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Abstract

We give error bounds for the trapezoidal rule and Simpson’s rule for “rough”
continuous functions—for instance, functions which are Hölder continuous, of
bounded variation, or which are absolutely continuous and whose derivative
is in Lp. These differ considerably from the classical results, which require
the functions to have continuous higher derivatives. Further, we show that our
results are sharp, and in many cases precisely characterize the functions for
which equality holds. One consequence of these results is that for rough func-
tions, the error estimates for the trapezoidal rule are better (that is, have smaller
constants) than those for Simpson’s rule.

2000 Mathematics Subject Classification: 26A42, 41A55.
Key words: Numerical integration, Trapezoidal rule, Simpson’s rule
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1. Introduction
1.1. Overview of the Problem

Given a finite intervalI = [a, b] and a continuous functionf : I → R, there are
two elementary methods for approximating the integral∫

I

f(x) dx,

the trapezoidal rule and Simpson’s rule. Partition the intervalI into n intervals
of equal length with endpointsxi = a+ i|I|/n, 0 ≤ i ≤ n. Then the trapezoidal
rule approximates the integral with the sum

(1.1) Tn(f) =
|I|
2n

(
f(x0) + 2f(x1) + · · ·+ 2f(xn−1) + f(xn)

)
.

Similarly, if we partitionI into 2n intervals, Simpson’s rule approximates the
integral with the sum

(1.2) S2n(f) =
|I|
6n

(
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·

+ 4f(x2n−1) + f(x2n)
)
.

Both approximation methods have well-known error bounds in terms of higher
derivatives:

ET
n (f) =

∣∣∣∣Tn(f)−
∫
I

f(x) dx

∣∣∣∣ ≤ |I|3‖f ′′‖∞
12n2

,

ES
2n(f) =

∣∣∣∣S2n(f)−
∫
I

f(x) dx

∣∣∣∣ ≤ |I|5‖f (4)‖∞
180n4

.
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(See, for example, Ralston [13].)
Typically, these estimates are derived using polynomial approximation, which

leads naturally to the higher derivatives on the righthand sides. However, the as-
sumption thatf is not only continuous but has continuous higher order deriva-
tives means that we cannot use them to estimate directly the error when approx-
imating the integral of such a well-behaved function asf(x) =

√
x on [0, 1]. (It

is possible to use them indirectly by approximatingf with a smooth function;
see, for example, Davis and Rabinowitz [3].)

In this paper we consider the problem of approximating the errorET
n (f) and

ES
2n(f) for continuous functions which are much rougher. We prove estimates

of the form

(1.3) ET
n (f), ES

2n(f) ≤ cn‖f‖;

where the constantscn are independent off , cn → 0 asn → ∞, and‖ · ‖
denotes the norm in one of several Banach function spaces which are embedded
in C(I). In particular, in order (roughly) of increasing smoothness, we consider
functions in the following spaces:

• Λα(I), 0 < α ≤ 1: Hölder continuous functions with norm

‖f‖Λα = sup
x,y∈I

|f(x)− f(y)|
|x− y|α

.

• CBV (I): continuous functions of bounded variation, with norm

‖f‖BV,I = sup
Γ

n∑
i=1

|f(xi)− f(xi−1)|,
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wherea = x0 < x1 < · · · < xn = b, and the supremum is taken over all
such partitionsΓ = {xi} of I.

• W p
1 (I), 1 ≤ p ≤ ∞: absolutely continuous functions such thatf ′ ∈ Lp(I),

with norm‖f ′‖p,I .

• W pq
1 (I), 1 ≤ p ≤ ∞: absolutely continuous functions such thatf ′ is in

the Lorentz spaceLpq(I), with norm

||f ′||pq,I =

(∫ ∞

0

tq/p−1(f ′)∗q(t)dt

)1/q

=

(
p

q

∫ ∞

0

λf ′(y)
q/pd(yq)

)1/q

.

(For precise definitions, see the proof of Theorem1.6 in Section4 below,
or see Stein and Weiss [17].)

• W p
2 (I), 1 ≤ p ≤ ∞: differentiable functions such thatf ′ is absolutely

continuous andf ′′ ∈ Lp(I), with norm‖f ′′‖p,I .

(Properly speaking, some of these norms are in fact semi-norms. For our
purposes we will ignore this distinction.)

In order to prove inequalities like (1.3), it is necessary to make some kind
of smoothness assumption, since the supremum norm onC(I) is not adequate
to produce this kind of estimate. For example, consider the family of functions
{fn} defined on[0, 1] as follows: on[0, 1/n] let the graph offn be the trapezoid
with vertices(0, 1), (1/n2, 0), (1/n−1/n2, 0), (1/n, 1), and extend periodically
with period1/n. ThenEn(fn) = 1− 1/n but ||fn||∞,I = 1.

Our proofs generally rely on two simple techniques, albeit applied in a some-
times clever fashion: integration by parts and elementary inequalities. The idea
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of applying integration by parts to this problem is not new, and seems to date
back to von Mises [19] and before him to Peano [11]. (This is described in
the introduction to Ghizzetti and Ossicini [7].) But our results themselves are
either new or long-forgotten. After searching the literature, we found the fol-
lowing papers which contain related results, though often with more difficult
proofs and weaker bounds: Pólya and Szegö [12], Stroud [18], Rozema [15],
Rahman and Schmeisser [14], Büttgenbachet al. [2], and Dragomir [5]. Also,
as the final draft of this paper was being prepared we learned that Dragomir,
et al. [4] had independently discovered some of the same results with similar
proofs. (We would like to thank A. Fiorenza for calling our attention to this
paper.)

1.2. Statement of Results

Here we state our main results and make some comments on their relationship
to known results and on their proofs. Hereafter, given a functionf , define
fr(x) = f(x)−rx, r ∈ R, andfs(x) = f(x)−s(x), wheres is any polynomial
of degree at most three such thats(0) = 0. Also, in the statements of the results,
the intervalsJi and the pointsci, 1 ≤ i ≤ n, are defined in terms of the partition
for the trapezoidal rule, and the intervalsIi and pointsai andbi are defined in
terms of the partition for Simpson’s rule. Precise definitions are given in Section
2 below.

Theorem 1.1.Letf ∈ Λα(I), 0 < α ≤ 1. Then forn ≥ 1,

(1.4) ET
n (f) ≤ |I|1+α

(1 + α)2αnα
inf
r
‖fr‖Λα ,
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and

(1.5) ES
2n(f) ≤ 2(1 + 2α+1)|I|1+α

(1 + α)61+αnα
inf
s
‖fs‖Λα ,

Further, inequality(1.4) is sharp, in the sense that for eachn there exists a
functionf such that equality holds.

Remark 1.1. We conjecture that inequality(1.5) is sharp, but we have been
unable to construct an example which shows this.

Remark 1.2. Inequality(1.4) should be compared to the examples of increasing
functions inΛα, 0 < α < 1, constructed by Dubuc and Topor [6], for which
ET
n (f) = O(1/n).

In the special case of Lipschitz functions (i.e., functions inΛ1) Theorem1.1
can be improved.

Corollary 1.2. Letf ∈ Λ1. Then forn ≥ 1,

|ET
n (f)| ≤ |I|2

8n
(M −m),(1.6)

|ES
2n(f)| ≤ 5|I|2

72n
(M −m),(1.7)

whereM = supI f
′, m = infI f

′. Furthermore, equality holds in(1.6) if and
only if f is such that its derivative is given by

(1.8) f ′(t) = ±

(
n∑
i=1

(
MχJ+

i
(t) +mχJ−i (t)

))
.
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Similarly, equality holds in(1.7) if and only if

(1.9) f ′(t) = ±

(
n∑
i=1

(
mχI1i (t) +MχI2i (t) +mχI3i (t) +MχI4i (t)

))
.

Remark 1.3. Inequality(1.6) was first proved by Kim and Neugebauer [9] as
a corollary to a theorem on integral means.

Theorem 1.3.Letf ∈ CBV (I). Then forn ≥ 1,

(1.10) ET
n (f) ≤ |I|

2n
inf
r
‖fr‖BV,I ,

and

(1.11) ES
2n(f) ≤ |I|

3n
inf
r
‖fr‖BV,I .

Both inequalities are sharp, in the sense that for eachn there exists a sequence
of functions which show that the given constant is the best possible. Further, in
each equality holds if and only if both sides are equal to zero.

Remark 1.4. Pölya and Szegö [12] proved an inequality analogous to(1.10)
for rectangular approximations. However, they do not show that their result is
sharp.

Theorem 1.4.Letf ∈ W p
1 (I), 1 ≤ p ≤ ∞. Then for alln ≥ 1,

(1.12) ET
n (f) ≤ |I|1+1/p′

2n(p′ + 1)1/p′
inf
r
‖f ′r‖p,I ,
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and

(1.13) ES
n (f) ≤ 21/p′(1 + 2p

′+1)1/p′|I|1+1/p′

(p′ + 1)1/p′61+1/p′n
inf
s
‖f ′s‖p,I .

Inequality(1.12) is sharp, and when1 < p <∞, equality holds if and only if

(1.14) f ′(t) = d1

n∑
i=1

(
(t− ci)

p′−1χJ+
i
(t)− (ci − t)p

′−1χJ−i (t)
)

+ d2,

whered1, d2 ∈ R. Similarly, inequality(1.13) is sharp, and when1 < p < ∞,
equality holds if and only if

(1.15) f ′(t) = d1

n∑
i=1

(
(t− ai)

p′−1χI2i (t) + (t− bi)
p′−1χI4i (t)

− (ai − t)p
′−1χI1i (t)− (bi − t)p

′−1χI3i (t)
)

+ d2t
2 + d3t+ d4,

wheredi ∈ R, 1 ≤ i ≤ 4.

Remark 1.5. Whenp = 1, p′ = ∞, and we interpret(1 + p′)1/p′ and (1 +
2p

′+1)1/p′ in the limiting sense as equaling1 and 2 respectively. In this case
Theorem1.4is a special case of Theorem1.3since iff is absolutely continuous
it is of bounded variation, and‖f ′‖1,I = ‖f‖BV,I .

Remark 1.6. When1 < p < ∞ we can restate Theorem1.4 in a form anal-
ogous to Theorem1.3. We define the spaceBVp of functions of boundedp-
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variation by

‖f‖BVp,I = sup
Γ

n∑
i=1

|f(xi)− f(xi−1)|p

|xi − xi−1|p−1
<∞,

where the supremum is taken over all partitionsΓ = {xi} of I. Thenf ∈ BVp if
and only if it is absolutely continuous andf ′ ∈ Lp(I), and‖f‖BVp,I = ||f ′||p,I .
This characterization is due to F. Riesz; see, for example, Natanson [10].

Remark 1.7. Whenp = ∞, Theorem1.4 is equivalent to Theorem1.1 with
α = 1, sincef ∈ W∞

1 (I) if and only if f ∈ Λ1(I), and‖f ′‖∞,I = ‖f‖Λ1,I .
(See, for example, Natanson [10].)

Remark 1.8. Inequality(1.12), withr = 0 andp > 1 was independently proved
by Dragomir [5] as a corollary to a rather lengthy general theorem. Very re-
cently, we learned that Dragomiret al. [4] gave a direct proof similar to ours
for (1.12) for all p but still with r = 0. Neither paper considers the question of
sharpness.

While inequalities (1.12) and (1.13) are sharp in the sense that for a givenn
equality holds for a given function,ET

n (f) andES
2n(f) go to zero more quickly

than1/n.

Theorem 1.5.Letf ∈ W p
1 (I), 1 ≤ p ≤ ∞. Then

lim
n→∞

n · ET
n (f) = 0(1.16)

lim
n→∞

n · ES
2n(f) = 0.(1.17)

Further, these limits are sharp in the sense that the factor ofn cannot be re-
placed byna for anya > 1.
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Remark 1.9. Unlike most of our proofs, the proof of Theorem1.5requires that
we approximatef by smooth functions. It would be of interest to find a proof of
this result which avoided this.

Theorem 1.6.Letf ∈ W pq
1 (I), 1 ≤ p, q ≤ ∞. Then forn ≥ 1,

(1.18) ET
n (f) ≤ B(q′/p′, q′ + 1)1/q′ |I|1+1/p′

2n
inf
r
‖f ′r‖pq,I ,

whereB is the Beta function,

B(u, v) =

∫ 1

0

xu−1(1− x)v−1 dx, u, v > 0.

Similarly,

(1.19) ES
2n(f) ≤ C(q′/p′, q′ + 1)1/q′ |I|1+1/p′

n
inf
s
‖f ′s‖pq,I ,

where

C(u, v) =

∫ 1/3

0

tu−1

(
1

3
− t

2

)v−1

dt+

∫ 1

1/3

tu−1

(
1

4
− t

4

)v−1

dt.

Remark 1.10. Whenp = q then Theorem1.6reduces to Theorem1.4.

Remark 1.11. Theorem(1.6) is sharp; when1 ≤ q < p the condition for
equality to hold is straightforward (f is constant), but whenq ≥ p it is more
technical, and so we defer the statement until after the proof, when we have
made the requisite definitions.
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Remark 1.12. The constant in(1.19) is considerably more complicated than
that in(1.18); the functionC(u, v) can be rewritten in terms of the Beta function
and the hypergeometric function2F1, but the resulting expression is no simpler.
(Details are left to the reader.) However it is easy to show thatC(q′/p′, p′+1) ≤
B(q′/p′, p′ + 1)/3q

′
, so that we have the weaker but somewhat more tractable

estimate

ES
2n(f) ≤ B(q′/p′, q′ + 1)1/q′ |I|1+1/p′

3n
inf
s
‖f ′s‖pq,I .

Theorem 1.7.Letf ∈ W p
2 (I), 1 ≤ p ≤ ∞. Then forn ≥ 1,

(1.20) ET
n (f) ≤ B(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2n2
‖f ′′‖p,I

and

(1.21) ES
2n(f) ≤ D(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

21/p32+1/p′n2
inf
s
‖f ′′s ‖p,I ,

where

D(u, v) =

∫ 3/2

0

tu−1|1− t|v−1 dt.

Inequality(1.20) is sharp, and when1 < p <∞ equality holds if and only if

(1.22) f ′′(t) = d
n∑
i=1

(
|Ji|2

4
− (t− ci)

2

)p′−1

χJi
(t),

http://jipam.vu.edu.au/
mailto:david.cruzuribe@mail.trincoll.edu
mailto:neug@math.purdue.edu
http://jipam.vu.edu.au/


Sharp Error Bounds for the
Trapezoidal Rule and Simpson’s

Rule

D. Cruz-Uribe, C.J. Neugebauer

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 49

J. Ineq. Pure and Appl. Math. 3(4) Art. 49, 2002

http://jipam.vu.edu.au

whered ∈ R. Similarly, inequality(1.21) is sharp, and when1 < p < ∞
equality holds if and only if

(1.23) f ′′(t) = d1

n∑
i=1

((
|Ii|2

36
− (t− ai)

2

)p′−1

χĨ1i (t)

−
(

(t− ai)
2 − |Ii|2

36

)p′−1

χĨ2i (t)

+

(
|Ii|2

36
− (t− bi)

2

)p′−1

χĨ3i (t)

−
(

(t− bi)
2 − |Ii|2

36

)p′−1

χĨ4i (t)

)
+ d2t+ d3,

wheredi ∈ R, 1 ≤ i ≤ 3, and the intervals̃Iji , 1 ≤ j ≤ 4, defined in(5.2)
below, are such that the corresponding functions are positive.

Remark 1.13. Whenp = 1, p′ = ∞, and we interpretB(p′ + 1, p′ + 1)1/p′ as
the limiting value1/4. This follows immediately from the identityB(u, v) =
Γ(u)Γ(v)/Γ(u + v) and from Stirling’s formula. (See, for instance, Whittaker
and Watson [20].)

Remark 1.14. Whenp = ∞, (1.20) reduces to the classical estimate given
above.

Remark 1.15. Like the functionC(u, v) in Theorem1.6, the functionD(u, v)
can be rewritten in terms of the Beta function and the hypergeometric function
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2F1. However, the resulting expression does not seem significantly better, and
details are left to the reader.

Prior to Theorem1.7, each of our results shows that for rough functions, the
trapezoidal rule is better than Simpson’s rule. More precisely, the constants in
the sharp error bounds forET

2n(f) are less than or equal to the constants in the
sharp error bounds forES

2n(f). (We useET
2n(f) instead ofET

n (f) since we want
to compare numerical approximations with the same number of data points.)

This is no longer the case for twice differentiable functions. Numerical cal-
culations show that, for instance, whenp = 10/9, the constant in (1.20) is
smaller, but whenp = 10, (1.21) has the smaller constant. Furthermore, the fol-
lowing analogue of Theorem1.5 shows that though the constants in Theorem
1.7are sharp, Simpson’s rule is asymptotically better than the trapezoidal rule.

Theorem 1.8.Givenf ∈ W p
2 (I), 1 ≤ p ≤ ∞,

(1.24) lim
n→∞

n2ET
n (f) =

∣∣∣∣ |I|212

∫
I

f ′′(t) dt

∣∣∣∣ ,
but

(1.25) lim
n→∞

n2ES
2n(f) = 0.

Remark 1.16. (Added in proof.) Given Theorems1.5and1.8, it would be inter-
esting to compare the asymptotic behavior ofET

n (f) andES
2n(f) for extremely

rough functions, say those inΛα(I) andCBV (I). We suspect that in these
cases their behavior is the same, but we have no evidence for this. (We want to
thank the referee for raising this question with us.)
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1.3. Organization of the Paper

The remainder of this paper is organized as follows. In Section2 we make
some preliminary observations and define notation that will be used in all of
our proofs. In Section3 we prove Theorems1.1 and1.3 and Corollary1.2. In
Section4 we prove Theorems1.4, 1.5and1.6. In Section5 we prove Theorems
1.7and1.8.

Throughout this paper all notation is standard or will be defined when needed.
Given an intervalI, |I| will denote its length. Givenp, 1 ≤ p ≤ ∞, p′ will de-
note the conjugate exponent:1/p+ 1/p′ = 1.
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2. Preliminary Remarks
In this section we establish notation and make some observations which will be
used in the subsequent proofs.

2.1. Estimating the Error

Given an intervalI = [a, b], for the trapezoidal rule we will always have an
equally spaced partition ofn + 1 points,xi = a + i|I|/n. Define the intervals
Ji = [xi−1, xi], 1 ≤ i ≤ n; then|Ji| = |I|/n.

For eachi, 1 ≤ i ≤ n, define

(2.1) Li =
|Ji|
2

(
f(xi−1) + f(xi)

)
−
∫
Ji

f(t) dt.

If we divide eachJi into two intervalsJ−i andJ+
i of equal length, then (2.1) can

be rewritten as

(2.2) Li =

∫
J−i

(
f(xi−1)− f(t)

)
dt+

∫
J+

i

(
f(xi)− f(t)

)
dt.

Alternatively, if f is absolutely continuous, then we can apply integration by
parts to (2.1) to get that

(2.3) Li =

∫
Ji

(t− ci)f
′(t) dt,
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whereci = (xi−1 + xi)/2 is the midpoint ofJi. If f ′ is absolutely continuous,
then we can apply integration by parts again to get

(2.4) Li =
1

2

∫
Ji

(
|Ji|2

4
− (t− ci)

2

)
f ′′(t) dt.

From the definition of the trapezoidal rule (1.1) it follows immediately that

(2.5) ET
n (f) =

∣∣∣∣∣
n∑
i=1

Li

∣∣∣∣∣ ≤
n∑
i=1

|Li|,

and our principal problem will be to estimate|Li|.
We make similar definitions for Simpson’s rule. GivenI, we form a partition

with 2n + 1 points,xj = a + j|I|/2n, 0 ≤ j ≤ 2n, and form the intervals
Ii = [x2i−2, x2i], 1 ≤ i ≤ n. Then|Ii| = |I|/n.

For eachi, 1 ≤ i ≤ n, define

(2.6) Ki =
|I|
6n

(
f(x2i−2) + 4f(x2i−1) + f(x2i)

)
−
∫
Ii

f(t) dt.

To get an identity analogous to (2.2), we need to partitionIi into four intervals
of different lengths. Define

ai =
2x2i−2 + x2i−1

3
bi =

2x2i + x2i−1

3
,

and let

I1
i = [x2i−2, ai], I2

i = [ai, x2i−1], I3
i = [x2i−1, bi], I4

i = [bi, x2i].
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Then|I1
i | = |I4

i | = |I|/6n and|I2
i | = |I3

i | = |I|/3n, and we can rewrite (2.6)
as

(2.7) Ki =

∫
I1i

(
f(x2i−2)− f(t)

)
dt+

∫
I2i

(
f(x2i−1)− f(t)

)
dt

+

∫
I3i

(
f(x2i−1)− f(t)

)
dt+

∫
I4i

(
f(x2i)− f(t)

)
dt.

If f is absolutely continuous we can apply integration by parts to (2.6) to get

(2.8) Ki =

∫
I−i

(t− ai)f
′(t) dt+

∫
I+i

(t− bi)f
′(t) dt.

If f ′ is absolutely continuous we can integrate by parts again to get

(2.9) Ki =
1

2

∫
I−i

(
|Ii|2

36
− (t− ai)

2

)
f ′′(t) dt

+
1

2

∫
I+i

(
|Ii|2

36
− (t− bi)

2

)
f ′′(t) dt.

Whichever expression we use, it follows from the definition of Simpson’s
rule (1.2) that

(2.10) ES
2n(f) =

∣∣∣∣∣
n∑
i=1

Ki

∣∣∣∣∣ ≤
n∑
i=1

|Ki|.
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Finally, we want to note that there is a connection between Simpson’s rule
and the trapezoidal rule: it follows from the definitions (1.1) and (1.2) that

(2.11) S2n(f) =
4

3
T2n(f)− 1

3
Tn(f).

2.2. Modifying the Norm

In all of our results, we estimate the error in the trapezoidal rule with an expres-
sion of the form

inf
r
‖fr‖,

where the infimum is taken over allr ∈ R. It will be enough to prove the various
inequalities with‖f‖ on the righthand side: since the trapezoidal rule is exact
on linear functions,ET

n (fr) = ET
n (f) for all f andr. Further, we note that for

eachf , there existsr0 ∈ R such that

‖fr0‖ = inf
r
‖fr‖.

This follows since the norm is continuous inr and tends to infinity as|r| → ∞.
Similarly, in our estimates forES

2n(f), it will suffice to prove the inequalities
with ‖f‖ on the righthand side instead ofinfs ‖fs‖: because Simpson’s rule
is exact for polynomials of degree 3 or less,ES

n (f) = ET
n (fs), for s(x) =

ax3 + bx2 + cx. Again the infimum is attained, since the norm is continuous in
the coefficients ofs and tends to infinity as|a|+ |b|+ |c| → ∞.

(The exactness of the Trapezoidal rule and Simpson’s rule is well-known;
see, for example, Ralston [13].)
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3. Functions in Λα(I), 0 < α ≤ 1, andCBV (I)
Proof of Theorem1.1. We first prove inequality (1.4). By (2.2), for eachi, 1 ≤
i ≤ n,

|Li| ≤
∫
J−i

|f(xi−1)− f(t)|dt+

∫
J+

i

|f(xi)− f(t)|dt

≤ ‖f‖Λα

∫
J−i

|xi−1 − t|α dt+ ‖f‖Λα

∫
J−i

|xi − t|α dt;

by translation and reflection,

= 2‖f‖Λα

∫
J−i

(t− xi−1)
α dt

= 2‖f‖Λα

|J−i |1+α

1 + α

=
|I|1+α‖f‖Λα

(1 + α)2αn1+α
.

Therefore, by (2.5)

(3.1) ET
n (f) ≤ |I|1+α‖f‖Λα

(1 + α)2αnα
,

and by the observation in Section2.2we get (1.4).
The proof of inequality (1.5) is almost identical to the proof of (1.4): we

begin with inequality (2.7) and argue as before to get

|Ki| ≤
2(1 + 2α+1)|I|1+α‖f‖Λα

(1 + α)61+αn1+α
,
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which in turn implies (1.5).
To see that inequality (1.4) is sharp, fixn ≥ 1 and define the functionf as

follows: on[0, 1/n] let

f(x) =


xα, 0 ≤ x ≤ 1

2n∣∣∣∣x− 1

n

∣∣∣∣α , 1

2n
≤ x ≤ 1

n
.

Now extendf to the interval[0, 1] as a periodic function with period1/n. It is
clear that‖f‖Λα = 1, and it is immediate from the definition thatTn(f) = 0.
Therefore,

ET
n (f) =

∫ 1

0

f(x) dx = 2n

∫ 1/2n

0

xα dx =
1

(1 + α)2αnα
,

which is precisely the righthand side of (3.1).

Proof of Corollary1.2. Inequalities (1.6) and (1.7) follow immediately from
(1.4) and (1.5). Recall that iff ∈ Λ1(I), thenf is differentiable almost ev-
erywhere,f ′ ∈ L∞(I) and‖f‖Λ1 = ‖f ′‖∞. (See, for example, Natanson [10].)
Let r = (M +m)/2; then

‖f − rx‖Λ1 = ‖f ′ − r‖∞ =
M −m

2
.

We now show that (1.6) is sharp and that equality holds exactly when (1.8)
holds. First note that if (1.8) holds, then by (2.3),

Li =

∫
J+

i

(t− ci)M dt+

∫
J−i

(t− ci)mdt = ±|I|
2

8n2
(M −m),
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and it follows at once from (2.5) that equality holds in (1.6).
To prove that (1.8) is necessary for (1.6) to hold, we consider two cases.

Case 3.1.M > 0 andm = −M . In this case,

ET
n (f) =

|I|2

4n
M.

Again by(2.3),

ET
n (f) ≤

∣∣∣∣∣
n∑
i=1

∫
Ji

(t− ci)f
′(t) dt

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣
∫
J−i

(t− ci)f
′(t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫
J+

i

(t− ci)f
′(t) dt

∣∣∣∣∣
≤ |I|2

8n2

n∑
i=1

(
‖f ′‖∞,J−i

+ ‖f ′‖∞,J+
i

)
≤ |I|2

8n
M +

|I|2

8n
M,

and since the first and last terms are equal, equality must hold throughout.
Therefore, we must have that

(3.2) |L−i | = ‖f ′‖∞,J−i

∫
J−i

(ci − t) dt, |L+
i | = ‖f ′‖∞,J+

i

∫
J+

i

(t− ci) dt,

and

(3.3)
|I|2

8n2

n∑
i=1

‖f ′‖∞,J+
i

=
|I|2

8n2

n∑
i=1

‖f ′‖∞,J−i
=
|I|2

8n
M.

http://jipam.vu.edu.au/
mailto:david.cruzuribe@mail.trincoll.edu
mailto:neug@math.purdue.edu
http://jipam.vu.edu.au/


Sharp Error Bounds for the
Trapezoidal Rule and Simpson’s

Rule

D. Cruz-Uribe, C.J. Neugebauer

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 23 of 49

J. Ineq. Pure and Appl. Math. 3(4) Art. 49, 2002

http://jipam.vu.edu.au

Hence, by(3.2), onJi

f ′(t) = αiχJ+
i
(t)− βiχJ−i (t),

with eitherαi, βi > 0 for all i, or αi, βi < 0 for all i. Without loss of generality
we assume thatαi, βi > 0.

Further, we must have thatM = sup{αi : 1 ≤ i ≤ n}, so it follows from
(3.3) thatαi = M for all i. Similarly, we must have thatβi = M , 1 ≤ i ≤ n.
This completes the proof of Case3.1.

Case 3.2.The general case:m < M . Letr = (M +m)/2; then

ET
n (f) =

|I|2

8n
(M −m) = ET

n (fr).

Since Case3.1applies tofr, we have that

f ′r(t) =
M −m

2

n∑
i=1

(
χJ+

i
(t)− χJ−i (t)

)
.

This completes the proof sincef ′ = f ′r + r.

The proof that (1.7) is sharp and equality holds if and only if (1.9) holds is
essentially the same as the above argument, and we omit the details.

Proof of Theorem1.3. We first prove (1.10). By (2.2) and the definition of the
norm inCBV (I), for eachi, 1 ≤ i ≤ n,

|Li| ≤
∫
J−i

|f(xi−1)− f(t)|dt+

∫
J+

i

|f(xi)− f(t)|dt
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≤ ‖f‖BV,J−i |J
−
i |+ ‖f‖BV,J+

i
|J+
i |

=
1

2n
‖f‖BV,Ji

.

If we sum overi, we get

ET
n (f) ≤ 1

2n

n∑
i=1

‖f‖BV,Ji
=

1

2n
‖f‖BV,I ;

inequality (1.10) now follows from the remark in Section2.2.
To show that inequality (1.10) is sharp, fixn ≥ 1 and fork ≥ 1 define

ak = 4−k/n. We now define the functionfk on I = [0, 1] as follows: on
[0, 1/n] let

fk(x) =



1− x

an
0 ≤ x ≤ an

0 an ≤ x ≤ 1

n
− an

1 +

(
x− 1

n

)
an

1

n
− an ≤ x ≤ 1

n
.

Extendfk to [0, 1] periodically with period1/n. It follows at once from the
definition that‖fk‖BV,[0,1] = 2n. Furthermore,

ET
n (fk) =

∣∣∣∣Tn(fk)− ∫ 1

0

fk(t) dt

∣∣∣∣ = 1− akn = 1− 4−k.

Thus the constant1/2n in (1.10) is the best possible.
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We now consider when equality can hold in (1.10). If f(t) = mt + b, then
we have equality since both sides are zero.

For the converse implication we first show that iff ∈ CBV (I) is not con-
stant onI, then

(3.4) ET
n (f) <

|I|
2n
‖f‖BV,I .

By the above argument, it will suffice to show that for somei,

|Li| <
|I|
2n
‖f‖BV,Ji

.

Sincef is non-constant, choosei such thatf is not constant onJi. Sincef
is continuous, the function|f(xi−1) + f(xi)− 2f(t)| achieves its maximum at
somet ∈ Ji, and, again becausef is non-constant, it must be strictly smaller
than its maximum on a set of positive measure. Hence on a set of positive
measure,|f(xi−1)+f(xi)−2f(t)| < ‖f‖BV,Ji

, and so (3.4) follows from (2.1),
since we can rewrite this as

Li =
1

2

∫
Ji

(
f(xi−1) + f(xi)− 2f(t)

)
dt.

To finish the proof, note that as we observed in Section2.2, there existsr0
such that‖fr0‖BV,I = infr ‖fr‖BV,I . Hence, we would have that

ET
n (f) = ET

n (fr0) ≤
|I|
2n
‖fr0‖BV,I .
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If f(t) were not of the formmt+ b, so thatfr0 could not be a constant function,
then by (3.4), the inequality would be strict. Hence equality can only hold iff
is linear.

The proof that inequality (1.11) holds is almost identical to the proof of
(1.10): we begin with inequality (2.7) and argue exactly as we did above.

The proof that inequality (1.11) is sharp requires a small modification to the
example given above. Fixn ≥ 1 and, as before, letak = 4−k/n. Define the
functionfk on I = [0, 1] as follows: on[0, 1/n] let

fk(x) =



0 0 ≤ x ≤ 1

2n
− an

1 +

(
x− 1

2n

)
an

1

2n
− an ≤ x ≤ 1

2n

1 +

(
1
2n
− x
)

an

1

2n
≤ x ≤ 1

2n
+ an

0
1

2n
+ an ≤ x ≤ 1

n
.

Extendfk to [0, 1] periodically with period1/n. Then we again have‖fk‖BV,[0,1] =
2n; furthermore,

ES
2n(fk) =

∣∣∣∣S2n(fk)−
∫ 1

0

fk(t) dt

∣∣∣∣ =
2

3
− akn =

2

3
− 4−k.

Thus the constant1/3n in (1.11) is the best possible.
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The proof that equality holds in (1.11) only when both sides are zero is again
very similar to the above argument, replacingLi byKi and using (2.6) instead
of (2.1).
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4. Functions inW p
1 (I) andW pq

1 (I), 1 ≤ p, q ≤ ∞
Proof of Theorem1.4. As we noted in Remarks1.5 and1.7, it suffices to con-
sider the case1 < p <∞.

We first prove inequality (1.12). If we apply Hölder’s inequality to (2.3),
then for alli, 1 ≤ i ≤ n,

|Li| ≤ ‖f ′‖p,Ji

(∫
Ji

|t− ci|p
′
dt

)1/p′

.

An elementary calculation shows that∫
Ji

|t− ci|p
′
dt =

|Ji|p
′+1

(p′ + 1)2p′
.

Hence, by (2.5) and by Hölder’s inequality for series,

ET
n (f) ≤ |I|1+1/p′

2(p′ + 11/p′)n1+1/p′

n∑
i=1

(∫
Ji

|f ′(t)|p dt
)1/p

≤ |I|1+1/p′

2(p′ + 1)1/p′n1+1/p′

(∫
I

|f ′(t)|p dt
)1/p

n1/p′

=
|I|1+1/p′

2(p′ + 1)1/p′n
‖f ′‖p,I .

Inequality (1.12) now follows from the observation in Section2.2.
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The proof of inequality (1.13) is essentially the same as the proof of inequal-
ity (1.12), beginning instead with (2.8) and using the fact that∫

I−i

|t− ai|p
′
dt+

∫
I+i

|t− bi|p
′
dt =

2(1 + 2p
′+1)|I|p′+1

(p′ + 1)6p′+1np′+1
.

We will now show that inequality (1.12) is sharp. We writeLi = L+
i + L−i ,

where

(4.1) L+
i =

∫
J+

i

(t− ci)f
′(t)dt, L−i =

∫
J−i

(t− ci)f
′(t)dt.

Also note that∫
J+

i

(t− ci)
p′dt =

∫
J−i

(ci − t)p
′
dt =

|I|p′+1

(p′ + 1)(2n)p′+1
.

We first assume thatf ′ has the desired form. A pair of calculations shows
that

ET
n (f) = 2|d1|

|I|p′+1n

(p′ + 1)(2n)p′+1
, ‖f ′ − d2‖p,I = |d1|

|I|(p′+1)/p(2n)1/p

(p′ + 1)1/p(2n)(p′+1)/p
,

and since

p′ + 1

p
= p′ − 1

p′
, and

2n

(2n)p′
=

1

(2n)p′−1
,

we have the desired equality.
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To show the converse, we first consider when equality holds withr = 0.
Observe that by the above argument,

ET
n (f) =

∣∣∣∣∣
n∑
i=1

Li

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

(L+
i + L−i )

∣∣∣∣∣
≤

n∑
i=1

|L+
i |+

n∑
i=1

|L−i |

≤ |I|1+1/p′

(p′ + 1)1/p′(2n)1+1/p′

n∑
i=1

(
‖f ′‖p,J+

i
+ ‖f ′‖p,J−i

)
≤ |I|1+p′

(p′ + 1)1/p′(2n)1+1/p′
‖f ′‖p,I(2n)1/p′

=
|I|1+p′

(p′ + 1)1/p′2n
‖f ′‖p,I .

Since the first and last terms are equal, each inequality must be an equality.
Hence allL+

i andL−i have the same sign; without loss of generality we may
assume they are all positive. By the criterion for equality in Hölder’s inequality
onJi (see, for example, Rudin [16, p. 63]),

f ′(t) = αi(t− ci)
p′−1χJ+

i
(t)− βi(ci − t)p

′−1χJ−i (t),

whereαi, βi > 0. (Here we used the assumption thatL+
i , L

−
i > 0.)
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Next we claim thatα1 = β1 = · · · = αn = βn. To see this, first note that

ET
n (f) =

n∑
i=1

(∫
J+

i

(t− ci)f
′(t)dt+

∫
J−i

(ci − t)f ′(t)dt

)

=
n∑
i=1

(αi + βi)
|I|p′+1

(p′ + 1)(2n)p′+1
,

and this equals

|I|1+1/p′

(p′ + 1)1/p′
‖f ′‖p,I =

|I|1+1/p′

(p′ + 1)1/p′2n

(
n∑
i=1

(αpi + βpi )
|I|p′+1

(p′ + 1)(2n)p′+1

)1/p

=

(
n∑
i=1

(αpi + βpi )

)1/p
|I|1+1/p′+(p′+1)/p

(p′ + 1)(2n)1+(p′+1)/p
.

Since1 + 1/p′ + (p′ + 1)/p = p′ + 1 and2n(2n)(p′+1)/p = (2n)p
′+1−1/p′, it

follows that

n∑
i=1

(αi + βi) =

(
n∑
i=1

(αpi + βpi )

)1/p

(2n)1/p′ .

This is equality in Hölder’s inequality for series, which occurs precisely when
all theαi’s andβi’s are equal. (See, for example, Hardy, Littlewood and Pólya
[8, p. 22].) This establishes when equality holds whenr = 0.

Finally, as we observed in Section2.2, infr ‖f ′r‖p,I = ‖f ′r0‖p,I for some
r0 ∈ R. SinceEn(f) = En(fr0) we conclude that (1.12) holds if and only if
(1.14) holds.
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The proof that (1.13) is sharp and that equality holds if and only if (1.15)
holds is essentially the same as the above argument and we omit the details.

Proof of Theorem1.5. We first prove the limit (1.16) for f ∈ C1(I). DefineL−i
andL+

i as in (4.1), and define the four valuesM±
i = max{f ′(t) : t ∈ J±i },

m±
i = min{f ′(t) : t ∈ J±i }. Then, since∫

J+
i

(t− ci)dt =
1

8

|I|2

n2
=

∫
J−i

(ci − t)dt,

we have that

m+
i

|I|2

8n2
≤ L+

i ≤M+
i

|I|2

8n2
, −M−

i

|I|2

8n2
≤ L−i ≤ −m−

i

|I|2

8n2
.

Hence,
|I|2

8n
(m+

i −M−
i ) ≤ nLi ≤

|I|2

8n
(M+

i −m−
i );

this in turn implies that

(4.2)
|I|
8

n∑
i=1

|I|
n

(m+
i −M−

i ) ≤ n
n∑
i=1

Li ≤
|I|
8

n∑
i=1

|I|
n

(M+
i −m−

i ).

Sincef ′ ∈ C(I),

lim
n→∞

n∑
i=1

|I|
n

(M+
i −m−

i ) =

∫
I

f ′(t) dt−
∫
I

f ′(t) dt = 0.
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Similarly, the left side of (4.2) converges to 0 asn → ∞. This yields (1.16) if
f ∈ C1(I).

We will now show that (1.16) holds in general. If1 < p ≤ ∞, W p
1 (I) ⊂

W 1
1 (I), so we may assume without loss of generality thatp = 1. Fix ε > 0 and

chooseg ∈ C1(I) such that‖f ′ − g′‖1,I ≤ 2ε/|I|. Then

(4.3) ET
n (f) ≤ ET

n (g) + ET
n (f − g).

If we let

(4.4) φn(t) =
n∑
i=1

(t− ci)χJi
(t),

then

ET
n (f − g) =

∣∣∣∣∫
I

φn(t)(f
′ − g′)(t)dt

∣∣∣∣ .
Hence,

|nET
n (f − g)| ≤ n‖f ′ − g′‖1,I‖φn‖∞,I ≤ ε.

Therefore, by (4.3) and the special case above,

0 ≤ lim sup
n→∞

nET
n (f) ≤ ε;

sinceε > 0 is arbitrary, we get that (1.16) holds.
We can prove (1.17) in essentially the same way, beginning by rewriting

(2.8) as

Ki =

∫
I1i

(ai−t)f ′(t) dt+
∫
I2i

(t−ai)f ′(t) dt+
∫
I3i

(bi−t)f ′(t) dt+
∫
I4i

(t−bi)f ′(t) dt,
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where the intervalsIj, 1 ≤ j ≤ 4, are defined as in (2.7). Alternatively, it
follows from the identity (2.11), the triangle inequality, and (1.16):

ES
2n(f) =

∣∣∣∣S2n(f)−
∫
I

f(t) dt

∣∣∣∣
≤ 4

3

∣∣∣∣T2n(f)−
∫
I

f(t) dt

∣∣∣∣+ 1

3

∣∣∣∣Tn(f)−
∫
I

f(t) dt

∣∣∣∣
=

4

3
ET

2n(f) +
1

3
ET
n (f).

To see that (1.16) is sharp, fixa > 1; without loss of generality we may
assumea = 1 + r, 0 < r < 1.

We define a functionf on [0, 1] as follows: forj ≥ 1 define the intervals
Ij = (2−j, 2−j+1]. Define the function

g(t) =
∞∑
j=1

2(1−r)jχIj .

It follows immediately thatg ∈ Lp[0, 1] if 1 ≤ p < 1/(1− r). Now definef by

f(t) =

∫ t

0

g(s) ds;

thenf ∈ W p
1 [0, 1] for p in the same range.

Fix k > 1 and letn = 2k. Then, sincef is linear on each intervalIj,
f(0) = 0, and since the trapezoidal rule is exact on linear functions,

(4.5) ET
n (f) =

∣∣∣∣∣2−k−1f(2−k)−
∫ 2−k

0

f(t) dt

∣∣∣∣∣ .
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Again sincef is linear on eachIj,∫ 2−k

0

f(t) dt =
∞∑

j=k+1

∫
Ij

f(t) dt =
∞∑

j=k+1

2−j−1
(
f(2−j) + f(2−j+1)

)
Furthermore, for allj,

f(2−j) =

∫ 2−j

0

g(t) dt =
∞∑

i=j+1

2−ri =
2r

2r − 1
· 2−r(j+1) =

2−rj

2r − 1
.

Hence,

2−k−1f(2−k) =
n−a

2(2r − 1)
,

∞∑
j=k+1

2−j−1f(2−j) =
n−a

2(2r − 1)(2a − 1)
,

∞∑
j=k+1

2−j−1f(2−j+1) =
2rn−a

2(2r − 1)(2a − 1)
.

If we combine these three identities with (4.5) we get that

ET
n (f) =

n−a

2(2r − 1)

∣∣∣∣1− 1 + 2r

2a − 1

∣∣∣∣ .
The quantity in absolute values is positive if0 < r < 1; hencenaET

n (f) cannot
converge to zero asn→∞.
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This example also shows that (1.17) is sharp. Fixn = 2k and fixa > 1 as
before. Then

ES
2n(f) =

∣∣∣∣∣2−k+2f(2−k−1) + 2−kf(2−k)

3
−
∫ 2−k

0

f(t) dt

∣∣∣∣∣ ,
and the computation proceeds exactly as it did after (4.5). Alternatively, we can
again argue using (2.11):

naES
2n(f) ≥ 4na

3
ET

2n(f)− na

3
ET
n (f),

and if1 < a < 2 the limit of the righthand side asn→∞ is positive.

Proof of Theorem1.6. We begin by recalling two definitions. For more infor-
mation, see Stein and Weiss [17]. Given a functionf on an intervalI, define
λf , the distribution function off , by

λf (y) = |{x ∈ I : |f(x)| > y}|,

and definef ∗, the non-increasing rearrangement off , on [0, |I|] by

f ∗(t) = inf{y : λf (y) ≤ t}.

We can now prove that (1.18) holds. Fixn and defineφn as in (4.4). It
follows at once that

λφn(y) =


0, y ≥ |I|

2n

|I| − 2ny, 0 < y <
|I|
2n
,
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which in turn implies thatφ∗n(t) = (|I| − t)/(2n). Hence, by an inequality of
Hardy and Littlewood (see, for example Bennett and Sharpley [1, p. 44]) and
Hölder’s inequality,

ET
n (f) =

∣∣∣∣∫
I

φn(t)f
′(t) dt

∣∣∣∣
≤
∫ |I|

0

φ∗n(t)(f
′)∗(t) dt

=

∫ |I|

0

t1/p−1/q(f ′)∗(t)t1/q−1/pφ∗n(t) dt

≤ ||f ′||pq,I

(∫ |I|

0

t(1/q−1/p)q′φ∗n(t)
q′dt

)1/q′

= ||f ′||pq,I

(
1

(2n)q′

∫ |I|

0

tq
′/p′−1(|I| − t)q

′
dt

)1/q′

= ||f ′||pq,I
|I|(1+1/p′)

2n
B

(
q′

p′
, q′ + 1

)1/q′

.

By the observation in Section2.2, (1.18) now follows at once.
The proof of (1.19) is similar and we sketch the details. Define

ψn(t) =
n∑
i=1

(
(t− ai)χI−i (t) + (t− bi)χI+i (t)

)
.
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Then

λψn(y) =


|I| − 4ny 0 ≤ y ≤ |I|

6n

2|I|
3

− 2ny
|I|
6n

≤ y ≤ |I|
3n
,

and

ψ∗n(t) =


|I|
3n

− t

2n
0 ≤ t ≤ |I|

3

|I|
4n

− t

4n

|I|
3
≤ t ≤ |I|.

We now argue as above:

ES
2n(f) ≤

∫ |I|

0

ψ∗n(t)(f
′)∗(t) dt

≤ ||f ′||pq,I

(∫ |I|

0

tq
′/p′−1ψ∗n(t)

q′ dt

)1/q′

.

The last integral naturally divides into two integrals on[0, |I|/3] and[|I|/3, |I|],
and by a change of variables we get that it equals

|I|q′/p′+q′

nq′
C

(
q′

p′
, q′ + 1

)
.

Inequality (1.19) then follows at once.
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We now consider the question of when equality holds in (1.18). Examining
the proof above, we see that if the first and last terms are equal, then equality
must hold in Hölder’s inequality and in the inequality of Hardy and Littlewood.
In particular, we must have that for somec ∈ R,

t1/p−1/q(f ′)∗(t) = c
(
t1/q−1/p(|I| − t)

)q′−1
,

or equivalently,

(4.6) (f ′)∗(t) = ctq
′/p′−1(|I| − t)q

′−1,

and

(4.7)

∣∣∣∣∫
I

φn(t)f
′(t) dt

∣∣∣∣ =

∫ |I|

0

φ∗n(t)(f
′)∗(t) dt.

Note that when1 ≤ q < p thenq′ > p′, so (4.6) implies that(f ′)∗(0) = 0.
Hencef ′ is identically zero sof must be constant. For a discussion of when
equality (4.7) holds, see Bennett and Sharpley [1].

Whenq ≥ p, these two conditions are sufficient for equality to hold in (1.18).
Given a functionf with these properties, we have that

ET
n (f) =

c

2n

∫ |I|

0

tq
′/p′−1(|I| − t)q

′
dt =

c

2n
|I|(1+1/p′)q′B

(
q′

p′
, q′ + 1

)
.

Similarly, we have that

‖f ′‖qpq,I = cq
∫ |I|

0

tq/p−1t(q
′/p′−1)q(|I| − t)q

′
dt.
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Since

q

p
− 1 +

(
q′

p′
− 1

)
q = q

(
1

p
− 1

)
− 1 +

q′q

p′
=

(q′ − 1)q

p′
− 1 =

q′

p′
− 1,

we get

‖f‖qpq,I = cq|I|(1+1/p′)q′B

(
q′

p′
, q′ + 1

)
.

Hence, sinceq′/q + 1 = q′,

B

(
q′

p′
, q′ + 1

)1/q′ |I|1+1/p′

2n
‖f ′‖pq,I =

c

2n
B

(
q′

p′
, q′ + 1

)
|I|(1+1/p′)(q′/q+1)

= ET
n (f).

A similar argument shows that equality holds in (1.19) if and only if∣∣∣∣∫
I

ψn(t)f
′(t) dt

∣∣∣∣ =

∫ |I|

0

φ∗n(t)(f
′)∗(t) dt,

and for somec ∈ R,

t1/p−1/q(f ′)∗(t) = c
(
t1/q−1/pψ∗n(t)

)q′−1
.

Again, when1 ≤ q < p this implies thatf ′ is identically zero, so equality holds
only whenf is constant.
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5. Functions inW p
2 (I), 1 ≤ p ≤ ∞

Proof of Theorem1.7. We first prove inequality (1.20). When1 < p ≤ ∞ we
apply Hölder’s inequality to (2.4) to get

(5.1) |Li| ≤
1

2
‖f ′′‖p,Ji

(∫
Ji

(
|Ji|2

4
− (t− ci)

2

)p′
dt

)1/p′

.

We evaluate the integral on the righthand side. By translation and a change of
variables, ifx = |I|/n, we have that∫

Ji

(
|Ji|2

4
− (t− ci)

2

)p′
dt =

∫ x

0

(
x2

4
−
(
t− x

2

)2
)p′

dt

=

∫ x

0

(xt− t2)p
′
dt

= x2p′+1

∫ 1

0

sp
′
(1− s)p

′
ds

= B(p′ + 1, p′ + 1)
|I|2p′+1

n2p′+1
.

If we combine this with (5.1) and apply Hölder’s inequality for series we get

ET
n (f) ≤

n∑
i=1

|Li|

≤
n∑
i=1

B(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2n2+1/p′
‖f ′′‖p,Ji
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≤ B(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2n2
‖f ′′‖p,I ,

and this is inequality (1.20).
Whenp = 1 andp′ = ∞, a nearly identical argument again yields (1.20).
The proof of (1.21) is very similar to that of (1.20). We begin by applying

Hölder’s inequality to (2.9):

|Ki| ≤
1

2
‖f ′′‖p,I−i

(∫
I−i

∣∣∣∣ |Ii|236
− (t− ai)

2

∣∣∣∣p′ dt
)1/p′

+
1

2
‖f ′′‖p,I+i

(∫
I+i

∣∣∣∣ |Ii|236
− (t− bi)

2

∣∣∣∣p′ dt
)1/p′

,

we estimate each integral in turn. If we letx = |I|/n, then by translation and a
change of variables we have that∫

I−i

∣∣∣∣ |Ii|236
− (t− ai)

2

∣∣∣∣p′ dt =

∫ x/2

0

∣∣∣∣x2

36
−
(
t− x

6

)2
∣∣∣∣p′ dt

=

∫ x/2

0

tp
′
∣∣∣x
3
− t
∣∣∣p′ dt

=
(x

3

)2p′+1
∫ 3/2

0

sp
′|1− s|p′ds

=

(
|I|
3n

)2p′+1

D(p′ + 1, p′ + 1).
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A similar argument shows that∫
I+i

∣∣∣∣ |Ii|236
− (t− bi)

2

∣∣∣∣p′ dt =

(
|I|
3n

)2p′+1

D(p′ + 1, p′ + 1).

Therefore, by Hölder’s inequality for series, we have that

ES
2n(f) ≤

n∑
i=1

|Ki|

≤ D(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

2(3n)2+1/p′

n∑
i=1

(
‖f ′′‖p,I−i + ‖f ′′‖p,I+i

)
≤ D(p′ + 1, p′ + 1)1/p′ |I|2+1/p′

21/p32+1/p′n2
‖f ′′‖p,I .

If we now apply the observation in Section2.2we get (1.21).
The proofs that (1.20) holds if and only if (1.22) holds, and that (1.22) holds

if and only if (1.23) holds, are essentially the same as the proof of sharpness in
Theorem1.4and we omit the details, except to note that in (1.23) we define the
intervalsĨki , 1 ≤ k ≤ 4, as follows. Let

ãi =
ai + x2i−1

2
, b̃i =

bi + x2i−1

2
,

and define

(5.2) Ĩ1
i = [x2i−2, ãi], Ĩ2

i = [ãi, x2i−1], Ĩ3
i = [x2i−1, b̃i], Ĩ4

i = [b̃i, x2i].
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Proof of Theorem1.8. We first prove that (1.24) holds if f ∈ C2(I). Define
Mi = max{f ′′(i) : t ∈ Ji} andmi = min{f ′′(t) : t ∈ Ji}. Since∫

Ji

(
|Ji|2

4
− (t− ci)

2

)
dt =

|I|3

6n3
,

it follows from (2.4) that

|I|3

12n3
mi ≤ Li ≤

|I|3

12n3
Mi.

If we sum overi we get that

|I|2

12

∑
i

|I|
n
mi ≤ n2

n∑
i=1

Li ≤
|I|2

12

∑
i

|I|
n
Mi.

Sincef ′′ is continuous, the left and righthand sides converge to

|I|2

12

∫
I

f ′′(t) dt,

and (1.24) follows at once.
We will now show that (1.24) holds in general. SinceW p

2 (I) ⊂ W 1
2 (I) if

p > 1, we may assume without loss of generality thatp = 1. Fix ε > 0 and
chooseg ∈ C2(I) such that

‖f ′′ − g′′‖1,I <
4ε

3|I|2
.
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In particular, this implies that∣∣∣∣ |I|212

∫
I

f ′′(t) dt− |I|2

12

∫
I

g′′(t) dt

∣∣∣∣ < ε

3
,

By inequality (1.20) this also implies that

n2ET
n (f − g) <

ε

3
.

Further, by the special case above, if we choosen sufficiently large,∣∣∣∣n2ET
n (g)−

∣∣∣∣ |I|212

∫
I

g′′(t) dt

∣∣∣∣∣∣∣∣ < ε

3
.

Therefore, since

n2ET
n (g)− n2ET

n (f − g) ≤ n2ET
n (f) ≤ n2ET

n (g) + n2ET
n (f − g),

it follows that ∣∣∣∣n2EnT (f)−
∣∣∣∣ |I|212

∫
I

f ′′(t) dt

∣∣∣∣∣∣∣∣ < ε.

Sinceε > 0 is arbitrary, we have shown (1.24) holds in general.
Finally, to show (1.25) we first note that the above argument proves the

slightly stronger result that

lim
n→∞

n2

(
Tn(f)−

∫
I

f(t) dt

)
=
|I|2

12

∫
I

f ′′(t) dt.
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Then by the identity (2.11),

n2ES
2n(f) =

∣∣∣∣(2n)2

(
1

3
T2n(f)− 1

3

∫
I

f(t) dt

)
− n2

(
1

3
Tn(f)− 1

3

∫
I

f(t) dt

)∣∣∣∣ ,
and (1.25) follows immediately.
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