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ABSTRACT. We study a certain monotonicity property of ratios of means, which we call a strong
inequality. These strong inequalities were recently shown to be related to the so-called relative
metric. We also use the strong inequalities to derive new ordinary inequalities. The means
studied are the extended mean value of Stolarsky, Gini's mean and Seiffert's mean.
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1. INTRODUCTION AND MAIN RESULTS

In this paper we study a certain monotonicity property of ratios of symmetric homogeneous
means of two variables. In this setting the monotonicity property can be interpreted as a strong
version of an inequality. The means considered are the extended mean value of Stolarsky [18],
Gini's mean[6] and Seiffert's mean [15].

These kind of strong inequalities were showri in [7] to provide sufficient conditions for the so-
called relative distance to be a metric. This aspect is described in Sgction 7, which also contains
the new relative metrics found in this paper. A question by H. Alzer on whether the results
of [7], specifically Lemma 4.2, could be generalized was the main incentive for the present
paper. Another motivation for this work was that monotonicity properties of ratios have been
found useful in several studies related to gamma and polygamma functions, see for instance [5],
[10], [1] and [2]. Such inequalities have also been used, implicitly, in studying means by M.
Vamanamurthy and M. Vuorinen in the paperl[20], an aspect further exposed in $ecfion 2.2.

Let us next introduce some terminology in order to state the main results. DRnote
(0,00) and letf, g: [1,00) — R~ be arbitrary functions. We say thAts strongly greater than

ISSN (electronic): 1443-5756

(© 2002 Victoria University. All rights reserved.

This work was supported in part by the Academy of Finland.
013-02


http://jipam.vu.edu.au/
mailto:peter.hasto@helsinki.fi
http://www.helsinki.fi/char 126
elax hasto/
http://www.ams.org/msc/

2 PETERA. HASTO

or equal tog, in symbolsf > g, if z — f(x)/g(x) is increasing. By @aymmetric homogeneous
increasing meairfof two variables) we understand a symmetric functidn R~ x R~ — R~
which satisfies

min{z,y} < M(z,y) < max{x,y}

andM (sx, sy) = sM(x,y) for all s,z,y € R~ and for whicht,,(z) := M(z, 1) is increasing

for z € [1,00). The functiont,, is called thetrace of M and uniquely determines/, since
M(x,y) = yty(z/y). If M and N are symmetric homogeneous increasing means we say that
M is strongly greater than or equalo, M = N, if ty; = ty.

Let us next introduce the means that will be considered in this paper. The extended mean
value, E; ;, was first considered by Stolarsky [n [18] and later by Leach and Scholander, [11],
who gave several basic properties of the mean. It is defined for distipot R~ and distinct
s,t € R\ {0} by

t s — 1/(s—t)
Egi(x,y) = (E—xf — Zt>
and E,(z,xz) := z. The extended mean value is defined for the parameter values0
ands = t by continuous extension, see Section 3.2. Let us also define the power means by
A, = Ey, 5, See also Sectidn 3.1.

In the paper[[12] Leach and Scholander provided a complete description of the values
s,t,p,q € R for which £,; > E, ;. The next theorem is the corresponding result for strong
inequalities. Notice that this result is a generalization[of [7, Lemma 4.2], which in turn is
the strong version of Pittenger’s inequality, seel [14]. We also state a corollary containing the
ordinary inequalities implied by the theorem.

Theorem 1.1.Lets, t,p,q € RT :=[0,00). ThenE,; > E, ,ifand only ifs+¢ > p + ¢ and
min{s, ¢} > min{p, ¢}.
Corollary 1.2. Lets,t,p,q e R”,s >tandp > q. If p+ ¢ > s+t andt > ¢ then

E&t < EM < (Q/p)l/(pfq)(s/t)l/(sft)ESJ_

Both inequalities are sharp.

Remark 1.3. Let M and N be symmetric homogeneous increasing means. The inequality
M < N is understood to mean that the real value inequadlity:, y) < N(z,y) holds for all

x,y € R”. The inequalityM < ¢N is said to besharpif the constant cannot be replaced by a
smaller one. Notice that this does not necessarily mean that the inequality cannot be improved,
for instance the previous one could possibly be replacetfby ¢N — log{1 + N}.

Remark 1.4. The first inequality in the previous corollary follows directly from the result of
Leach and Scholander, and is not as good (in terms of the assumptigng,onandt). The
upper bound does not follow from their result, however.

The Gini mean was introduced inl [6] as a generalization of the power means. It is defined by

s s\ 1/(s—t)
r+y
Gs,t('riy) = (xt +yt)

for x,y € R~ and distincts,t € R. Like the extended mean value, the Gini mean is continu-
ously extended te = ¢, see Sectiop 3]3.

The Gini means turn out to be less well behaved than the other means that we consider in
terms of strong inequalities. We give here two main results on inequalities of Gini means,
however, the reader may also want to view the summary of results presented in Se¢tion 5.3. The
following theorem gives a sufficient condition for the Gini means to be strongly greater than or
equal to an extended mean value and is also a generalization of [7, Lemma 4.2].
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Theorem 1.5. Leta,p,q € R*. ThenG,; = E,, forall s,t > 0 with s + ¢t = « if and only if
p+q < 3aandmin{p, ¢} < a.

If the parameters of the Gini mean are of similar magnitude then we are able to give a char-
acterization of the extended mean values that are strongly less than the Gini mean:

Theorem 1.6.Lets,t € R” with1/3 < s/t < 3 andp,q € R*. ThenG,, » E,, if and only
ifp+q<3(s+t)
Again we have a corollary of ordinary inequalities:
Corollary 1.7. Lets,t,p,q € R”,p > gandp+q < 3(s+t). Assume also thdt/3 < s/t < 3
orqg<s+t. Then
E,, <Gsp < (p/Q>1/(p_Q)Ep,q'
Both inequalities are sharp.

Remark 1.8. Contrary to the corollaries of the other theorems, this one provides, to the best
knowledge of the author, new inequalities.

The Seiffert mean was introduced In [15] and is defined by

T—y
P(z,y) =
() 4arctan(y/x/y) — 7

for distinctz,y € R> and P(z,z) := z. The next theorem provides a characterization of
those Stolarsky means which are strongly less than the Seiffert mean. Notice that the Stolarsky
mean is of particular interest to us, since it has been implicated in finding relative metrics, as is
described in Sectidn 7.

Theorem 1.9.DenoteS,, := Ey;_, for0 < a < 1. ThenP > S, ifand only ifa > 1/2.

Remark 1.10. We will call S, = E;;_, Stolarsky mean®llowing [20] and [7], since this
particular form of the extended mean value was studied in depth by Stolarsky in [19] and call
the family £, extended mean values, even though they too originated from [18] by Stolarsky.

The previous theorem has the following corollary containing the corresponding ordinary in-
equalities.

Corollary 1.11. If 1/2 < o < 1 then

1
Sy < P<—(1—a) s,
T

Both inequalities are sharp.

Remark 1.12. In the previous corollary the lower bound is decreasing and the upper bound is
increasing inxy (for any fixedx). Hence the best estimate fBrgiven by the previous corollary

IS
VTV p < WEE VIS
4 — ’ — T )

sinceS;, = Ay/,. Notice also that the first of these inequalities was given by A. A. Jager in
[15] in order to solve H.-J. Seiffert’s probleft, ; < P < E; ;. Once again however, the upper
bound is new. For another inequality Bf see Corollary 6]4.

The structure of the rest of this paper is as follows: in the next section we state some basic
properties of strong inequalities and show how the corollaries in this section follow from their
respective theorems. In Section 3 we present the complete definition of the means studied as
well as some simple results on their derivatives. Se¢tjon 4 contains the complete characteriza-
tion of strong inequalities between extended mean values, that is the proof of Theorem 1.1. In
Section b we present the proofs of Theorgms 1.5[and 1.6, relating extended mean values and
Gini means as well as some additional results summarized in Séction 5.3. $éction 6 contains
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the characterizations of strong inequalities between Seiffert's mean and the Stolarsky means. In
Sectior] ¥ we present a brief summary of the result regarding relative metrics from [7] and show
how the theorems of this paper yield new families of metrics.

2. STRONG INEQUALITIES

In this section we will consider some basic properties of strong inequalities and show how
the corollaries stated in the introduction are derived from their respective theorems.

2.1. Basic Properties of Strong Inequalities.Recall from the introduction that we say that
f is strongly greater than or equal to f = g, if z — f(z)/g(z) is increasing, where
f,g9: [1,00) — R~ are arbitrary functions. The relatigh= g is defined to hold if and only if
g = f. The following lemma follows immediately from the definition sinceis increasing if
and only ifz is increasing, fors > 0.

Lemma 2.1. Let f,g: [1,00) — R~ be arbitrary functions and > 0. Definef,(x) := f(z*)
andg,(z) := g(z*). Then following conditions are equivalent:
1) f=zg
(2) fs = gs and
Q) =g
Suppose next that g: [1,00) — R~ are differentiable functions. Theh>- ¢ if and only if
d(f/g)/dz > 0if and only if

o < ogif/gt _ dlogf dlogg
- dx dx dx
We see that in this situation the strong inequality is equivalent to an ordinary inequality between
the logarithmic derivatives.
We end this subsection by showing thats a partial order, as is suggested by its symbol. A
binary relation<d C X x X is called gpartial orderin the setX if

(1) = Qxforall x € X (reflexivity),

(2) if <y andy < x thenz = y (antisymmetry) and

(3) if z <y andy < z thenx < z (transitivity). [17, Section 3.1].
Let f,g,h: [1,00) — R~ be arbitrary functions. Thefi = f, sincef/f = 1 is increasing,
hence the property of reflexivity is satisfied. ff = g andg > h then f/g andg/h are
increasing, hence so is their produgt/,, which means thaf > h, hence> is transitive. The
antisymmetry condition is not quite satisfied, though + = cg with ¢ > 1 thenf > ¢ and
g = fbutf #£ g. One easily sees that the antisymmetry condition holds in the set of symmetric
homogeneous means, heneds a partial order in this set, which is the one that will concern us
in what follows.

2.2. Ordinary Inequalities from Strong Inequalities. In this section we will see how strong
inequalities imply ordinary inequalities. The method to be presented has been used in the con-
text of gamma and polygamma functions by several investigators, as noted in the introduction
and by M. Vamanamurthy and M. Vuorinen ([20]) in the context of means.

If M andN are symmetric homogeneous means thefl) = tx(1) = 1. Hence, ifM = N
then

tm(x)/tn(z) =ty (1)/tn(1) =1
for z > 1. To get an upper bound we observe thatjfz)/ty(z) is increasing orjl, co) then
tn(z) = emoo tn(2)

Y
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and soty, () < cty(x). Notice also that the constant in neither of the two inequalities can be
improved. Since both/ and NV were assumed to be homogeneous, the previous inequalities
imply that

N(z,y) =ytn(z/y) < ytm(z/y) = M(z,y) < cytn(z/y) = cN(z,y),

wherez,y € R~. Notice in particular that the relation implies the relation>, which is the
reason for the terminology “strong inequality”.

Applying this reasoning to the Theoreins|1.1, 1.9 1.5 ard 1.6 gives the Corgllaries 1.2,
[1.171 and 17, respectively, since

Eyi(z,1) ~ (s/)C 2, G, 4(x,1) ~ z and P(z,1) ~ 2z/7

asx — oo for distincts, t € R~.

3. THE MEANS

In this section we give the precise definitions of the means that are studied. We will also
define and calculate a certain variety of their derivatives.

3.1. Classical Means.In this subsection we define some classical means and prove an inequal-
ity between them that is needed in Secfipn 4.
The Arithmetic Geometri¢ HarmonicandLogarithmic meansre defined for:, y € R~ by

T+ 2x
Alz,y) = 5 y) G(z,y) :=+/xy, H(z,y) := x—i—yy
and
r—y
L = L =
(z,9) gl /y]” © +y, L(z,z) =z,

respectively. Moreover, we denote By the power mean of ordet A,(z,y) = [A(z%,y°)]"/*
fors € R\ {0} andA, = G. The next lemma is an improvement over the well known relation
L > G, sinceA > @G.

Lemma 3.1. We havel, = AY/3G?/3,
Proof. We need to prove that
L3(x,1) o (z—1)
z,1)G2(z,1)  (z+ 1)zlog’z
is increasing inc for x > 1 (we used Lemmp 2.1(3) with= 3). A calculation gives

f(x) = (2?2 + 4z + 1) log{z} — 3(2* — 1) (1)

(z + 1)222log*{z}
Hencef’(z) > 0 if and only if

f@) =

x?—1
_ >
22 4+4r+1~
Since clearlyy(1) = 0, it suffices to show thaj is increasing, which follows from

(2 + 4z + 1)%zg (z) = (2% + 4z + 1)? = 3z(2z(2® + 42+ 1) — (2* — 1)(2z + 4))
=(x-1*>0.

g(x) :=logx —3 0.
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3.2. The Extended Mean Value.Let z,y € R~ be distinct ands,t € R \ {0}, s # t. We
define theextended mean valweth parameters andt by

s s\ 1/(s—t)
tx® —
Es,t<x7y) = ( y ) )

saxt —yt

and also

1 2%logz —y®lo
E, s(z,y) == exp (- + & - ys gy) ’

5 — ys 1/s

Eo(x,y) = (Slog{x/y}) and Eyo(x,y) == \/7y.
Regardless of whetherand¢ are distinct we also defing; ,(z,z) := z. Notice that all the
cases are continuous continuations of the first general expressignfar, y) (this was proved
to be possible in [18]).

It should also be noted thdf,, = A, Eyy = G, E_1_» = H andE,, = L, and more
generally,A, = Es,, for s € R. Hence we see that all these classical means belong to the
family of extended mean values.

Let us next calculate the following variety of the logarithmic derivative:

xalog Egi(z,1) ]
ox
The reason for choosing this form has to do with the strong inequality (the logarithm, as was

seen in Sectiop 2.1) and simplicity of form (multiplying byand subtracting). Assume that
x> landalsos,t € R\ {0}, s #t. Then

()_ 1 S t
es’tx_s—t -1 x5—1)"

est(z) ==

1 sx®logx
es,s(£> T o1 - (IS — 1)27
1 1

es0(T) = -1 slogx

and
epo(z) = —1/2.

Note that for alls, € R we havee, ,(1+) := lim,_,; e, ,(z) = —1/2. It will be of much use to
us that

ess(r) =limeg (), eso(r) =limeg () and ego(x) = lim egz4(x),
’ t—s ’ t—0 ' ’ t,s—0 7

since this will allow us to consider only the general formula (with distin¢éte R \ {0}) and
have the remaining cases follow by continuity. Let us record the following simple result which
will be needed further on.

Lemma 3.2. For every pairs,t € R we have:, () < 0forall z € (1, 00).

Proof. It suffices to show this for distinagt t € R\ {0}. Assume further that > ¢. We have to

show that
S t

< .
xrs—1 " a2t —1
If £ > 0 we just multiply by(z* — 1)(2* — 1), whereupon the claim is clear, singe’ — tz° is
decreasing in: and hence less than or equakte t. Next if s > 0 > ¢ we have to prove that
-t

S —tx
< .
zs—1 " z7t—-1
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or, equivalentlys — ¢t < (—t)z*® + sz'. Since the right hand side is increasingrithis is clear.
The casé > s > t follows like the case > 0, since(z! — 1)(z* — 1) is again positive. [

We conclude this subsection by stating that forsall € R we have

. Oegy(z) s+t
lim ’ = ,
e—1+  Ox 12
a fact which is easy, though tedious, to check (differentiate and use I’'Hospital’s rule four times;

the proof is quite similar to that of Lemma B.3).

3.3. The Gini Mean. The Gini mean was introduced in [6] and is a generalization of the power
means. It is defined by

s s\ 1/(s—t)
r+y
Gs,t<x7y) = (.I‘t +yt) )

wherezx, y € (0,00) ands, ¢t € R are distinct. We also define

Gonliy) = exp (xs logx + y° logy) |
:ES _j’_ yS
Notice that the power means are the elemé&hts = A, in this family of means. The loga-
rithmic mean is not part of the Gini mean family, in fact, Alzer and Ruscheweyh have recently
shown that the only means common to the extended mean value and the Gini mean familes are
the power means, [3].
We easily find that

$8logGs,t(x,1)_1 1 ( t s )’
Ox s—t

gaul) = - t4+1 s +1

for s # tandz > 1 and

sx®logx 1

(x5 +1)2 2541

As with the extended mean value we find that = lim, . g, ;. We again have, (1) = —1/2
and it is easily derived thaf, ,(1) = (s +t)/4.

Js,s ({L‘) -

3.4. The Seiffert Mean. The Seiffert mean was introduced In [15] and is defined by

P(x,y) = darctan(y/z/y) — 7 - 2arcsin((z —y)/(z +y))

for distinctz,y € R~ andP(x, x) := «. For this mean we have

Olog P(x, 1 1 2\/x 1
po) = o ZBLD g L Ve ,
oz r—1 x4+ 1ldarctan(y/z/y) — 7
for x > 1. Also, it can be calculated that1+) = —1/2. Let us for once explicitly calculate

the limiting value of the derivative at

Lemma 3.3. We have
_dp(z) 1
lim = —,
=1+ dx 6

Proof. A direct calculation gives
) 1 r—1 1 4 1
p(r)=— + +
(x—1)2  ax(x+1)24arctan(y/z) — 7 (x + 1)% (4arctan(y/z) — m)?

B 2 1 1 2 1 n 1 4 r—1 1
S \z+lda—-7 x-1)\oz+lda—7 2z-1 Va(r+1)24a — o’
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where we have denoted:= arctan(y/x). Hence, when we writé arctan(\/x) — 7 = c¢(x —1),
we have

1 1 1 2 1
(14) = | - L)+ =y
pP(1+) o1 <x+14arctan(\/§) -1 x— 1) r—1 (6(964—1) " ) i ey/z(z +1)?

lim 2 2 1 1 1 N 1
= 11m — —
=1 \x+ ldarctan(y/z) -7 z—-1)2x—-1 4’
sincec — 1 aszx — 1+ and all the factors are continuous. It remains to evaluate

) 2% — 4arctan(\/f) + ) m—4y — 2 Cos(2y) 4
lim = lim cos™ v,
z—1+ (x — 1)2(4darctan(y/x) — 7)  y—n/a+ dcos?(2y)(dy — )
where we used the substitutign= arctan(,/z). We have, using I'Hospital’s rule and the
substitutionz := 2y

lim m—2z—2cosz lim —2+2sinz
z—m/2 (22 — m)(1 4 cos(2z2))  z—n/2 2(1 4 cos(2z2)) — 2(22 — ) sin(22)
— lim cos z
z—7/2 —4sin(2z) — 2(2z — 7) cos(22)
—sinz 1

23752 —12cos(2z) + 4(2z — ) sin(2z) 12

Sincelim,_,, 4 cos*(y) = 1/2 we find thaty'(14) = 2(—1/12)(1/2) + 1/4 = 1/6, as claimed.
0J

Let us also introduce another mean of Seiffert’s, from [16], for which we will prove just one
inequality. Define

T —y

T(@,y) = g——3
arctan P
Tty

for distinctz, y € R andT'(z, ) = x. This mean satisfied < T < A,, see([16]. We have

dlog T(z,1 1 —1\!
t(zr) = xog—(x,) —1= B arctan — :
or r—1 x2+1 x+1

4. THE EXTENDED MEAN VALUE

In this section we will prove Theorem 1.1, which is the used in the proof of the other theo-
rems. The proof consists essentially of two lemmas which show that the extended mean value
behaves nicely with respect to the strong inequality as we move in the parameter plane. We start
with the horizontal direction and then go for the diagonal.

Lemma4.1.Letr,t € R. Thenk,, = E, ; ifand only ift > r.

Proof. It suffices to show that, , is increasing in. We differentiate with respect toand find
thate, ; is increasing when

Oe " —1—xa"logx" s r
2—T7S = —_ —_ = .
B (r—2s) o =172 + e e f(s)

We havef(r) = 0, hence it suffices to show thgt(s) < 0 if and only if s < r. Differentiating
with respect tas gives

0< (r—s)

_a"logz” —x"+1  x'loga® —af +1

f/(S) = (1"" — 1)2 - (xs _ 1)2
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Sincez® < z" if and only if s < r it suffices to show thag(y) = (ylogy —y + 1)(y — 1) "2 is
decreasing. We calculate

g%”:(y—wk%y—2wk%y—y+D 20y —1) —(y+1)logy

(y— 1) B (y— 1)
Henceg'(y) < Oifand only if2(y — 1) < (y + 1) log y exactly whery > 1. Since
y—1
logy — 2=——
&Y y+1
is increasing iny and equal$ for y = 1, this is seen to be so. O
Lemma4.2.Leta > 2s > 2¢g > 0. Then
Ea—s,s i Ea—q,q-

Proof. We show that,_; , is increasing ins < a/2, which is clearly equivalent to the claim.
Now

Deaoslz) 2 (a—s s )

zas—1 a5—-1
1 (1—$“_S+(a—s)x“_slogx xs—l—sxsloga:>

Os (a —2s)?

a—2s (x2=s —1)2 (x5 —1)2
Let us denote: — s =: . The inequalityde,_, ;/0s > 0 becomes
" log x” x° log x* > 1 g 5 o T _l_r—s r—s
(ar—1)2  (z*—=1)2 " r—s\ z¢—1 -1 x5—-1 a -1

_r+s 1
Cr—s\az*—1 a"—1)°
Let us multiply both sides byz® — 1)(z" — 1). The inequality becomes

-1 . =1 s T+s
x"logz" + x*loga® >
zr—1 x5 —1 r—s

Let us next use the equalitiés® —1)/(z"—1) = 1 — (2" —=z®) /(2" —1) and(z"—1)/(z°—1) =
1+ (2" — 2*)/(2* — 1) and divide byz" — z*:

(" — z%).

S

ST ra’ ra’ + s’ r+s
7,8 = - 1 -
Jrs(2) (ms—l 1 xr_gcs)oga: —
_ s +s:13’"+rxs 1ng_r+320‘
¥ -1 ar—1 " —xs r—s
We will demonstrate that this is so by showing tifat(z) = 0, that
. Ofrs 0% frs
K — I > .
151_1}% 5 0, and that 595 = 0

The last two conditions imply thatf, ;/Or > 0. This, together with the first condition implies
that f, ; > 0if s > 0, which completes the proof.
We first show thaff,. . (x) = 0:

lim f,,(z) = lim (sx" +rx®)(r —s)logz — (r + s)(z" — x*)

s—r s—r (JZT — .TS>(7’ — S)
Y —2(2" + ra®logz)logx + 22° log x + (r + s)z° log” x 0
= lim =0.
s—T 2z%logx
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Upon calculatingf, s /0r,

Ofrs _ (x"logz” 1 " log xS N s log e + 25 |
or (zm —1)2 am—1 (xr — x5)? xr— s (r—s)?

we immediately find thad f,. ;/0r|s—o = 0. Next we calculate

Pfrs ' log’z  amt(am —a®)log®x + (r+ s)(a" + %)z o log’ x Lol + 2s

ords — (z7 — x°)2 (xm —a%)3 (r—s)3
_ (r4s)(a" +at)am log® = Lot + 5
- @ o) P

Therefored? f, . /Ords is positive when
2 (z" + 2%)2"+ log” x
(=P = @y

where we used that+ s = a > 0.
Sincez” > z° this last inequality is equivalent with

L(z",2%)* > A(2", 2°)G (2", 2°)?,
which follows from Lemma 3]1, and so we are done. O

Proof of Theorer 1]1Let us assume without loss of generality that ¢ andp > q.

Suppose first thak’s ; = E,, holds. This is equivalent with the conditien,(x) > e, ,(x).
As v — 1+ there is equality in the inequality. Heneg,(1+) > e, (1+), for otherwise
est(r) < ep4(x) in some neighborhood (with respect [th o)) of x = 1. It follows that
(s+1t)/12 > (p+ q)/12, or, equivalentlys +t > p + q. Asx — oo we have

t
Csyt ™ —:x !
if 0 <t <s, ey ~—tetloge andesy ~ —1/log{z*}. Hence we see that the condition
est(x) > e, 4(z) implies thatt > g.
Assume conversely that+ ¢ > p + ¢ andt > ¢. Then we have

Es,t = Es+t—q7q = Ep+q—q,q = Ep,q7

where the firstinequality follows from Lemra 4.2 sirice ¢ and the second inequality follows
from Lemmg 4.1, since +t¢ > p +q. O

5. THE GINI MEAN

The Gini mean was defined in Sectjon]3.3. In this section we will derive partial results on
when a Gini mean is strongly greater than or equal to an extended mean value. We will see that
although the Gini mean was easier to define (required less cases) than the extended mean value,
it is a lot more difficult to handle, since it does not satisfy the kinds of lemmas that were proved
for the extended mean value in Section 4.

Itis well known thatG; , > G, , if and only if s > ¢ (proved for instance i [13, Theorem 1.1
(h)]). The next example shows that this inequality does not generalize to a strong inequality.

Example 5.1.Lets >t > ¢ > 0. ThenG, , andG, , are not comparable in the partial order
Indeed,g; ,(x) > ¢:,(x) holds for smallx > 1, since both have the same limit (vizl/2) as

r — 1+ andy,, has a greater derivative at= 1+, as was shown in Secti¢n 8.3. On the other
handg; ,(z) < ¢:,(z) for z large enough, since

Gsq~qr /(s —q) < qu /(L —q) ~ guq
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asxr — 0.

5.1. The Easy Case — when there are strong inequalities between Gini meanBespite the
previous example we can derive some strong inequalities between Gini means, which is what
we will do next. Note the&7,, o is the power mean,_,.

Lemma5.1.If s,t > 0thenG,; = Gyitp.

Proof. Assume without loss of generality that-t > 0. Using the transformation — x2/(s+%
we may assume that+ ¢ = 2 (here we use Lemnja 2.1(2)). Assume further that 1 + d
andt = 1 — d whered > 0 and for the time being suppose further that 0. The claim of the
lemma is that

1/ 1-d 1+d 1
grrar-a(®) = o\ oy T it ) 2 T 9ol

Let us multiply this inequality bd(z'~¢ + 1)(2'*< + 1) (which is obviously positive) to get
the equivalent inequality

_ R S |
1—d)(z"™+1) - (1+d)(z"9+1)>—-2d o :
Collect the terms multiplied by:
pltd _ l=d _ (x1+d +1)— (xl—d +1)
2+t a4 ]
x?+1

> (' 4 2+ 2)d — 2d

= (@ 2 (1 - 2/(a® + 1))d
= (M 4 2N (22 — 1)d/(2* + 1).
Multiplying the first and the last expression by ' gives the inequality
22— 1> (2 4+ 1) (2 — 1)d/(z* + 1).
Let us setr? =: z or, equivalentlyd = log{z}/log . Then we get the equivalent inequality

2241 241
z2—110g2§x2—1

which is further equivalent with the functiof(y) := (v + 1) log{y}/(y — 1) being increasing,
sincez > z. Now

log x,

7( ):y2—1—2ylogy >0
y(y —1)2
if and only if y> — 1 — 2y logy > 0, which follows, sincey — y~! — 2logy is increasing iny
for y > 1. This ends the proof for the cage> 0. The casel = 0 follows, sinceg; 41_4 IS
continuous ind. O

Proof of Theorem 1]5If s,¢ > 0 anda = s + ¢ then
Gt = Gap = Ay = Erga,
where the strong inequality follows from Lemina]5.1. It then follows from Thegrem 1.1 that
Gsi = Bage = Epy,

if p+ ¢ < 3aandmin{p, ¢} < a.
Suppose conversely that,, = E, , holds for alls,t > 0 with s + ¢ = a. Then it holds in
particular fors = @ andt = 0 and so

Ga,O = E2a7a = Ep,q~
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It then follows from Theorerh 1]1 that+ ¢ < 2a + a andmin{p, ¢} < min{2a,a} = a, as
claimed. 0

5.2. The Difficult Case — when there are no strong inequalities between Gini meansie
now turn to deriving strong inequalities between Gini means and extended mean values that
are not mediated by power means. Since it was shown in Exdmple 5.1 that there is not much
possibility of deriving auxiliary inequalities between Gini means and since the author has had
no success in direct derivation of inequalities between extended mean values and Gini means,
another scheme of mediation is developed. It consists of using a Gini mean as an intermediary
for a small value of and the fact that most Gini means grow asymptotically faster than extended
mean values to take care of large valueg of

We start by considering a certain monotonicity propertyQf This lemma corresponds to
Lemmd& 4.2 for the extended mean value.

Lemma 5.2. The quantityy; 141 _4(z) is decreasing i) < d < 1 for fixedx € [1,49'/2].

Proof. Let us assume that > 0; the casel = 0 follows by continuity. A simple calculation
gives

f(d) = dagl+d’1_d — 1 x/zlog{z/z} 1 xzlog{zz}

od  (z/z+1)d (x/z +1)? (xz+1)d = (zz+1)%"°

where we have denoted =: 2. Let us multiply the inequalityf (d) < 0, which is equivalent
with the claim of the lemma, bz + 1)(z/z + 1) and usel = log 2/ log x:

log x N (22 +z/2)log{z/z} (2% + z2)log{xz}

(x/z_xz)logz zr/z+1 rz+1

log = log{x/z} log{xz} 5
(x/z mz)logz <x/z+1 P (z—1)+2logz <0
Let us divide this inequality by log x and rearrange
(5.1) log{z/z} +10g{x2} gv—l/x_’_gS z—l/z‘
x/z+1 xz+1 log x x log 2

We will show that the left hand side is decreasing ig [1, z] and that the right hand side is
increasing inz. Now the latter claim is equivalent with
dz—1/z (224 1)logz—(*—1)

>0

)

dz logz 22 10g2 z

which is clear, sincéog 2 — (2% — 1) /(2% + 1) is increasing ir: and hence positive. It remains
to prove that

_ log{z/z}  log{wxz}

9(2) = z/z+1 + rz+1

is decreasing ir. A calculation gives
, rz+1—zxzlog{zz} x/z+1—(x/z)log{z/z}
— — = h(zz) —h
<9 (Z) (JJZ + 1)2 (.I/Z + 1)2 (.I'Z) (SL’/Z),

whereh(y) := (y + 1 — ylogy)/(y + 1)>. The functionh is sketched in Figurg 5.1 and has
the following pertinent characteristics: its only zero ig/gt= 3.591..., its only minimum at
yp = 11.016... and it is then increasing, but negative.
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Ny

0.4

x+1-x log x

(x+1)?

0.2

5 10 15 X

P>
y&
[

Figure 5.1: The functiork.

Suppose now that is such that the condition
(5.2) (/2 <yo)V(xz <14 ANx/2<T)

holds for allz € [1,z]. We then claim thak(z/z) < h(xz) holds: because, for a given one
of the following conditions holds:

(1) y1 > zz,
(2) y1 < xzzandz/z <y, or
) y1 <zz<ldandz/z <T.

If (1) holds thenh(z/z) > h(xzz) sinceh is decreasing ofil, y;] andzz > z/z. If (2) holds
thenh(z/z) > 0 > h(zz). If (3) holds then we have

h(z/z) > h(7) > —0.088 > —0.097 > h(14) > h(zz).

If 2 < 7 then the conditior] (5]2) holds. Forif« yoz thenz/z < z < 7andzz < 2% /y, <
49/3.6 < 13.7 so that the second condition holds. We have shown, then, thatfor we have
2¢'(z) = h(zz) — h(z/z) < 0forall z € [1,z] and so we see thgtis decreasing in the same
range.

Let us now return to inequality (5.1). Since the left hand side is decreasingird the
right hand side is increasing in the same, it clearly suffices to show that the inequality holds for
z = 1+4. Calculating, we see we have to show that

2logxx — 1/ 2

+-<2,
r+1 logx x

which is actually an equality and hence the claim is clear. O
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Remark 5.3. The restriction orx in the previous lemma is not superfluous, for the claim does
not hold for larger and alld. However, numerical evidence does suggest #lgatz)/0dd has
character— or —|+, hence we would have a certain monotonicity property for largdso.
Unfortunately the author has not been able to prove this fact.

We now proceed to the second phase of the scheme presented, showing that fordarge
has a large derivative. Note that the constantl89 is chosen to suffice for Remdrk 5]10.

Lemma5.4.1f 11/189 < s/t <189/11 ands + t = 1 theng,,(z) > 0 for z > 47.
Proof. Assume without loss of generality that> ¢t. We have to prove that
f@):=(s=t)(2® + 1) (2" + 1)gss(z) = t(x® + 1) — s(a' +1) > 0
for x > 47. Since
vf (x) =ts(x® —2') > 0
it suffices to show thaf(47) > 0. Let us dividef (47) by s and denote := t/s. The inequality
becomes
g(v) = v(4TYF) L 1) —47o/0+0) 1 >,

Clearlyg(1) = 0 and we also find thaj(11/189) > 0.035. Hence it suffices to show that(v)
has characteristi¢|— for v € [11/189, 1]. A calculation gives
log 47
(14 v)?
Let us write the inequality’(v) > 0 in terms of the original variable, = 1/(1 + v), divide by
log{47°} and rearrange some:

47 +1

log 475
We will show that the left hand side is increasingsiand that the right hand side is decreasing
in s. From this it follows, on checking the boundary values 1/2 ands = 189/200, thatg’
has characteristie |4, which completes the proof.

Since47® is obviously increasing is we have first to show that(y) := (y + 1)/logy is
increasing fory € [471/2,47%945]. We have

(logy)*h'(y) =logy — 1 —1/y.
Sincelogy — 1 — 1/y is increasing iny, it is clear that

W) > log /47 — 1 — 47712
- log? 47

Next we want to show that(s) := s47'°+(1—s)47% is decreasing in for s € [1/2,189/200].
Let us differentiate:
m'(s) = 4775 — 475 + ((1 — 5)47° — s47'7%) log 47.
Thenm/(s) < 0if and only if

g/(v) = 471/(1+v) 41— (47v/(1+v) 4 U471/(1+”)) .

> s47'7F 4 (1 — 8)47°.

~ (0.058 > 0.

log 4715 — 1 < logd7® — 1
4713 - 478
where we have denotedz) := (log z — 1)/z. This function has the following relevant charac-

teristics: only zero at and only maximum at2. In what follows we will essentially approxi-
maten(z) by a step function which allows us to arrive at the desired conclusion.

n(47'7%) = = n(47°),
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Sinced7® > 47'7% by assumption o, we see that(47'7%) < n(47%) if 47° < €? or,
equivalently,s < 0.5194, sincen(z) is increasing for < €%, If s > 0.5194 then47'~* < 6.363
andn(47'7%) < 0.1336. Sincen(8.7) > 0.1337 it follows that

n(47%) > min{n(47°°9) n(8.7)} > n(47°48%) > n(47' %)
for 0.5194 < s < 0.5618 < log8.7/log47. Making a second iteration, we find that for
s > 0.5618 we haven(47'~*) < 0.1272, andn(10.8) > 0.1277. Hence
n(47%) > n(10.8) > n(47°432) > n(47'7%)

for 0.5618 < s < 0.6180 < log 10.8/log 47. Continuing with a third and a fourth iteration we
find that

n(47%) > n(16) > n(47°%%2) > n(47 %)
for 0.6180 < s < 0.72 < log 16/ log 47 and that
n(47%) > n(47) > n(47°%%) > n(477%)
for 0.72 < s < 1 =log47/log47 and so we are done. O

Using the previous two lemmas we will be able to derive strong inequalities for many Gini
means by proving just a few simple inequalities, which effectively amount to solving polyno-
mial inequalities.

Lemma5.5. Letr > 0. ThenGs,, = E,, ifand only ifp + ¢ < 12r.

Proof. Assume firstthap+¢ < 12r. SinceE, , < E, ., whereu > (p+q)/2, by Theorem 1]1,
it suffices to prove thatrs,., >~ E, , with v = 6r. This is equivalent with

=2 1 r 3r
2 —gzm+1  2r \am+1 a¥+1
Let us sety := 2" and multiply by(z* — 1)? /2
6 1 2 —9
(v =17 y > 11—y~ 6logy.
20° P —y+1
This inequality surely holds foy = 1, hence it suffices to show that the left hand side has a
greater derivative than the right hand sidegar 1:

—9 6 _1)2 42 —dy+1
y _ 7) y* —dy + > 65~ — 6/,
yv—y+1 297 (y?—y+1)?
Let us multiply both sides by”/(y® — 1):
) 6_ 1 2 —dy+1
y?P—y+1 2 (Y¥P—y+1)

We can then move the two terms with minus signs to the opposite sides, divide’y 1) and
multiply by 2(y* — y + 1)? to get

6(y" —2° + > =2y + ) —y+ 1) = W'+ + 1)(° —dy +1).
Multiplying out and rearranging gives the inequality
5y — 14y° + 22y* — 269° 4 22¢% — 14y + 5 > 0.
Dividing by (y — 1) gives

1 uzr"log x
¢ —1  (zv—1)%

) = G3rr > Cuu =

3(y°—y ")

—6.

Syt — 4y’ +9y° — 4y +5 >0,
which holds sincéy?* > 4y3 and9y? > 4y for y > 1.
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The converse implication, thats,, = FE,, impliesp + ¢ < 12r, follows sincer =
g3rr(14) > €,,(1+) = (p + q)/12, which concludes the proof. O

Proof of Theorem 1]6Suppose first that';, = E, ,.Then

(s+1)/4=gs:(14) = epg = (p+ q)/12,

hencep + ¢ < 3(s + t), which proves one implication.

Suppose conversely that+ ¢ < 3(s +¢) and1/3 < s/t < 3. It follows from Lemmag 5.
that g, () > gs,ja,a(z) for o € [1,49Y6+] andr := s + ¢. It follows from Lemm
thatgs,a,/4(x) > €3r/2,3,/2(x) for the samer. Usinges,a5,/2(x) > €,4() from Theorem 1.1
completes the proof in the case of small values.of

If 2 > 476+ we have

gs,t(x) >02> ep,q(x),
where the first inequality follows from Lemma 5.4 and the second one from L¢mina 3.2. Hence
the claim is clear in this case as well. O

Let us now give one more specific Gini mean extended mean value inequality (with corollary)
before moving on to summarize the results of this section.

Lemma 5.6. We haveZy ; >~ Eig14.

Proof. We have to show that

1 1 9 >1 16 14
S\z+1 2941) ~2\z6—-1 gg4—-1)"°

Let us multiply this by8(z + 1)(x® + 1)(z' — 1)(z'* — 1)z~ and move all the terms to the
same side. We get the equivalent inequality

f(z) =2 =27 92! — 27 —8(2'® — 2719) + 56(2° — 27)

+55(2° — 27°) — 64(z* — ™) — 65(2> —273) > 0.

Since f(1) = 0 it suffices to show thaf’(z) > 0 for z > 1. Letg(z) := zf'(x). We
will show thatg is increasing inz, from which it follows thatg(z) > 0 for x > 1, since
g(1) = f’(1) = 0. Sinceg is positive if and only iff’ is (for x > 0), it follows that f'(z) > 0.
Now

h(z) = xg'(x)
=361(z" — 271%) — 1089(x'! — 271) — 800(2'® — 271%) + 2016(2° — 279)
+1375(z° — 27°) — 1024(2* — 27 %) — 585(2® — 27,

andg is increasing if and only ifu(x) > 0. Sinceh(1) = 0, it suffices to show that is
increasing and sinck (1) = 0, thatm(z) := zh/(z) is increasing. We have

m'(z) = 130123(z" — 271%) — 131769(z"* — 2~ '1) — 80000(x™* — z~'9)
+ 72576(2% — 27%) + 34375(2° — 27°) — 16384(2* — 27*) — 5265(z® — 7).
Since
72576(x% — 27%) + 34375(2° — 27°) > 16384(2* — 27*) + 5265(2® — 27?)

we may drop the last four terms in the expressiomfz). It then suffices to show that (we
have divided byl 0000 and rounded suitably)

n(z) = 132" — 27 — 14(a™ — 27 = 8(2* — 27 >0
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for x > 1. Differentiating one last time we find

on/(x) = 247(2" + 271) — 154(2™ + 271 — 80(2'* + 271,
Sincez? + 27V is increasing iny > 0 for fixed z > 1, we clearly haven'(z) > 0, hence
n(z) > n(1) = 0 and so we are done. O

Corollary 5.7. Lets > ¢t > 0 andp > ¢ > 0 be such that/t < 9 andp/q > 8/7. Then
G = B, ifand only ifp + g < 3(s + t).

Proof. We have already seen that; >~ E,, implies thatp + ¢ < 3(s + t) so we need only

show thats/t < 9, p/q > 8/7 andp + q < 3(s + t) imply the strong inequality. The proof

of this is exactly the same as the proof of Theofen 1.6; use Lemma 5.2 and Cdrollary 5.7 and
finish up by Theorer 1]1 for small values:ofind use Lemmds 5.4 ahd 3.2 for large values of

x. 0J

5.3. Summary of Results on Gini Means.Let us now summarize the results from Theo-
remg 1.5 anfl 1]6 and Corollgry 5.7 in pictorial form. Since the inequality

Gs,t = Ep,q

has one degree of homogeneity in the parameters (by Lgmra 2.1) we are left with a three
dimensional graph. On this graph we will show only the caseq = 3(s + t), which is the
critical case in the sense that the inequality does not hold for smallet

alp

7/8

Does not
hold there

o

Holds here

1/2

t/s

0 1/9 1/3 1

Figure 5.2: When doe§'; ; >~ E, , hold?

We next give a result which shows that the inequality does not hold for certain valygs of
p andg.
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Lemma5.8.Lets >t > 0andp > g > Owithp + ¢ = 3(s+t) > 0. ThenG,, # E,, for
x<9—45if

- 5(x% +1) —3(z + 1)vVa2 — 18z + 1
422 4+ 18z + 4 ’

wherex :=t/s andy := ¢/p.

Remark 5.9. The curve determined by the inequality in the lemma is show in the upper left

corner of Figur¢ 5)2.

Proof. Assume thaty,, = E,, so thatg,,(z) > e,4(2) holds for allz € [1,00). We may
assume without loss of generality that- ¢ = 3 = 3(s + ¢) and thats,¢,p,q > 0. If we
multiply the inequality by(z* + 1)(2* 4+ 1)(2? — 1)(2? — 1) we get the equivalent inequality
t2° —s2' +t—s pz? —q’ +q—p

= —1)(z7—1) —

e (-1 -
Sincef(1) = 0 it follows that f’(1) > 0 (sincef € C*). Upon calculatingf’(1) we find that
it equals zero, as well. Continuing in this manner we find f41) = f®) (1) = f*(1) = 0.
With the fifth derivative we start getting somewhere, indeed, we find that

FOM) = (= 1P —2) +5s(1 - ),
hence the conditiorf® (1) > 0 implies that

'+ 1)(z°+1)>0.

(2-y)(1—2y) br

A+y? (A+aE~
where we have solved from the system of equations+ ¢ = 3 andgq/p = y andz from
s+t =1andt/s = x. Solving this second degree equatioryigives the desired result. [

(P=Dp—2)+5s(1—s) =

Remark 5.10. It follows from the previous lemma that,, >~ E,, does not hold for every
p,q € R with p+ ¢ = 3(s + t) unless

VE—-2 9-4V5
- < s/t <AW5+2).
T g =AY
Moreover, numerical evidence suggests that this bound is also sharp, that is to Saly,that
E,, would hold if and only ifs andt satisfy [5.8). Since1/189 < (v/5—2)/4, it would suffice
to show that

(5.3)

Guvsgo-avs = Fsja3/2
in order to prove this claim, using Lemrpas.2.

6. SEIFFERT'S MEAN

In this section we derive exact bounds on when Stolarsky’s mean is strongly less than or equal
to the Seiffert meanP(z, y), defined in Sectioh 3/4. We also give an example of an extended
mean value which is strongly greater than the Seiffert mean.

Proof of Theorerp I]9Assume first tha? > S, or, equivalentlyp(x) > s,(z), wheres,, :=
e1,1-a- We know from Sectioh|3 that(1+) = s,(1+) = —1/2 and we see that(z) > s,(z)
implies that the derivative gf is greater than that of, at 1+. Now the conditiory’(1+) >
s, (1+) is equivalent tal /6 > (2 — «) /12 or a > 0, again using results from Sectiph 3.

We see that ags — oo we havep(z) ~ —(2/m)z~Y? ands,(z) ~ (1 — 1/a)z* if a > 0
ands,(z) ~ —z~'log{x} fora = 0, and s > s, implies thatoe — 1/2 > 0.
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Suppose conversely then that> 1/2. SinceS; = S, if and only if « > 3 by Theoren 1]1,
it suffices to show thaP = S, /,, or equivalently
1 2/ 1 S 2 1
r—1 x4 1ldarctan(y/z)—7 —z—1 2/2-1
which can be written as
1 1 Y 2y 1

y—1 y2—1 2—1 = y? + 14arctany — 7’
where we used the substitutign= /2. This is equivalent to
f(y) :=4arctany — 7 — 2(y* — 1)/(* + 1) > 0.
Clearly f(1) = 0. Since
(W +1)°f(y) =4(y* +1) =8y =4(y —1)* > 0
itis clear thatf(y) > f(1) = 0, which concludes the proof. O

Although it does not have any relevance to the question of relative metrics, we will now give
a reverse type inequality, which in turn gives a better ordinary inequality that the previous result,
as is seen in Corollary §.4. This proposition is the strong version of the ineqiality A, ;
proved by A. A. Jager in [15]. Recall that, denotes the power medt,, ,.

Proposition 6.1. Letp € R. ThenA, = P if and only ifp > 2/3.
Proof. Suppose first thatl, = P. Thene;, (14+) = (2p +p)/12 > 1/6 = p'(1+), by the
formulae derived in Sectiqﬂ 3, henge> 2/3.

Suppose conversely that> 2/3. SinceA, > A, if and only if p > ¢ by Theorel, we
see that it suffices to check the claim for= 2/3. The condition4,,; = P is equivalent with

1 2z 1 o1
r—1 x+14darctan(y/z)—7 = 22341
Letz =: y% and rearrange to get
(v° - D' +1)
(y°+1)(y* + Ly
Since this equation holds faor = 1, it suffices to check that the left hand side has a greater
derivative than the right hand side. Let us differentiate both sides of the inequality and multiply
by (4° + 1)*(y* + 1)*™
(10y"+6y° —4y°) (y°+1) (y*+1) = (y° = 1) (4" + 1) (99° + 7y’ +3y* +1) > 6(y°+1)(y*+1)*y",
This eighteenth degree polynomial can be written as
(v° =Dy = Dy = 1)°[y* +5y° + 1] > 0,
which clearly holds. O
Corollary 6.2. Letp,q € R” with1/2 < p/q < 2. ThenP < E, ., ifand only ifp + ¢ > 2.

> 4arctan(y®) — .

Proof. A trivial modification of the first paragraph of the previous proof shows fhat >~ P
implies thatp + ¢ > 2.
Assume conversely thay2 < p/q < 2 anda :=p+ ¢ > 2. Then

Enq = Eaqszas = Easas = Agyz = P,

where the first inequality follows from Lemma 4.2 since ¢ = 2a/3 +a/3 anda/3 < p,q <
2a/3 and the second inequality follows from Lemmal4.kas 2. O
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Remark 6.3. It is not clear how far the conditiot/2 < p/q < 2 in the previous corollary can
be relaxed. By considering — oo, as was done in the proof of Theorém|1.9, we see that the
claim does not hold fop + ¢ = 2 with p < 1/2,i.e.p/q < 1/3.

We also have the following corollary of ordinary inequalities, which follows by the method
presented in Sectign 2.2.
Corollary 6.4. Letz,y € R” Then
23/2
——Aapa(w,y) < Pla,y) < Azps(,y).
Both inequalities are sharp.

Remark 6.5. The estimate of” in Corollary[6.4 is better than the one in Corollary 1.11 in
the sense that the former has the ratj@®/? ~ 1.1107 between the upper and lower bounds,
whereas the latter has a ratio of at ledst ~ 1.2732. Note also that it is probably possible
to find an extended mean value which has a smaller such ratio but satisfies aekthét nor
P> FE.

Let us end this section by proving the following strong version of the inequdlitg T,
whereT denotes the second Seiffert mean. In fact, the proof is so simple, that it would not
be worth giving, were it not for the fact that we will be able to put the lemma to good use in
SectiorlY.

Lemma 6.6. Letp € R. ThenA, < T'if p < 1 and alsoT" - S, for all o € (0, 1].

Proof. Clearly it suffices to prove the claim fer= 1. Using the formulae foe, ; (z) andt(x)
we find that it suffices to show that

1 T r—1\"" 1
— arctan > — .
r—1 22+1 z+1 x+1

x—1 - 12?2 -1
r+1 7 222+1
There is equality for: = 1, so we differentiate to find the sufficient condition
1 2x
> )

22+ 1 7 (22 +1)2
which is immediately clear. Sincé > S, for all « € (0, 1] by Theorel the second claim
follows by the transitivity of-. O

This becomes

arctan

7. NEW RELATIVE METRICS

In this section we show how the results of this paper relate to the so-ddleelative metric,
which has been recently studied by the authofin [7], [8] and [9]. Let us remind the reader that
by a Stolarsky mean we understand a extended mean value with paratreateis— «, hence
Sa - El,l—a-

Let us denote byX := R \ {0} for the rest of this section. Let/: R~ x R> — R~ be a
symmetric function and lety,;: X x X — R~ be defined by

|z — 9
M(|z|, |y])

for all x,y € X. The functionp,, is called the)M—relative distance, and, when it is a metric,
the M—relative metric The following result gives the connection between strong inequalities
and M-relative metric that has been alluded to previously in this paper.

pu(,y) =
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Theorem 7.1.[7, Lemma 3.1]Let0 < o« < 1 and M: R” x R> — R~ be a symmetric
homogeneous increasing mean.

Q) If M > S, thenpy,. is a metric inX.
(2) If ppse is @ metric inX thenM > S,,.
(3) If pase is @ metric inX thenty,(z?)/tar(x) > tg, (2?)/ts, (z) forall z > 1.

Remark 7.2. The second condition of the previous theorem says almost hydt, is increas-

ing in a neighborhood of and the third almost that it is increasing in a neighborhoogbofit

turns out that all the means studied in this paper are sufficiently regular for this “almost” result
becomes a real result.

Combining this result with the theorems from Secfipn 1 gives the following corollaries:

Corollary 7.3. Let0 < ¢ < panda € (0,1]. Thenpp. is a metric in X if and only if
p+qg>2—aandg>1-—a.

Proof. Assume firstthap + ¢ > 2 — aandg > 1 — a. Then by Theorer@.Epvq = Ei1-q
and sopgq , is a metric inX by Theorenml(l).

If p+q <2—athenk, (z,1)/E 1_.(z,1) is decreasing for small, sincee,, < €11_,
in some neighborhood af. This means that the inequaliy, ,(z, 1) > E; ;_,(x, 1) does not
hold, and s@p.  is not a metric inX, by Theorenp‘lf‘l(Z)

If p=gq andq <1l—athenp+q < 2—2a <2 — aand we proceed as in the previous
paragraph to show thak. is notametric. Iy < pandg < 1—athenk, (z,1)/Ey1-o(x,1)
is decreasing for large, sincee,, ~ —qz™%/(p — q) < (1/a — 1)z~ ~ €11, Whena < 1

ande,, ~ —qz~9/(p — q) < —1/logz ~ ey (the case; = 0 follows similarly). It follows
that the third condition of Theore. n 7.1 is not satisfied for largehich means thatp.  is not
a metric inX. U

Remark 7.4. If we setp = ¢/2 in the previous corollary we get Theorem 1.1[af [7], which is
thus a special case of the previous result. Similarly, in Coroflary 7.5 we regain this theorem if
we setg = 0.

Corollary 7.5. Letp, g € [0,00). If p+ ¢ > max{(2 — «)/3,1 — a} thenpg. is a metric in

X.

Proof. Follows immediately from Theorem 1.5 and Theofem 7.1(1). O

Corollary 7.6. Letp,q € [0,00) andp/q < 3. Thenpg,  is @ metric in X if and only if
3p+q) >2—a.
Proof. Thatpc,  is a metricinX implies thaB(p+q) > 2—a follows from the last paragraph of

the proof ofTheore@S The other implication follows from Theorer 1.6 and The¢orém 7.1(1).
O

Corollary 7.7. If a € (0, 1] thenpp. is a metric inX ifand only if1/2 < o < 1.

Proof. If & > 1/2 thenpp. is a metric by Theoreh 7.1(1). H < 1/2 then P/S, is de-
creasing for larger, as was seen in the proof of Theorem|1.9, hemeeis not a metric, by

Theorenj 7.11(3). O

For the Seiffert mean we get particularly simple metrics, which was the principal reason for
considering strong inequalities of this mean. For instance

pp(x,y) =2 ] arcsin (—m _ |y|) ,

2] = y] 2]+ |y
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for |z| # |y| andpp(z,y) = |z — y|/|z| for |z| = |y|. We get an even simpler form farandy
on the same ray originating in the origin:
pp(se,te) = 2arcsin{(s —t)/(s + 1)}
wheres > ¢ > (0 ande is a vector inX.
Corollary 7.8. If 0 < a < 1 thenpz« Is a metric inX.

Proof. Follows directly from Lemma 6|6 and Theor¢m|7.1(1). O

As in the previous case we get some very simple metrics from this corollary. For instance if
x>y >0and) < a < 1then

pre(ze,ye) = (x —y)'~*(2arctan{(z — y)/(x + y)})*,

where e is an arbitrary unit vector inX. Again, the casex = 1 is particularly simple:
pro(ze,ye) = 2arctan{(z — y)/(z + y)}.
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