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Abstract

Let X = (X;,F)>0 be a continuous local martingale with quadratic varia-
tion process (X) and X, = 0. Define iterated stochastic integrals I,,(X) =
(I(t, X), F;) (n > 0), inductively by

ot
I,(t,X) = / Io1(s, X)dX,
0 On Some Inequalities of Local
. . o . . ) . Times of Iterated Stochastic
with Iy(t, X) = 1 and I;(t, X) = X;. In this paper, we obtain some martingale Integrals

inequalities for I,,(X), n = 1,2,... and their local times at any random time. ,
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Let X = (X}):>0 be a continuous local martingale with quadratic variation pro-

cess X) andX, = 0, defined on some filtered probability spa€e F, P, (F;)).
Consider the corresponding sequence of iterated stochastic integrals,

IL,(X) = (I(t, X), F) (n=>0),

defined inductively by

t
(1.1) L(t, X) = / L_1(s, X)dX,,
0
wherely(t, X) = 1 and/,(t, X) = X;.
It is known that there exist positive constaiits, and A4,, , depending only
onn andp, such that the inequalities (se& {])
(X)7

(1.2) Any <

p

sup |, (t, X)|

0<t<T

(X)2

p

< B,, (0 < p< o0),

p

hold for all continuous local martingaleg with X, = 0 and all(F;)—stopping
timeT'.
On the other hand, M.T. Barlow and M. Yor have established]i(dee also

Theorem 2.4 in{, p.457]) the following martingale inequalities for local times:

o |[(x)2 X2 0<p<o)

<l <6

p
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where(L7(X);t > 0) is the local time ofX atz andL; (X)) = sup,cr £7(X).
It follows that for all0 < p < 0o
(X)7

(1.3) Cap (X)2

< NLr 0 Xl < Coy

p

for all (F;)—stopping timeq§’, where(L?(n, X);t > 0) stands for the local time
of I,,(X) atx.

However, itis clear that the inequalities ) and (L.3) are not true whef' is
replaced by an arbitrarg . —valued random time (see, for example/][when
n = 1). In this paper we extend.(2) and (L.3) to any random time.
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Throughout this paper, we fix a filtered complete probability sp&ce, (F;), P)
with the usual conditions. For any process = (X;);>o, denoteX* =
SUPg<<, | X¢| @nd X* = supy<,., | X¢|. Letc stand for some positive con-
stant depending only on the subscripts whose value may be different in different
appearances, and this assumption is also made for

From now on arF—measurable non—negative random varidble2? — R
is called a random time and we denotelbyhe collection of all random times, on Some Inequalities of Local

i.e., Times of Iterated Stochastic
Integrals

L ={L : LisanF-measurable, non—-negative, random varipble Litan Yan

For anyL € L, let (GF) be the smallest filtration satisfying the usual condi-

tions which both contain&Z;) and maked. a (GF)-stopping time. Define Title Page
. . Contents
Z} = E 14| F] and J, = inf 7. « "
ThenZt = (ZF) is a potential of class (D). Assume that the Doob—Meyer 4 >
. T
decomposition foZ” is Go Back
(2.1) zt = M — A. Close
it
For simplicity, in the present paper we assume throughout/tlai. avoids £l
(F,)—-stopping times, i.e., Page 5 of 27
for every(]:t)—StODping time’, P(L = T) = 0. J. Ineq. Pure and Appl. Math. 3(4) Art. 62, 2002
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Thus, under the conditiorf;” is continuous and s/ is also continuous. Fur-
thermore, for any continuousF;)—local martingaleX there exists a continuous
(GE)—local martingaleX with (X);,; = (X); such that

LAt
v d<X> M>s
Xine = X + /0 Z—SL>
whereL At = min{L,t}. For more information oK’ = (X .);>0 and(GL),
see [ o ] On Some Inequalities of Local
Lemma 2.1 ([L(]). Let0 < p < co and L € L. Then the inequalities R
» 1 D Litan Yan
2.2) B3] < o8 |(1+100? 5) (0.
L
P p 1 Title P
(2.3) E[(X)}] <aF {(1 +logf —) (X*)g} e Tase
Jr Contents
hold for all continuoug F;)—local martingalesX vanishing at zero. 4« (33
It is known that the inequalities in Lemnial are the extensions to the < >
Burkholder-Davis-Gundy inequalities. For the proof, see Proposition 40n [ Go Back
p.122] (or Theorem 13.4 in.p, p.57]).
Let X now be a continuous semimartingale. Then for everg R the Close
following Meyer—Tanaka formula may be considered as a definition of the local Quit
time {£7(X);t > 0} of X atx Page 6 of 27
t
|Xt - ZL‘| - |X0 - Il = / SgIl(XS - :E)dXS + »CtI(X) J. Ineq. Pure and Appl. Math. 3(4) Art. 62, 2002
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One may take a versiofi : (z,t,w) — L7 (w) which is right continuous and
has a left limit atz, and is continuous in. In particular, if X is a continuous

local martingale, the¥ (X') has a continuous version in both variables. In this

paper, we use such a version of local time.

The fundamental formula of occupation density for a continuous semimartin-

gale is:

2.4) / o), = [~ ewerow

o0

for all bounded, Borel function® : R — R, which gives
(2.5) (X)oo < 2X7 L5, (X)

sincel? = Oforall z ¢ [-X*, X*]. It follows that (see]) for all continuous
(F:)—local martingales(, and allt > 0,z € RandL € LL

(2.6) Ta(X) = LX)
if M is continuous, wher&” = (X ;). So, we have
(2.7) (X1 = (X" < 2L0 (X1)XG = 2L (X)X}

by (2.5. Furthermore, the following lemma which can be found3ihgxtends
the Barlow—Yor inequalities.

Lemma 2.2. Let0 < p < oo and L € L. Then the inequalities
28) B|(£;()"]

comelt ot 0f] oo o]

L
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and

ok

(2.9) maX{E[(X;)P}, B [<X> ]} <c,E [<1+logp Ji) (E}(X))p}

L

hold.

Remark 2.1. In[3], C. S. Chou proved tha2(8) and €.9) hold for1 < p < o0.
In fact, when0 < p < 1 (2.8) and @.9) are also true from the proof irz].
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In this section, we shall extend.@) and (L.3) to any random timd. € L.

Theorem 3.1.Let0 < p < oo and L € L. Then the inequalities

ey E[nex0)] S| (140 1)),
(3.2) E[(I,’;(L,X))p: < o B <1+10g2 J—L)(XL) }
09 B[] <ok (Lot L) |\
(3.4) B [(1(X0);] < eupl i(l +log¥ ) <X;z>”p]

hold for all continuous local martingale¥ with X, =0 andn =1,2,....

Proof. Letn > 1, L € L and letX be a continuous local martingale.

(3.2) can be verified by induction. In fact, when= 1 (3.1) is true from @.2).

Now suppose thaB(l) is true for2,...,n — 1. Then we have

E (L (L, X)) ™| < ey B {(1 +log¥ %)(X);} .

On the other hand, fromL(1) we see that

<ITL<X)>t :/0 (In—l(S7X))2d<X>s S sup (In—l(st))2<X>t

0<s<t
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for all t > 0, which gives
(3.5) (L(X))z < (Lo (L, X)) ()1

Thus, by applyingZ.2), (3.5 and then applying the Holder inequality with
exponents; = n andr = —"+, and noting

(a+b)" <cpla”+0") (a,b>0),

. On Some | lities of Local
we find Times of terated Stochastic
_ 1 Integrals
E[(I;(L,X))”] <c,E (1 + logh J-) <ln(X)>;} Litan Yan
i L
- 1 ) )
<c¢E (1 + log? J_L> (I, (L, X))p(X>Z] Title Page
: 1 \n - 1 p 7 B=L Contents
< E(l 1 §—> X E[[* L X H}"
=~ Cp i + Og JL < >L :| ( n 1( )) ‘4 '}
np 1 np
< enpE {(1 +log? J-) (X)), ] . < d
k Go Back
This establishes3(1). Close

Now, we verify 3.2). From the well-known correspondence of iterated _
stochastic integral,,(X') and the Hermite polynomial of degreqsee [, 7]) QU

1 Page 10 of 27
In(ta X) - EHR(Xt) <X>t);
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where H,,(z,y) = y5h, ( ) (y > 0) andh,(z) = (—1)"e” 2" is the

dx™
Hermite polynomial of degree, more generallyH,,(x, y) can be defined as

H _7:2 an m2
= (—y)"e Ty
n(@,y) = (-y)"ew 5 tem,
we see that iterated stochastic integralsX'), n = 1,2, ... have the represen-
tation
(5]
(3.6) L(t, X) = COXI™(X)],
j=0
whereC) = (—1)’ ey andlz] stands for the integer part of

On the other hand, fob < j < %, by using the Holder inequality with

2’
__n n
exponents = o =3 we get

n—2j

B|(xp)emx)y) < B[(xp™) B (07"
< enp B[O 7 | (14108 ) (X0
<cp,F {(1 +log? JLL) (Xz)”pl :

Clearly, the inequality above is also true for= 3 andj = 0.
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Combining this with 8.6), we get for0 < p <1

(3]
E[(I*(L X)) ] < CPZ|(](J |pE[( = 2J)p(<X>L)jp]

7=0
np 1
< cppF {(1 + log 2 —)(Xz)”p}
Jp
andforl < p < oo
LB o
B, X)) < S Ie@E[(xp)e2rx)p]?
j=0

< cppE {(1 +log? %) (X}:)”p}

L

This gives 8.2).
Next, from (3.5 and (3.1) we see that

A
@)
3
S
=
1
—
—_
_I_
—
o
o
SIE
e
N———
—
>
~——
hm‘
| IS
&
| —
—
>
~
Sk
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Finally, from 3.5), (3.2) and @.3), we have

B [(I())z] < B (5 (2, X)) ()

< ot (1106¥ Doipr] ” m[e07]’
)

w1 *\1
< oyl | (14 1og¥ ) (x5
On Some Inequalities of Local
This completes the proof of Theoresril O Times of "ﬁrtitgg Etochasﬁc
Theorem 3.2.Let0 < p < oo and L € L. Then the inequalities TR
e P i 1 5
(3.7) E|(£3n, X))"| < enpl | (1+10g J_L><X)L , pray—
r 1 [ 1
(3.8) B(£5(n.X))"] < oy | (14 log™ J—)(X;)np] 7 contents
] ] - 1L i 4« »
(3.9) B|(Li(n, X))"| < cp | (1+10g™ =) (£5(X))™] . < >
L J L L i
1 [ 1 " | Go Back
(3.10) E|(L(L X))’ | < eapl | (1+10g™ =) (£1.(X))™] .
| I Jr, | Close
P [ 1 n | I
(3.11) B [(1(0))z] < enp B | (1+10g™ — ) (£7.00)™ Quit
m L L |

Page 13 of 27
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Proof. Letn > 2,0 < p < oo and letX be a continuous local martingale.
First we prove 8.7). From @.9), (3.5), (3.1) and the Hélder inequality with
exponents; = n andr = "+, we have

[ P 1 p
B[(cin, X)) < e | (14108t ) 1,060
L L
[ » 1 p
<cE (1 + log2 J_> ([;; 1(L,X))p(X)4
_ - 1 1 On Some Inequalities of Local
np 1 np | n " np 7= Times of Iterated Stochastic
< c,E (1 +log? J—> (X)g] E [(In_l(L,X))"*l] Integrals
L L
np 1 np Litan Yan
< eupE {(1 +log# —) (X) 7 }
L
Title Page
Now, by using 8.7), (2.7) and Lemma&2.2, we have Content
S
i np 1 np
B|(Li(n,X))"| < e, B | (1+10g% =) (X)/ } “ b
- 1L o < >
np 1 2 np] 2 Close
<oF | (1+10g% ) (X)) | E[(£5(X)"] .
Jr Quit
< cppl {(1 + log"? %) (XZ)”p} Page 14 of 27
L
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and

np
2

Jeo ]
(a0 x|

H0)”]

E[(c;(n, X))p] < cnpE _<1 +log

np
2

< cppk <1 + log

~—

N—
—~
*

< cppk <1 + log"”

which give 3.8) and 3.9).
Next, from (3.1, (2.7) and @.9), we have

E[(J;;(L, X))”] < npE [(1 +log¥ JLL) <X>ZQP}
1
Jr

< eupE {(1 +log™ ) (LE(X))”p] .

Finally, from 3.3), (2.7) and @.9) we have

E (LX)} < cupE {(1 +log? %) <X>Z2p]

< copE {(1 +log™ JLL) (E}(X))"p} .

This completes the proof of Theoresr?.
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Now, we consider the reverse of the inequalities in TheoBeland Theo-
rem3.2. Let L € L and0 < p < oo. Then the inequalities

(3.12) E [(1 +log? Ji)un(x»g]

L

< cupE {(1 + log™ JLL) (1:(L, X))p} (n>1)

follow from (2.5 and Lemma2.2 for all continuous local martingales with
Xo = 0. Furthermore, in]1, p.161] M. Yor showed that for any non-increasing
continuous functiory : (0, 1] — R, the inequality

1
(3.13) Elg(I)X;| < ey |(993)(J0)(X);]

holds for all continuous local martingales with X, = 0, whereg,(z) =
1+1log” X (v > 0, z € (0,1]). As a consequence of the inequality, we have

Lemma 3.3. Let0 < p < oo and L € L. Then the inequality
1
P *\P
(3.14) E {(1 +log JL) (X) }

1 2
< E {(1 +log+27 —) <X>4

holds for all continuous local martingale¥ with X, = 0.
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Proof. Let v > 0 and letX be a continuous local martingale. Then we have
from (3.13

1
(3.15) E {(1 + log” J—L>X;] <cE [(1 +log"tE —

sinceg, is non-increasing an@vg%)(:c) <e, (1 + log”% %)
Now, denote for > 0

On Some Inequalities of Local

1 1 1 : -
At = < + log 7 )XL/\t and B, = (1 + logv-i-% J_) <X>Zm:- Times of Itﬁrtaetglilitochasnc
L
Litan Yan

Then for any coupléS, T') of stopping timesS, 7" with 7' > S > 0

i} Title Page
E[Ar — Ag] = (1 + log” J_> (XZar — XIas) FE—
S E (1 + IOg —) sup |XL/\t — XL/\S|1{S<T}:| 44 44
S<t<T
] < 4
L
—E (1 + log” J_L> Sup [ XE(s) — X5 |1{S<T}} Go Back
1
=FE (1 +log” J—> (X7ns+t) — S)L|1{S<T}] : Close
L Quit
where X! = X;,;. Page 17 of 27

Observe that X (s;nar — Xg)lis<ry,t > 0 is a continuoug Fs..)—local
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martingale, we find by3.15

1 1
E[AT - AS] <ok {(1 + 10g7+% J_) <X>ZAT1{S<T}:|
L
— B|e,Brlsery| < ||e,Br|| P(S < T).

It follows from Lemma 7 and Lemma 8 irc] with C' = ¢, B, o = = 1 that
forall0 < p < oo

E [(1 +log” JiL)p(XE)P} <c ,E {(1 +log™3 J%)QX}%] .
Thus, 3.14) follows from the inequalities
Ep(aP +07) < (a+b)P < ¢p(a? +0P) (p,a,b>0).
This completes the proof. O

On the other hand, in’], E. Carlen and P. Krée obtained the identity

L XDt X) = 203 =S P itz 2)

for all ¢ > 0 and all continuous local martingalés with X, = 0. It follows
that
1

1 —
XIS SR (0X) ~ LX) Lot X) (02 2).
n: n
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Integrating both sides of the inequality above[ont] with respect to the mea-
sured(X);, we get

LX< (n— DI0N —n / I(s, X)Ty_o(s, X)d(X), (n>2)

since(I,(X)); = [y I2_,(s, X)d(X),, which gives

V|3

L < Va0

(3.16) T <

/(L X) Tyt X) (X)) 2

Theorem 3.4.Let0 < p < ccandL € L. If V is one of the three random
1
variablesX7;, (X); and; (X), then the inequalities

(n>2).

3.17)  E[V™] <c,,E (1 +log™ i) (I5(L, X))"
i JL

Y

3.18)  E[V™] < ¢, E _(1 +logm+ar Ji) (I,(X)) ] ,

Nk L— 1

(3.19) E[V™] < c,,E (1 + log®ntp i) (ﬁz(n,X))p}
I JL

hold for all continuous local martingale¥ with X, =0andn =1,2,....

Proof. Letn > 2,0 < p < oo and letX be a continuous local martingale.
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Forn > 3, by applying the Holder inequality with exponenits=
r = - and Theoren8.1we have

B| (5oL, X)(X00)") < B|(1(L. X))

< cn,pEKl

Clearly, the inequality above is also true for= 2
It follows from (3.16) that forn > 2

(ﬁ)%g [(1 tlog® Jib)mgf}

gE[(l

3

ol

1
+1log? J_L><X>

“lear]

L

B

log¥ ) (Vi = 1(1,(x)

L

= n and
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Combining this with 8.12), we get the quadratic inequality as follows
w1 =2
E {(1 +log J—L><X)L ]

1
< ép E {(1 + log"” J_L> (I:(L. X))p}

+ upE {(1 +log™ Ji) (I:(L, X))p} ’

L

x E [(1+1og"2” JLL)<X)Z’5F.

Solving the above quadratic inequality leads to the inequality
np 1 np 1
: 2 > | < np L\ (* pl
(3.20) E {(1 + log JL><X>L } < Cnpl {(1 + log JL>(In(L,X)) }

Consequently, by Lemma3

np

(3.21) E {(1 +log? %) <X>ﬁ} <enpE {(1 +log(mH P Ji) <In(X)>;21] ,

and so by 2.5 and .9

(3.22) E {(1 +log? %)(X}Z;}

L

< copE [(1 + log" 1P %) (Li(n, X ))p} :

L
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Now, the inequalities3.17) — (3.19 are consequences &.20 — (3.22 by
Lemma2.1and Lemma2.2. This completes the proof. ]

Remark 3.1. Let0 < p < oo andL € L. As some special cases of the
inequalities in Theorerfi.4, we can show that the inequalities

(3.23) E[(X);] < ¢F :(1 + log? JLL) (13(L, X))p] ,
(3.24) E[(XYZ: < ¢, E (1 + log? JLL)<IQ(X)>§1 :
(3.25) E:(XE)Q”: < ¢,E (1 + log} JiL) (I;(L,X))p} ,
(3.26) E:(Xz)2p: < ¢,E (1 +log? JiL)uQ(X))ﬂ ,
(3.27) Bl(X))”] < B :(1 + log? JiL) (£1(2 X))”} 7
(3.28) E[(X)ﬁ: < ¢,E :<1+longiL (52(2,)())”},
(3.29) E :(E*L(X))Qp: <¢,E (1 + log? JiL) (I3 (L, X))”] ,
(3.30) E:( z(X))Qp: <c,E (1 +1log? %)(IQ(XD;} :
(3.31) B|(£3(X)”] < e, :<1+10g3p }L)( z<2,X>)p]
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hold for all continuous local martingales with X, = 0. In fact, from 3.1
we have

[MiS)

B[(X)] < 6B [(bX)E] + B [(13(L,X)(X)s)

for0 < p < oo and so

B[03] < 6B [0 + o B[ x0)] B[0r] .

On Some Inequalities of Local

Combining this with Lemm&.1, we find Times of Iterated Stochastic
Integrals
p 1 .
E[(Xyg] < ¢, {(1 +logh ]—) (I3 (L. X))p} Litan Yan
L
1
b1 2 : i
+ o B {(1 +1logh I—) (I3 (L. X))”} Bl(x) ]’ Title Page
L Contents
and « 3
R p 1 2 < 4
E[(Xyg] <¢,E {(1 +log? I—)<12(X)>z}
g L Go Back
P 1 |2 1
+c, B [(1 +log2 [—> <[n(X)>4 E [(X}ﬂ g Close
- Quit

The above quadratic inequalities lead 302(3 and (3.24).
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we obtain the inequalitie(25 — (3.29.
Finally, combining 8.16) with Lemma3.3, we get

E {(1 + log? %) (Xy;}

IN

E {(1 + log? Ji) <\/§<12(X)>§ + Q(IJ(L,X)<X>L);>I)]

L

1 P
<¢,E [(1 +log? —) (IQ(X)>2]
P J On Some Inequalities of Local
Times of Iterated Stochastic

1 % 1 2 Integrals
+CE|: 1 +log? — ) (I3 (L, X) p} E[ 1+ log? — <X>p} .
g ( JL) ( ? ) < JL) t Litan Yan
P 1 p
<¢,E {(1 +1log? J—) <12(X))2}
L ) Title Page
p 1 p|2 1 2
+c,E [(1 +log¥ J—) (I,(X)) g} E {(1 +log” J—) <X>§} , Contents
L L
which gives a quadratic inequality « dd
x® —ey* — cpry <0 (Cp,cp > 0) < >
with Go Back
1 2 5 1 b3 Close
r=E {(1 +log? J_L) (X)ﬁ] and y=E {(1 +log? J_L> <12(X))g] . ou
Solving the quadratic inequality leads to Page 24 of 27

1 3p 1 2
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which gives 8.30) and @3.31).
Thus, we obtain the inequalitie3.23 — (3.31).

On Some Inequalities of Local
Times of Iterated Stochastic
Integrals

Litan Yan

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 25 of 27

J. Ineq. Pure and Appl. Math. 3(4) Art. 62, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:yan@math.toyama-u.ac.jp
http://jipam.vu.edu.au/

[1] M.T. BARLOW AND M. YOR, (Semi—)Martingale inequalities and local
times,Z. W, 55(1981), 237-254.

[2] E. CARLENAND P. KREE, L*—estimates on iterated stochastic integrals,
Ann. Probah.19(1991), 354-368.

[3] C.S. CHOU, On some inequalities of local tinde,Theoret. Probabh3(1)
(1995), 17-22.

[4] K. L. CHUNG AND R. J. WILLIAMS, Introduction to stochastic integra-
tion, Second Edition, Boston, Basel and Stuttgart, Birkhduser 1990.

[5] S. D. JACKAAND M. YOR, Inequalities for non-moderate functions of
a pair of stochastic processéspc. London Math. Soc67 (1993), 649—
672.

[6] E. LENGLART, D. LEPINGLEAND M. PRATELLI, Présentation unifiée
de certaines inégalités de la théorie des martingafésm. Proba. XIV,
Lect. Notes in Math.,;784, Berlin, Heidelberg and New York, Springer
1980.

[7] D. REVUZAND M. YOR, Continuous Martingales and Brownian Motion,
Third edition, Berlin, Heidelberg and New York, Springer—Varlag 1999.

[8] L. YAN, Some inequalities for continuous martingales associated with the
Hermite polynomialsKobe J. Math.17 (2000), 191-200.

[9] L. YAN, Two inequalities for iterated stochastic integralstchiv der
Mathematikto appear.

On Some Inequalities of Local
Times of Iterated Stochastic
Integrals

Litan Yan

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 26 of 27

J. Ineq. Pure and Appl. Math. 3(4) Art. 62, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:yan@math.toyama-u.ac.jp
http://jipam.vu.edu.au/

[10] M. YOR, Inégalités de martingales continues arrétées a un temps quel-
conque (I): théorémes géraukect. Notes in Math.1118 110-146,
Springer, Berlin 1985.

[11] M. YOR, Inégalités de martingales continues arrétées a un temps quel-
conque (I1): le réle de certains espades/O, Lect. Notes in Math1118
147-171, Springer, Berlin 1985.

[12] M. YOR, Some Aspects of Brownian motion, Part Il: Some recent martin-
gale problemsl.ect. in Math. ETH Zirich, Birkh&user 1997.

On Some Inequalities of Local
Times of Iterated Stochastic
Integrals

Litan Yan

Title Page

Contents
44
<
Go Back
Close
Quit
Page 27 of 27

J. Ineq. Pure and Appl. Math. 3(4) Art. 62, 2002

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:yan@math.toyama-u.ac.jp
http://jipam.vu.edu.au/

	Introduction
	Preliminaries
	Inequalities and proofs

