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ABSTRACT. Let X = (X, F:):>0 be a continuous local martingale with quadratic variation
process X) and X, = 0. Define iterated stochastic integrdlg X) = (I,,(¢t, X), ;) (n > 0),
inductively by

t
L(t, X) = / In_1(s, X)dX,
0

with In(t, X) = 1 andI;(t, X) = X;. In this paper, we obtain some martingale inequalities for
I,(X),n =1,2,...and their local times at any random time.
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1. INTRODUCTION

Let X = (X;):>o be a continuous local martingale with quadratic variation pro¢&ssand
Xy = 0, defined on some filtered probability spa€e F, P, (F;)). Consider the corresponding
sequence of iterated stochastic integrals,
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2 LITAN YAN

defined inductively by

(11) [n(th) = /Ot In—l(st)dXSa

wherely(t, X) =1 and/[;(t, X) = X,.
Itis known that there exist positive constaiits, andA,, , depending only om andp, such

that the inequalities (seel[2, 8])

(X)7 (X)7

(1.2) Anp <

p

sup | I(t, X))

0<t<T

S Bn,p
p

(0 <p<oo),

p

hold for all continuous local martingalés with X, = 0 and all(F;)—stopping timer.
On the other hand, M.T. Barlow and M. Yor have establishedlin [1] (see also Theorem 2.4
in [[7, p.457]) the following martingale inequalities for local times:

(X)2 (X)Z

p (0 < p<o0),

< 1L, <Gy
p p
where(L¥(X);t > 0) is the local time ofX atx andL; (X) = sup,cg £7(X). It follows that
forall0 < p < o0
(X)7

(1.3) Cnp || (X)2

<L X, <

p

for all (F;)—stopping timeg", where(L¥(n, X);t > 0) stands for the local time of,(X) atx.

However, it is clear that the inequalitids (1.2) ahd(1.3) are not true Whisnreplaced by
an arbitraryR , —valued random time (see, for example,![12] wher- 1). In this paper we
extend[(1.R) and (1] 3) to any random time.

2. PRELIMINARIES

Throughout this paper, we fix a filtered complete probability spdeer, (F;), P) with
the usual conditions. For any proce§s= (X;):>o, denoteX* = sup,-,-, |X;| and X* =
SUPg<;-o0 | X¢|- Letc stand for some positive constant depending only on the subscripts whose
value may be different in different appearances, and this assumption is also made for

From now on anF—measurable non—negative random variable 2 — R, is called a
random time and we denote kythe collection of all random times, i.e.,

L ={L : LisanF—measurable, non—negative, random varipble

For anyL € L, let (GF) be the smallest filtration satisfying the usual conditions which both
contains(F;) and maked. a (GF)—stopping time. Define

Z} = E [1{1>1|F] and J, = inf Z%.

s<L

ThenZ! = (ZF) is a potential of class (D). Assume that the Doob—Meyer decomposition for
Ztis

(2.1) Zb =M - A.

For simplicity, in the present paper we assume throughout/thatl avoids(F;)-stopping
times, i.e.,

for every(F;)—stopping tim&’, P(L =T') = 0.
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SOME INEQUALITIES OF LOCAL TIMES 3

Thus, under the conditior;” is continuous and s/ is also continuous. Furthermore, for any
continuous(F;)—local martingaleX there exists a continuous:>)—local martingaleX with

(X)ae = (X); such that
LAt
> d(X, M)
Xpne = Xt + /0 Z—SL,
whereL At = min{L, t}. For more information oiX * = (X ;)0 and(GL), seel[10, 11, 12].
Lemma 2.1([10]). Let0 < p < oo and L € L. Then the inequalities

|\

(2.3) E [<X>§} <c,E {(1 + logh J%)(X*)’z}

ok

L

(2.2) B[(X})] < ¢,E [(1 + log® Ji)<X>

hold for all continuoug ¥;)—local martingalesX vanishing at zero.

It is known that the inequalities in Lemma P.1 are the extensions to the Burkholder-Davis-
Gundy inequalities. For the proof, see Proposition 4 in [10, p.122] (or Theorem 13.4]in [12,
p.57]).

Let X now be a continuous semimartingale. Then for everg R the following Meyer—
Tanaka formula may be considered as a definition of the local {i6f€¢ X);t > 0} of X at
T

¢
| Xy — x| — | Xo — 2| = / sgn(Xs — x)d X, + L (X).
0

One may take a versiafi : (z,t,w) — L7 (w) which is right continuous and has a left limit at

x, and is continuous in In particular, if X is a continuous local martingale, théfi(X) has a

continuous version in both variables. In this paper, we use such a version of local time.
The fundamental formula of occupation density for a continuous semimartingale is:

t o]
2.4 [ ecegac. = [ e
0 —00
for all bounded, Borel function® : R — R, which gives
(2.5) (X)oo < 2X2 L0 (X)

sincef?, = 0forall z ¢ [—X* X*]. It follows that (seel[3]) for all continuou§F;)—local
martingalesX, and allt > 0, € RandL € LL

(2.6) Tae(X) = LF(XT)
if M is continuous, wher&” = (X ,;). So, we have
2.7) (X)1 = (X")oe < 2L (X5 X} = 2L3(X)X]

by (2.8). Furthermore, the following lemma which can be foundin [3] extends the Barlow—Yor
inequalities.
Lemma 2.2. Let0 < p < oo and L € L. Then the inequalities

(2.8) E[(ﬁz(x))p} < ¢, min {E[(l +log? JL) <X>ﬂ’ E {(1 + logP %)(X}i)p} }

and
(2.9) max{E[(X;)P], E [<X>§” <¢,E [(1 + log? J%)( ’g(X))”]
hold.
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Remark 2.3. In [3], C. S. Chou proved that (2.8) ard (2.9) hold foK p < oo. In fact, when
0 < p < 1(2.8) and|[(2.P) are also true from the prooflin [3].

3. INEQUALITIES AND PROOFS

In this section, we shall extend (1.2) ahd {1.3) to any random firgel..
Theorem 3.1.Let0 < p < oo and L € L. Then the inequalities

(3.1) E[(IZ(L,X))]”: < copE _(1 +log? J%)(X)Zf] ,
(3.2) E[(I;;(L,X))p: < cnpE :(1 +log? JLL> ( Xz)”p} 7
(3.3) E [<In(X)>§: < cupB :(1 +log? JLL><X>Z§] ,
(3.4) B (LX)} | < cupE i(l +log¥ ) (Xz)”p}

hold for all continuous local martingale¥ with X, =0 andn =1,2,....

Proof. Letn > 1, L € L and letX be a continuous local martingale.
(3.7) can be verified by induction. In fact, when= 1 (3.1) is true from[(Z.2). Now suppose
that (3.1) is true foR, ..., n — 1. Then we have

np
n—

71] < cppl [(1 +log? %) <X>ZQP} :

On the other hand, from (1.1) we see that

E (151, )

(I,(X))s = /0 (Ln—1(s, X)) 2d(X), < sup (L_1(s, X)) *(X),

0<s<t
for all £ > 0, which gives
(3.5) (LX) < (4 (L, X)) (X)L

Thus, by applying[(2]2)[ (3] 5) and then applying the Holder inequality with exporeats
andr = —*-, and noting

(a+b)" < cy(a”™ + ") (a,b>0),

we find

E[(1(L,X))"] < F

3
P
>
S
_
3=
=
| —
—
3
AN
~—~
&~
>
SN—"
HE
I_Hl
|

This establishe$ (3.1).
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SOME INEQUALITIES OF LOCAL TIMES 5

Now, we verify [3.2). From the well-known correspondence of iterated stochastic integral
I,,(X) and the Hermite polynomial of degregsee[[4|7])

Lt X) = (X (X)0)

dx™

mial of degree:, more generallyH,,(z,y) can be defined as

whereH,,(z,y) = yz h, (\%) (y > 0) andh,(z) = (—1)"e”” L-e~*" is the Hermite polyno-

z2 an z2

Hn(xa y) = (_y)n62y oxr™

we see that iterated stochastic integialsX ), n = 1,2, ... have the representation
(3.6) L,(t, X) = Y CPX](X);,
j=0

whereC{) = (—%)j ey andlz] stands for the integer part of

On the other hand, fa¥y < j < Z, by using the Holder inequality with exponents= Y
andr = % we get

E[(XZ)(H*ZJ’)I?(XVE] < E[(Xz)”p] = [<X>27p] 2

Clearly, the inequality above is also true for= 3 andj = 0.
Combining this with[(3.6), we get far < p <1

(3]

B[(5(L. X)) <& 1COPE[(x5)2P((X)1)7]

andforl < p < oo

This gives|(3.R).
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Next, from [3.5) and (3]1) we see that
B [(L(X));] < B[ (L1 X)) (X))

< B[ x0)™) " B[]

L

< ool [(”10%71; Ji) <X>f} "B [(X)Zﬂi
< cnpE [(1 +log? Ji) <X>L2}

Finally, from (3.5), [(3.2) and (2] 3), we have

< cppk [(1 +log?

< CupE [(1 +1log? (XE>"p]
This completes the proof of Theor¢m3.1. O

Theorem 3.2.Let0 < p < co and L € L. Then the inequalities

i 1 np 1 np
(3.7) E|(L;(n,X))"| € capE <1+log2 —)<X>L21 ,

i ] JrL
(3.8) E|(L5n,X))"] < opE (1+1og ! )(X;)np],

i ] JrL
(3.9) E:(c;(n,X))p: < o <1—|—10g J—>(£L(X)) o
(3.10) Bl(;(1, X))"] < cpB <1+log J—)(c*( N
(3.12) B [(1(X));] < cap (1+1og - )(c*( )"

- L

hold for all continuous local martingale¥ with X, =0andn =1,2,....

Proof. Letn > 2,0 < p < oo and letX be a continuous local martingale.
First we prove[(3]7). Froni (2.8], (3.5), (B.1) and the Holder inequality with exporeats
andr = =, we have

E[(ﬁ;(n,x))”] <c,E

(
<y (1 o ) (142,300
< B :(1“0%"5 JLL><X>ZQPFE (@)™ T
< CppE [(1 +log ™ %)(Xi;]
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Now, by using[(3.]7)[(2]7) and Lemra P.2, we have

el(en ] < o (1 Ji><x>zf]

and
o] <o [ oot

< oo | (1 g¥ ) (2306)) ¥ () ¥

1 n
< Cnpl (1 + log™ J_L)( E(X>) P} )

which give [3.8) and (3]9).
Next, from [3.1),[(2.]7) and (2.9), we have
1

{52 0] < o [ (11087 )07

n 1 * n;
< cp,p b {(1 + log™” J_L> (L7(X)) p] :
Finally, from (3.3), [(2.F¥) and (2]9) we have
4 np 1 np
2 < 2 2
B[1,00M] < enplt | (14108% )00
n 1 * n
< cnpE [(1 + log™” J_L> (£3(X)) p} :
This completes the proof of Theor¢m|3.2. O

Now, we consider the reverse of the inequalities in Thegrein 3.1 and Thgorem 312¢Llet
and0 < p < oo. Then the inequalities

3.12) E [(1 +log# J%)(In(X»ﬂ < cupB [(1 + 1og"inL) ([;;(L,X))p} (n>1)

follow from (2.5) and Lemma 2]2 for all continuous local martingalesvith X, = 0. Fur-
thermore, in[[11, p.161] M. Yor showed that for any non-increasing continuous fungtion
(0,1] — R, the inequality

1
(3.13) Blg()X;] < ¢B|(99:)(J)(X)]
holds for all continuous local martingalés with X, = 0, whereg,(z) = 1 + log”% (v >

0, =z € (0,1]). As a consequence of the inequality, we have
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Lemma 3.3. Let0 < p < co and L € L. Then the inequality
1 1 1 <

(3.14) E {(1 +log™” J—> (X;)p] <c B {(1 +1ogrt e J—) (X) L] (v>0)
L

holds for all continuous local martingales with X, = 0.

Proof. Lety > 0 and letX be a continuous local martingale. Then we have friom (3.13)

1 1 1
(3.15) E [(1 + log” J—)XZ} < ¢E [(1 +log*? J_L) <X>%} 7

sinceg, is non-increasing an, g1 )(z) < c, <1 +log'tz %)
Now, denote for > 0
1 11 1
A = (1 +log7—>X}jM and B, = (1 +log"2 —)<X>3M.
Ji Ji
Then for any coupléS, T') of stopping timesS, 7" with 7' > S > 0

1 * *
J >(XL/\T - XL/\S)}

BlAr - As] = E | (1+1og’ -
<FE sup |XL/\t - XL/\S|1{S<T}:|

L/ S<t<T

[ 1
=F <1 + log” J_> sup |X1L“/\(S+t) - X§|1{S<T}}
I L/ t>0

E

sup |(X1a(s+t) — XS)L“{S<T}:| ,
>

where X! = X;,;.
Observe thatX s yar — Xs)1lis<ry,t > 0is a continuou$Fs..)—local martingale, we find

by (3.13)
1 1
E[Ar — As] < ¢, E [(1 +log”" J—) (X >2AT1{S<T}]
L

— E|e,Brljsen]| < [leBrl| P(S < T),
It follows from Lemma 7 and Lemma 8 inl[5] with’ = ¢, B, a« = 3 = 1 thatforall0 < p < co
E [(1 + log” i)p(Xz)p] <y, B {(1 +log"*3 %)%X%} .
Thus, [3.14) follows from the inequalities
Cp(a? +b°) < (a+b)P < cp(a? +0P) (p,a,b>0).
This completes the proof. O
On the other hand, in[2], E. Carlen and P. Krée obtained the identity

— (n—j)! -
L(t, X) Lo (t, X) = 12 (8, X) = ) o LX) X077 (n=2)
j=1
for all ¢ > 0 and all continuous local martingaléswith X, = 0. It follows that

n

1
—{X)7 7 <

—1
| Isfl@vX) - In(tu X)In—Z(t; X) (n Z 2)
n. n
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SOME INEQUALITIES OF LOCAL TIMES 9

Integrating both sides of the inequality above[0n| with respect to the measu& X ),, we
get

LX< (n—)((X)? —n / 1(5, X)Tyo(s, X)d(X), (n>2)

since(I,(X)); = [i I2_,(s, X)d(X),, which gives

w|3

(X
!

N

(3.16) <V LX)V + v (I, X) Iy (1 X) (X))

(n > 2).

<

Theorem 3.4.Let0 < p < oo andL € L. If V is one of the three random variablés', <X>%
and L; (X), then the inequalities

(3.17) E[V™] < 6 | (1+10g™ i) (I;(L,X))p} ,
i Jr

(3.18) E[V™] < ¢, E (1 +log("+5)pi)<ln(X)>a ,
[ Ji

(3.19) E[V™] < ¢, E (1 + log®thr %) (L;(n,X))p}
L L

hold for all continuous local martingale¥ with X, =0 andn =1,2,....

Proof. Letn > 2,0 < p < oo and letX be a continuous local martingale.
Forn > 3, by applying the Holder inequality with exponents= n andr = -5 and
Theoreni 3.1l we have

Clearly, the inequality above is also true fore= 2.
It follows from (3.16) that fom > 2

(=)E | (1+100% )0 ]
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Combining this with|[(3.12), we get the quadratic inequality as follows

E {(1 +log¥ JLL><X>ZJ’]

1

2

1
< énykE {(1 +1og™ —) (I3 (L, X))P} + eupEl {(1 4 log™
L

1)) ]

L

x E {(1 +log? %)0@?} : .

Solving the above quadratic inequality leads to the inequality

np

3200 E [(1 +1log ¥ Ji) (X) L} < enpE [(1 +1og"inL) (I:(L,X))p} .

L
Consequently, by Lemma 3.3

np

3.21) E {(1 +log® Ji><X>L2] < upE {(1 +log(™ts ><[ )2 }
L
and so by[(2]5) andl (2.9)

np

322) E {(1+logn2p %)Q{)g} < cp E [(1+10g(2"+1 s )(.c*( ))”] .

Now, the inequalitieq (3.17) + (3.19) are consequences 0of|(3.20) 4 (3.22) by Llemjma 2.1 and
Lemmd 2.2. This completes the proof. O

Remark 3.5. Let0 < p < o andL € L. As some special cases of the inequalities in
Theorenj 3.4, we can show that the inequalities

| p 1 P
(3.23) E[<X>i_ < E _<1+10 gt J—L)(J;(L,X)) } ,
(3.24) B[00z] < e | (14 1og? ) (0N
(3.25) E:(XE)QP: <c,E _(1 +log? %)([;(L,X))pl ,
(3.26) B|(X))¥] < 6B _(1 +1o 5%)@@))?} ,
(3.27) E:(X,’{)Qp: < ¢,E _(1 +1ogPJiL) (z;(Q,X))p] ,
(3.28) E[(X)’i: <c,E _(1+longiL (c;(Q,X))p],
(3.29) E(Cy(x)*”] < B (1+log2p i) (I;(L,X))p],
_ _ i L
[ 2p] [ 3p 1
(3.30) B[(633))"]) < 6 | (1-+ 108 J_L)<12(X>>;},
(3.31) E:(EE(X))2P: <¢,E <1+10g3p %) (c;;(z,X))p}
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hold for all continuous local martingalés with X, = 0. In fact, from [3.16) we have
BI(X),] < B [(1(X);] + 6B [ (13(L, X)(X)1)?]
for0 < p < oo and so
E[(x);] < &B[(B(X));| + B[ (13(L.X)" | B[(xX)%].
Combining this with Lemmpa 21, we find

)@ xy]

N

E[(X)}] <&F {(1 +logh

+¢F {(1 +log? %) (13(L, X))p} ' (0] :
and
E[(Xﬂ] <é)E [(1 +log? %)@(x»;}

p 1 5 : pl2
ro | (14106t Ym0 B[]
The above quadratic inequalities lead[to (8.23) and [3.24).
Next, observe that fron (3.6)
(X1)? < 2I3(L, X) + (X)L,

we obtain the inequalitie§ (3.25) - (3]28).
Finally, combining[(3.16) with Lemmja 3.3, we get

E {(1 +log? Ji)<X>§1

L

< £ | (1410 ) (VEROO) + 205 X)) )|

L

<¢,E [(1 +log? Ji) <12(X)>§]

L

N[

Yo, E {(1 + log” JLL) (15(L, X))pl

P % 1 2
2 2 p__ p
bk |(110g® RO B | (14100 L) 0002
which gives a quadratic inequality
2

2 — &y — ey <0 (€p,cp 2 0)
with

r=E {(1 +log? i) (X>§] " and y—E {(1 +1log ¥ JLL) <12(X)>§] : .
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Solving the quadratic inequality leads to

E {(1 + log” J%) <X>§1 <¢FE {(1 +log ¥ JLL) <12(X)>ﬂ :

which gives|[(3.3D) and (3.81).
Thus, we obtain the inequalitigs (3]23) - (3.31).
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