{z,,, F(T')) — 0 asn — oc.
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Now we can take an infinite subsequeres, } of {z,,} and a sequencp;} C F(T) such
that||z,, —p;|| < 277. SetM = exp {>_>" | 7, } and writen;; = n; + [ for somel > 1. Then
we have

(21) ||x”j+1 _pj“ = ||x”j+l _ij
<[+ an+z—1]||$nj+l—1 — pj|

-1
< exp {Z %j+m} |20, — pjll

m=0
M
< —.
Y
It follows from (2.1) that
2M +1
[pjs1 —psll < o1
Hence{p,} is a Cauchy sequence. Assume that- p asj — oo. Thenp € F(T') sinceF(T)
is closed and this in turn implies that — p asj — oo. This completes the proof. 0J

Remark 2.3. We remark that, ifl’ : C' — C'is completely continuous, then it must be demi-
compact (cf.[[6]) and, ifl" is continuous and demicompact, it must satisfy the Conditibn
(cf.[6]). In view of this observation, our Theorgdm .1 improves Thedrer 1.3 in the following
aspects:

(i) X may be not a Banach space.
(i) 7"may be not completely continuous.
(iif) Our proof methods are simpler than those of Igbokiwe [1, Theorem 2].

As corollaries of Theorenjs 2.1 ahd 2.2, we have the following:

Corollary 2.4. Let X be a real normed linear spacé, be a nonempty closed convex subset of
X andT : C — C be a completely continuous and uniformiyLipschitzian asymptotically
demicontractive mapping with a sequedég} C [0, oo) such that,, > 1and) > (k,—1) <

co. Let the sequencgr, } be defined byI.8) with the restrictions

Zb;:oo, Zb;2<oo, Zc;l<oo.
n=1 n=1 n=1
Then{z, } converges strongly to a fixed poinbf 7.

Proof. By takingb,, ¢, = 0 for n > 1in Theoren| 2.1, we can obtain the desired conclusion.
O

Corollary 2.5. Let X be a real Banch spacé; be a nonempty closed convex subseXaind

T : C — C be a uniformlyL-Lipschitzian asymptotically demicontractive mapping with a
sequencék, } C [0,00) such thatk, > 1 and)" >, (k, — 1) < co. Let the sequencgr, } be
defined by(1.8)) with the restrictions

oo [o.¢] (e.)

;o 2 /
g b, = oo, E b;, < oo, E ¢, < 00.
n=1 n=1 n=1

If T satisfies the Conditiof4) on the sequencgr, }, then{x, } converges strongly to a fixed
pointp of T

Proof. It follows from Theorenj 22 by taking,, ¢, = 0 foralln > 1. O
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Remark 2.6. Using the same methods as in Lemimg 1.5, Theofems 2.l @nd 2.2, we can prove
several convergence results similar to Theorens 2.[L ahd 2.2 concerning on the modified Ishikawa
iteration schemes with errors defined (yd).

Remark 2.7. Igbokwe [1, Corollary 1] has shown that,if : C' — C'is asymptotically pseu-
docontractive, then it must be uniformfy-Lipschitzian and hence our Theorefms|2.1 2.2
hold for asymptotically pseudocontractive mappings with a nonempty fixed poift 38t
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