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Abstract

We give error bounds for the trapezoidal rule and Simpson’s rule for “rough”
continuous functions—for instance, functions which are Holder continuous, of
bounded variation, or which are absolutely continuous and whose derivative
is in LP. These differ considerably from the classical results, which require
the functions to have continuous higher derivatives. Further, we show that our
results are sharp, and in many cases precisely characterize the functions for
which equality holds. One consequence of these results is that for rough func-
tions, the error estimates for the trapezoidal rule are better (that is, have smaller
constants) than those for Simpson’s rule.

2000 Mathematics Subject Classification: 26A42, 41A55.
Key words: Numerical integration, Trapezoidal rule, Simpson’s rule
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Given a finite interval = [a, b and a continuous functiofi: I — R, there are
two elementary methods for approximating the integral

/I (@) da

Sharp Error Bounds for the

the trapezoidal rule and Simpson’s rule. Partition the intefvato » intervals Trapezoidal Rugfuﬁ:d Simpson's
of equal length with endpoints, = a+i|I|/n,0 < i < n. Then the trapezoidal
rule approximates the integral with the sum D. Cruz-Uribe, C.J. Neugebauer
1]
(L) Tu(f) = o (F2o) +2f (1) + -+ + 2f (20) + [ (). Title Page
Similarly, if we partition/ into 2n intervals, Simpson’s rule approximates the Contents
integral with the sum
44 44
1
(12) Soulf) = 5L (Fwe) + 47 (e2) + 27 (02) + 4f () + - « | >
+ 4f(ZL’2n_1) + f(J]Qn)) . Go Back
Both approximation methods have well-known error bounds in terms of higher Close
derivatives: Quit
]’ I
ET(f) /f < | ‘1”2f2”°°, Page 3 of 49
|I| ||f ||OO . Ineg. Pure an . Math. rt. 49,
B0 = [0 - [ sta) o] < EELL T
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(See, for example, Ralstond].)

Typically, these estimates are derived using polynomial approximation, which
leads naturally to the higher derivatives on the righthand sides. However, the as-
sumption thatf is not only continuous but has continuous higher order deriva-
tives means that we cannot use them to estimate directly the error when approx-
imating the integral of such a well-behaved functiory&s) = \/z on|[0, 1]. (It
is possible to use them indirectly by approximatifigvith a smooth function;
see, for example, Davis and Rabinowit.] Sharp Error Bounds for the

In this paper we consider the problem of approximating the €tfdrf) and MG Es U=
E5 (f) for continuous functions which are much rougher. We prove estimates
of the form

D. Cruz-Uribe, C.J. Neugebauer

T S < .
where the constants, are independent of, ¢, — 0 asn — oo, and|| - || i
denotes the norm in one of several Banach function spaces which are embedded
in C(I). In particular, in order (roughly) of increasing smoothness, we consider 4« dd
functions in the following spaces: < >
e A,(I),0 < a < 1: HElder continuous functions with norm Go Back
J(z)— fly Close
I f|l. = sup Li)’
z,yel |$ - y| Quit
e CBV/(I): continuous functions of bounded variation, with norm Page 4 of 49

J. Ineq. Pure and Appl. Math. 3(4) Art. 49, 2002
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wherea = xg < 1 < --- < x,, = b, and the supremum is taken over all
such partitiond™ = {z;} of I.

e WF(I),1 < p < oo: absolutely continuous functions such tifae L?(1),
with norm|| f'||,.r-

e WP(I),1 < p < oo: absolutely continuous functions such thfats in
the Lorentz spacé??(I), with norm

Sharp Error Bounds for the

S 1/q p [® 1/q Trapezoidal Rule and Simpson’s
17 s = (") = (2 [T astram)
0 0

q D. Cruz-Uribe, C.J. Neugebauer

(For precise definitions, see the proof of Theoremin Section4 below,
or see Stein and Weiss {].)

Title Page
e WP(I), 1 < p < co: differentiable functions such thgt is absolutely Contents
continuous ang” € LP(I), with norm|| ||,
44 44
(Properly speaking, some of these norms are in fact semi-norms. For our < >
purposes we will ignore this distinction.)
In order to prove inequalities likeL(3), it is necessary to make some kind Go Back
of smoothness assumption, since the supremum nor@i(énis not adequate Close
to produce this kind of estimate. For example, consider the family of functions Quit

{f»} defined on0, 1] as follows: on0, 1/n] let the graph off,, be the trapezoid
with vertices(0, 1), (1/n?,0), (1/n—1/n?,0), (1/n, 1), and extend periodically Page 5 of 49
with periodl/n. ThenE, (f,) =1 —1/nbut||f.||.r = 1.

Our proofs generally rely on two simple techniques, albeit applied in a some- > m;;;;;;;;mzz Vath, 36 Ar. 49,2002
times clever fashion: integration by parts and elementary inequalities. The idea ' -
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of applying integration by parts to this problem is not new, and seems to date
back to von Mises 19 and before him to Peand f]. (This is described in

the introduction to Ghizzetti and Ossicini][) But our results themselves are
either new or long-forgotten. After searching the literature, we found the fol-
lowing papers which contain related results, though often with more difficult
proofs and weaker bounds: Polya and Szegd, [Stroud [L£], Rozema [ 5],
Rahman and Schmeisséer], Bittgenbactet al. [2], and Dragomir §]. Also,

as the final draft of this paper was being prepared we learned that Dragomir,  sharp Error Bounds for the
et al. [4] had independently discovered some of the same results with similar TrapezoidaiRule and Simpson's
proofs. (We would like to thank A. Fiorenza for calling our attention to this

paper.) D. Cruz-Uribe, C.J. Neugebauer
Title Page

Here we state our main results and make some comments on their relationship Contents

to known results and on their proofs. Hereafter, given a funcfipulefine 4« >

fr(x) = f(z)—rz,r € R,andfs(x) = f(x)—s(x), wheres is any polynomial P >

of degree at most three such th&t) = 0. Also, in the statements of the results,

the intervals/; and the points;, 1 < i < n, are defined in terms of the partition Go Back

for the trapezoidal rule, and the intervdisand pointsz; andb; are defined in Close

terms of the partition for Simpson’s rule. Precise definitions are given in Section :

2 below. oLt

Theorem 1.1.Letf € A,(I),0 < a < 1. Then forn > 1, Page 6 of 49
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and

2(1 + 20°1)| 1|1+

(15) Eégn(f) S (1 + a)61+ana

irslfosHAav

Further, inequality(1.4) is sharp, in the sense that for eaehthere exists a
function f such that equality holds.

Remark 1.1. We conjecture that inequalitfl.5) is sharp, but we have been
Sharp Error Bounds for the

unable to construct an example which shows this. Trapezoidal Rule and Simpson’s
Rule
Remark 1.2. Inequality(1.4) should be compared to the examples of increasing

functions inA,, 0 < « < 1, constructed by Dubuc and Topo#][ for which

E,(f) = 0(1/n).

D. Cruz-Uribe, C.J. Neugebauer

In the special case of Lipschitz functions (i.e., functiond i) Theoremi.1 Title Page
can be improved. Contents
Corollary 1.2. Let f € Ay. Then forn > 1, <44 44

T2 < 4
16) () < 00— m),
Go Back
5|l ?
a.7) \ES (f)] < (M— m), Close
whereM = sup; f', m = inf; f’. Furthermore, equality holds ifL.6) if and Quit
only if f is such that its derivative is given by Page 7 of 49

0o 0= (S 0 0). e

i=1
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Similarly, equality holds irf1.7) if and only if

(1.9) fit) ==+ (Z (mXIil (t) + MXIf(t) + mXIf’(t) + ]\4)(151 (t))> :

=1

Remark 1.3. Inequality(1.6) was first proved by Kim and Neugebauét fs
a corollary to a theorem on integral means.

Theorem 1.3.Let f € CBV/(I). Then forn > 1, Traspg‘;g’i di?g;i";g;’ss‘:cr’rzgggns
Rule

1.
(1.10) E,:f(f) < % H?}f HfT‘HBV,I7 D. Cruz-Uribe, C.J. Neugebauer
and

Title Page

1
(1.12) ES (f) < L)—|inf | frllBvir- Contents

n r

<4« >

Both inequalities are sharp, in the sense that for ea¢here exists a sequence
of functions which show that the given constant is the best possible. Further, in < >
each equality holds if and only if both sides are equal to zero.

Go Back

Remark 1.4. Pdlya and Szegd![’] proved an inequality analogous td.10) Close

for rectangular approximations. However, they do not show that their result is _

sharp. Quit

Theorem 1.4.Let f € WP(I),1 < p < co. Then for alln > 1, AR

|I|1+1/p, J. Ineg. Pure and Appl. Math. 3(4) Art. 49, 2002
(1'12) Eg:(f) < m inf Hf,inJ, http://jipam.vu.edu.au
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and

(1.13)

B5() < 2 Lr 2

: !
- (p’ + 1)1/p’61+1/p’n Hslf ||fs||177]'

Inequality(1.12) is sharp, and whem < p < oo, equality holds if and only if

n

) =S (= e e (1) — (e — 1 " (0) + do

=1

(1.14)

whered;, d, € R. Similarly, inequality(1.13 is sharp, and when < p < oo,
equality holds if and only if

n

(1.15) f/(t) =di > ((t—a:)”"xp(t) + (t = b)" ' xpa(t)

=1
— (@i — )" " xp (1) = (b — )" "y pa(t))
+ dot? + dst + dy,

whered; e R, 1 <i < 4.

Remark 1.5. Whenp = 1, p’ = oo, and we interpre{1 + p/)'/*" and (1 +
2P +11/P" in the limiting sense as equalingand 2 respectively. In this case
Theoreml.4is a special case of Theoreh3since if f is absolutely continuous
it is of bounded variation, antlf’||1 ; = || f||sv.1-

Remark 1.6. Whenl < p < oo we can restate Theorein4 in a form anal-
ogous to Theorem.3. We define the spacBV,, of functions of boundeg-

Sharp Error Bounds for the
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Rule

D. Cruz-Uribe, C.J. Neugebauer

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 9 of 49

J. Ineq. Pure and Appl. Math. 3(4) Art. 49, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:david.cruzuribe@mail.trincoll.edu
mailto:neug@math.purdue.edu
http://jipam.vu.edu.au/

variation by

flz Ti—1)[?
HfHBVpI_SupZ| ]:c — flzi)| < 00,

i — Li— 1|p !

where the supremum is taken over all partitidhs- {z;} of I. Thenf € BV, if
and only if it is absolutely continuous anfd € L?(1), and|| f| zv,.r = ||./'||p.1-
This characterization is due to F. Riesz; see, for example, Natansgn [

Remark 1.7. Whenp = oo, Theoreml.4 is equivalent to Theorerh.1 with
a =1, sincef € Wee(I) ifand only if f € Ay(1), and || f'||cc.r = || fllAs.z-
(See, for example, Natanson].)

Remark 1.8. Inequality(1.12), withr = 0 andp > 1 was independently proved
by Dragomir [5] as a corollary to a rather lengthy general theorem. Very re-
cently, we learned that Dragomet al. [4] gave a direct proof similar to ours
for (1.12) for all p but still with» = 0. Neither paper considers the question of
sharpness.

While inequalities {.12 and (L.13) are sharp in the sense that for a given
equality holds for a given functiori;” (f) and E, (f) go to zero more quickly
than1/n.

Theorem 1.5.Let f € W/ (I),1 < p < oc. Then
(1.16) lim n- EX(f) =0

n—oo

(1.17) lim n- B (f) = 0.

n—oo

Further, these limits are sharp in the sense that the factat ohnnot be re-
placed byn“ for anya > 1.

Sharp Error Bounds for the
Trapezoidal Rule and Simpson’s
Rule

D. Cruz-Uribe, C.J. Neugebauer

Title Page

Contents
44 44
< | 2
Go Back
Close
Quit
Page 10 of 49

J. Ineq. Pure and Appl. Math. 3(4) Art. 49, 2002
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:david.cruzuribe@mail.trincoll.edu
mailto:neug@math.purdue.edu
http://jipam.vu.edu.au/

Remark 1.9. Unlike most of our proofs, the proof of Theorém requires that

we approximatef by smooth functions. It would be of interest to find a proof of

this result which avoided this.
Theorem 1.6.Let f € W/(I),1 < p,q < co. Then forn > 1,

1.18 ET(F) < Bl /g + )Y L g
(1.18) n(f) =BV, ¢ + 1) = — k|| fillpq1,

whereB is the Beta function,
1
B(u,v) = / 21 —2)"tdr, w,v>0.
0

Similarly,

, 1+1/p’
119)  ES(f) <l g + v T

inf £l

where

1/3 1\ ! 1\
C(u,v) = / et (— - —) dt +/ et (— — —) dt.
; 32 3 41

Remark 1.10. Whenp = ¢ then Theorem..6reduces to Theoreh 4.

Remark 1.11. Theorem(1.6) is sharp; whenl < ¢ < p the condition for
equality to hold is straightforwardf{ is constant), but when > p it is more

Sharp Error Bounds for the
Trapezoidal Rule and Simpson’s
Rule
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technical, and so we defer the statement until after the proof, when we have u.ineq. pure and Appl. matn. 34) Art. 49, 2002

made the requisite definitions.
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Remark 1.12. The constant i1.19 is considerably more complicated than
thatin(1.18); the functionC'(u, v) can be rewritten in terms of the Beta function
and the hypergeometric functigi, but the resulting expression is no simpler.

(Details are left to the reader.) However it is easy to show &gt /o', p'+1) <

B(q¢'/p',p' +1)/37, so that we have the weaker but somewhat more tractable

estimate
| |1+1/p/

|1 )
Ey(f) < B /9 q' + DY = —inf | flp0.r

Theorem 1.7.Let f € W¥(I),1 < p < oo. Then forn > 1,

ity
1200 B <8 L0 e,
and
2+1/p
S / / 1/p |I| : 1"
L21) B < DO+ Ly + ) s int [ £,
where

3/2
D(u,v):/ L — ¢ at.
0

Inequality(1.20) is sharp, and whem < p < oo equality holds if and only if

a2y ro-ay(UEoe-ar) .
=1

Sharp Error Bounds for the
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whered € R. Similarly, inequality(1.21) is sharp, and when < p < ~
equality holds if and only if

(1.23) f”(t)_dli(<|]| (t — a) ) X (t

=1
p'—1
- (t - CLz XIZ
Sharp Error Bounds for the
Trapezoidal Rule and Simpson’s
Rule
+ t - b X[i
D. Cruz-Uribe, C.J. Neugebauer

L2\
(t - bz) 36 Xf;l(t) + d2t + d37

Title Page
. . =~ ) . . Contents
whered; € R, 1 < i < 3, and the intervald;, 1 < j < 4, defined in(5.2)
below, are such that the corresponding functions are positive. <44 44
Remark 1.13. Whenp = 1, p/ = oo, and we interpref3(p’ + 1,p/ + 1)/7 as < >
the limiting valuel /4. This follows immediately from the identifj(u, v) = Go Back
I'(uw)I'(v)/T'(u + v) and from Stirling’s formula. (See, for instance, Whittaker
and Watson §(].) Cllose
, , : it
Remark 1.14. Whenp = oo, (1.20) reduces to the classical estimate given Qui
above. Page 13 of 49
Remark 1.15. Like the functionC'(u, v) in Theoreml.6, the functionD(u, v) e ——————

can be rewritten in terms of the Beta function and the hypergeometric function  http://jipam.vu.edu.au
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o F. However, the resulting expression does not seem significantly better, and
details are left to the reader.

Prior to Theoreni.7, each of our results shows that for rough functions, the
trapezoidal rule is better than Simpson’s rule. More precisely, the constants in
the sharp error bounds fd@! (f) are less than or equal to the constants in the
sharp error bounds fdts (f). (We useEL (f) instead ofE” ( f) since we want
to compare numerical approximations with the same number of data points.)

. . . . . . Sharp Error Bounds for the

This is no longer the case for twice differentiable functions. Numerical cal-  Trapezoidal Rule and Simpson’s
culations show that, for instance, when= 10/9, the constant in1(.20 is Rl
smaller, but whemp = 10, (1.21) has the smaller constant. Furthermore, the fol- D. Cruz-Uribe, C.J. Neugebauer
lowing analogue of Theorem.5 shows that though the constants in Theorem
1.7 are sharp, Simpson’s rule is asymptotically better than the trapezoidal rule.

Title Page

Theorem 1.8.Givenf € W7 (I),1 <p < o0, E—
I 2
(1.24) lim n?ET(f _|1F / (1) dt' 4« dd
< | 2

but

Go Back
(1.25) lim ”2Eégn(f) = 0. Close
Remark 1.16. (Added in proof) Given Theorem$.5and1.8, it would be inter- Qe
esting to compare the asymptotic behavio#f( f) and ES (f) for extremely Page 14 of 49

rough functions, say those i, (/) and CBV (I). We suspect that in these
cases their behavior is the same, but we have no evidence for this. (We want tQs. ineq. pure and app. math. 3) Art. 49, 2002
thank the referee for raising this question with us.) http:/fjipam.vu.edu.au
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The remainder of this paper is organized as follows. In Seciove make
some preliminary observations and define notation that will be used in all of
our proofs. In Sectio® we prove Theorems.1and1.3and Corollaryl.2. In
Sectiord we prove Theorems.4, 1.5and1.6. In Section5 we prove Theorems
1.7and1.8

Throughout this paper all notation is standard or will be defined when needed.
. . . . . . Sharp Error Bounds for the
Given an intervall, || will denote its length. Givem, 1 < p < oo, p’ will de- Trapezoidal Rule and Simpson’s
note the conjugate exponentip + 1/p’ = 1. Rl

D. Cruz-Uribe, C.J. Neugebauer
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In this section we establish notation and make some observations which will be
used in the subsequent proofs.

Given an intervall = [a,b], for the trapezoidal rule we will always have an Sharp Error Bounds for the

equally spaced partition of + 1 points,z; = a + i|I|/n. Define the intervals Trapezoidal Rule and Simpson’s
Ji: [Ii_l,ﬂfi],l <1 <n, then’JZ| = |I|/n R
For each, 1 < i < n, define D. Cruz-Uribe, C.J. Neugebauer
Ji
(2.1) L;= ‘ B ‘ (f(ﬂfi—l) + f(ﬂfz)) - / f(t) dt. Title Page
Ji
Contents
If we divide eachJ; into two intervals/;” andJ;" of equal length, ther(1) can
be rewritten as « dd
< | 2
@2) L= [ (fa =)+ [ (f)- ) ar o Bt
Close

Alternatively, if f is absolutely continuous, then we can apply integration by
parts to .1) to get that Quit

Page 16 of 49
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wherec; = (x;_1 + x;)/2 is the midpoint ofJ;. If f’is absolutely continuous,
then we can apply integration by parts again to get

(2.4) L = %/J (% —(t— ci)Q) £(t) dt.

From the definition of the trapezoidal rule.{) it follows immediately that

YL <> ILl,
=1 i=1

and our principal problem will be to estimatg;|.

We make similar definitions for Simpson’s rule. Giverwe form a partition
with 2n + 1 points,z; = a + j|I|/2n, 0 < j < 2n, and form the intervals
I, = [ZE%_Q,JZQZ‘], 1 <1 <n. Then|]z| = ]I|/n

For each, 1 < i < n, define

(2.5) By (f) =

To get an identity analogous t@.¢), we need to partitiod; into four intervals

of different lengths. Define
2w 9 + T 1 2x9; + T 1
@ = —— bi=—7%—,
3 3

and let

[il = [5522'—2,%], [3 = [aial“m—l], Iig = [3?21'—1752'], [,4 = [bnﬂ?zi]-

Sharp Error Bounds for the
Trapezoidal Rule and Simpson’s
Rule
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Then|I}| = |I}| = |I|/6n and|I?| = |I}| = |I|/3n, and we can rewrite(6)
as

@7) Ki= [ (flaaa) ~ f@) de+ [ (Fawas) = 10t

I} 12
+ /3 (f(xaim1) — f(t)) dt + / (f(xai) — f(2)) dt.
I: I:
' ' Sharp Error Bounds for the
If fis absolutely continuous we can apply integration by partg ) o get MG R EE SuP=is
(2.8) Ki _ (t . ai)f,(t) dt + / (t . bz)f/(t) dt. D. Cruz-Uribe, C.J. Neugebauer
I- I
If /" is absolutely continuous we can integrate by parts again to get Title Page
Contents
1 ‘11’2 2 "
I~
‘ < 4
1 |[Z|2 2 "
+§/1.+ (g—(t—bi) fr(t) dt. S
Close
Whichever expression we use, it follows from the definition of Simpson’s _
rule (1.2) that Quit
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Finally, we want to note that there is a connection between Simpson’s rule
and the trapezoidal rule: it follows from the definitioris1) and (L.2) that

4 1

(2.11) Soa(f) = 3Toalf) = 3Tulf)-

In all of our results, we estimate the error in the trapezoidal rule with an expres-
sion of the form

inf |7,

where the infimum is taken over alle R. It will be enough to prove the various
inequalities with|| f|| on the righthand side: since the trapezoidal rule is exact
on linear functionsE! (f.) = EL(f) for all f andr. Further, we note that for
eachf, there exists, € R such that

I froll = inf I,

This follows since the norm is continuousrirand tends to infinity ag:| — oc.
Similarly, in our estimates foE’5 ( f), it will suffice to prove the inequalities

with || f|| on the righthand side instead off; || f;||: because Simpson’s rule

is exact for polynomials of degree 3 or less; (f) = EZT(f,), for s(x) =

ax® + bz? + cx. Again the infimum is attained, since the norm is continuous in

the coefficients of and tends to infinity ali| + [b| + |¢| — .
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Proof of Theorenmi..1. We first prove inequalityX.4). By (2.2), for eachi, 1 <

1 < n,

i a T o :
< I fllaa / iy — 1" dt + [ fl]aa /J | — | dt

by translation and reflection,

— 2| fln. / (t - i) dt

|J |1+o¢
= 2[|fllaa

e,
(1 + Q)QanlJra'

Therefore, by 2.5
1] f Nl A
(3.1) Ey(f) < 1 a)2one”

and by the observation in Secti@r? we get (L.4).

The proof of inequality 1.5) is almost identical to the proof ofL(4): we

begin with inequality 2.7) and argue as before to get

21+ 22 )" fllaa
(1 + a>61+an1+a )

| K| <
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which in turn implies {.5).
To see that inequalityl(4) is sharp, fixn > 1 and define the functiorf as
follows: on|0, 1/n] let

1
o << —
T _x_2n
f(z) = N
1 1 1
r——| , —<ax<—.
n 2n n

Now extendf to the interval0, 1] as a periodic function with periot)/n. It is
clear that|| f||», = 1, and it is immediate from the definition th@}(f) = 0.
Therefore,

1

1 1/2n
T _ _ o} —
En(f)_/o f(:p)dx—2n/0 x dx_(1+a)2ana’
which is precisely the righthand side &.0). O

Proof of Corollary1.2. Inequalities {.6) and (L.7) follow immediately from
(1.4 and (L.5. Recall that iff € A;(I), then f is differentiable almost ev-
erywhere,f’ € L>(I) and||f||x, = ||f']l~- (See, for example, Natansoi].)
Letr = (M + m)/2; then

M—m

1f =ralla = 1 =rllee = =5

We now show thatl(.6) is sharp and that equality holds exactly whérs]
holds. First note that ifl(.8) holds, then byZ.3),

|11

LZ-:/ (t—ci)Mdt—k/ (t —c;)mdt = £ —(M —m),
5 I 8n?
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and it follows at once fromZ.5) that equality holds in1(.6).
To prove that {.8) is necessary forl(6) to hold, we consider two cases.

Case 3.1.M > 0andm = —M. In this case,

wr(r) = Ly
" 4n
Again by(2.3),
Sharp Error Bounds for the
t + Trapezoidal Rule and Simpson’s
— CZ Rule
D. Cruz-Uribe, C.J. Neugebauer
< t— ; dt t—oc)f(t)dt
Z ) (1) +/ﬁ< ) f' (1)
& ! Title Page
II |2 o :
< o5 2 (1 e + 17l s) Contents
=1
44 44
II ? 1?
—M + —M,
&n * e &n < >
and since the first and last terms are equal, equality must hold throughout. Go Back
Therefore, we must have that
Close
©2) 1L =Wy [ (=t 1= F s [ (=c i Qui
and ' ' Page 22 of 49
12 - 12 - 12 . Ineq. Pure and |. Math. 3(4) Art. 49, 2002
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Hence, by(3.2), on J;
f(t) = QX g+ (t) — ﬁiXJ; (t),

with eithera;, 3; > 0 for all ¢, or «;, 8; < 0 for all 7. Without loss of generality
we assume that;, 3; > 0.

Further, we must have thatl = sup{«a; : 1 < i < n}, so it follows from
(3.3 thata; = M for all i. Similarly, we must have that; = M, 1 < i < n.
This completes the proof of CaSel

Case 3.2.The general casen < M. Letr = (M + m)/2; then

I)?
ET(f) = 1 M —m) = EI(f,).
Since Cas@&.1applies tof,, we have that

7ty = S (e () = o ()

i=1

This completes the proof singé= f/ + r.

The proof that {.7) is sharp and equality holds if and only if.Q) holds is
essentially the same as the above argument, and we omit the details. [

Proof of Theorenmi..3. We first prove {.10. By (2.2) and the definition of the
norm inC' BV (I), for eachi, 1 <i < n,

L] < / i) - fOldt + / ) — F(8)de

+
Ji
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< sy 19 1+ I sy [
1

= %HfHBV,Ji-

If we sum overi, we get

1 & 1
El(f)<=—> = ;
L (f) < 7 2 £l v, 2n||f||BVJv

inequality (.10 now follows from the remark in Sectidh?2.

To show that inequality1(10 is sharp, fixn > 1 and fork > 1 define
ar, = 47%/n. We now define the functiorfy on I = [0, 1] as follows: on
[0,1/n] let

(1- 2~ 0<z<a,
Qnp,
1
fk(cc): 0 angxgﬁ_an
(- 2)
1+ & __angzg_
\ (07% n n

Extend f; to [0, 1] periodically with periodl/n. It follows at once from the
definition that|| fi|| sv,0,1) = 2n. Furthermore,

Ey (fi) =

1
Tn(fk) —/O fk(t> dt’ =1- apn = 1— 47]6.

Thus the constarit/2n in (1.10) is the best possible.
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We now consider when equality can hold ihX0. If f(t) = mt + b, then
we have equality since both sides are zero.

For the converse implication we first show thaffie C' BV (I) is not con-
stant on/, then

1|

2n

(3.4) Ey(f) < 5l fllsvr.

By the above argument, it will suffice to show that for soine

|1

Li| < —
|1Lil < o

I fllBv,;-

Since f is non-constant, choosesuch thatf is not constant on/;. Since f

is continuous, the functiofy (x;_1) + f(z;) — 2f(t)| achieves its maximum at
somet € J;, and, again becausgis non-constant, it must be strictly smaller
than its maximum on a set of positive measure. Hence on a set of positive

measurelf (z;—1)+ f(xz;) —2f(t)| < || fllBv.s;,» and so 8.4) follows from (2.1),
since we can rewrite this as

L= %/J (Flir) + (o) — 2/(0)) dt.

To finish the proof, note that as we observed in Sectidhthere exists
such that| f,, || sv.r = inf, || f+||sv.;- Hence, we would have that

BT(F) = B () < 1 v
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If f(t) were not of the formnt + b, so thatf,, could not be a constant function,
then by 8.4), the inequality would be strict. Hence equality can only hold if
is linear.

The proof that inequality1(11) holds is almost identical to the proof of
(1.10: we begin with inequalityZ.7) and argue exactly as we did above.

The proof that inequalityl(.11) is sharp requires a small modification to the
example given above. Fix > 1 and, as before, let, = 4% /n. Define the
function f, onI = [0, 1] as follows: on[0, 1/n| let

( 1
0 0<e < — —a,
2n
1
— 5= 1 1
1+< 2") ——a, <1< —
an, 2n 2n
fr(x) =
(5 —2z) 1 1
1+ == — << —+ay
an, 2n 2n
1 1
0 — ta, <zx<-—.
\ 2n n

Extendf;, to [0, 1] periodically with periodl /n. Then we again haviefi || sv,0,1] =
2n; furthermore,

1
Son(fr) —/0 fe(t) dt' = ; —apn = 2 47k,

Thus the constarit/3n in (1.11) is the best possible.
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The proof that equality holds iri.(11) only when both sides are zero is again
very similar to the above argument, replacibgby K; and using 2.6) instead
of (2.1). O
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Proof of Theorenm..4. As we noted in Remark$.5and1.7, it suffices to con-

sider the casé < p < oc.

We first prove inequality(.12). If we apply Holder’s inequality to4.3),

then foralli, 1 < i <mn,

|Lil < |If

. 1/p
p,J; (/ |t — Cilp dt) .
J;

An elementary calculation shows that

p'+1
/|t— = A
( +1)2°"

Hence, by 2.5 and by Hdélder’s inequality for series,
r L i)
E,(f) < 20y + 17 1+ 17 < (/ 1f' @) dt)

u|1+1/p p !
< 2(p _,_1 1/pn1+1/p (/‘f | dt> n

|[|1+1/p
=——|/I
2(p'+1)1/p’n”f Pl

Inequality (L.12 now follows from the observation in Secti@n2.
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The proof of inequality 1.13) is essentially the same as the proof of inequal-
ity (1.12), beginning instead with2(8) and using the fact that
2(1 + Qp’+1)|[|p’+1
(p/ + 1)6P +ipp'+1-

it — ol di +/ it — b7 dt =
i

I

We will now show that inequality)(.12) is sharp. We writd; = L; + L;,
where

@y o= [ e-era = [ e-aroe

Also note that

/ (t — Ci)pldt = / (i — t)p/dt = Ui )
gt I (' +1)(2n)7 !

We first assume that’ has the desired form. A pair of calculations shows
that

. B ’]|p’+1n ) B |[|(p’+1)/p(2n)1/p
En (f) - 2|d1’(p/+ 1)(2n>p/+17 Hf _dQHPJ - ‘d1‘<p/+ 1)1/p(2n)(p/+1)/p7
and since

4+ 1 1 2 1
p + = f - R and - T = / )
p Y (2n)" (2n)P'—1

we have the desired equality.
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To show the converse, we first consider when equality holds with 0.
Observe that by the above argument,

Eg(f): ZLi

=D T+ L)
i=1 Sharp Error Bounds for the
n n Trapezoidal Rule and Simpson’s
Rule
<DL+ )L
; ; D. Cruz-Uribe, C.J. Neugebauer
7 — :
T+ )Y ) ; 1z 17 ) Title Page
| T+ ' Contents
=~ / 1/p 1+1/ /Hf/HP,I(Qn)l/p
(p' + 1)Y7'(2n) P <« >
1] > N
= mﬂf Ip. -
Go Back
Since the first and last terms are equal, each inequality must be an equality.
Hence allL] and L; have the same sign; without loss of generality we may Close
assume they are all positive._ By the criterion for equality in Holder’s inequality Quit
on J; (see, for example, Rudin §, p. 63)), Page 30 of 49

f(t) = au(t - Ci)plilx(]j‘ (t) — Bilci — t)plleJi— (t),

wherea;, 3; > 0. (Here we used the assumption thgt L; > 0.)
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Next we claim thaty; = 5, = -- - = o, = (3,,. To see this, first note that

E,(f) = En: (/J;(t — ) f'(t)dt +/

i=1 Ji

(ci — t)f’(t)dt)

|]|p'+1

= 121(041 + i) W + D) 2n)p 1’

and this equals

, ’ n / /p
1 = e (St + o
(v + o = G s | & (' + 1)(2n)
n ) . 1/p |I|1+1/p’+(p/+1)/p
= Z(O‘i +5) (p/ + 1)(2n)H+@'+D/p

i=1

Sincel + 1/p + (p +1)/p = p/ + 1 and2n(2n)@'+D/P = (2p)P' 1=/ jt
follows that

n n 1/p
S (ai+ 8) = (me + ﬁf)) (2n)/7".
i=1 i=1
This is equality in Holder’s inequality for series, which occurs precisely when
all the o;’s andg;'s are equal. (See, for example, Hardy, Littlewood and Pdlya
[S, p- 22].) This establishes when equality holds when 0.

Finally, as we observed in Sectich2, inf, || f/[,1 = |/, |, for some
ro € R. SinceE,(f) = E.(f,) we conclude thatl(12) holds if and only if
(1.14) holds.
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The proof that {.13 is sharp and that equality holds if and only if.15
holds is essentially the same as the above argument and we omit the details.

Proof of Theoreni.5. We first prove the limit {.16) for f € C'(I). DefineL;
andL; as in ¢.1), and define the four valuell/;" = max{f'(t) : t € J*},
mi =min{f'(t) : t € J=}. Then, since

1|17
/ (t —¢)dt = ST = (¢; — t)dt, Sharp Error Bounds for the
J;r 8 n o Trapezoidal Rule and Simpson’s
Rule

we have that D. Cruz-Uribe, C.J. Neugebauer

2 2 2 2
.+ﬂ<L.+<M.+& —M.‘ﬂ<L.—<— fﬂ
Mignz =7 = Mg igpz =M =T Mgy Title Page
Hence, Contents
1?2, _ > ..
%(mi — M) <nL; < _n(Mz' —my); <« 3
this in turn implies that < >
n n n Go Back
], - U~ e
(42) o) i = M7)<n) Li< ) (M —my). Close
=1 =1 =1
Quit

Sincef’ € C(I),
f ( ) Page 32 of 49

. Z” I _
nh_)n;@ %(M;r — mi ) = \/I\f/(t) dt — /If/<t) dt = 0. J. Ineq. Pure and Appl. Math. 3(4) Art. 49, 2002
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Similarly, the left side of4.2) converges to 0 as — oo. This yields (.16) if
fecI).

We will now show that {.16) holds in general. Ifi < p < oo, W} (I) C
W(I), so we may assume without loss of generality that 1. Fixs > 0 and
choosey € C'(I) such that| f' — ¢||1.; < 2¢/|I|. Then

(4.3) EY(f) < El'(g) + EX(f - g).
If we let
(4.4) Onlt) = D _(t = colxa(t),
then
ET(f — g) = / oult)(f' — ) (B)d]

Hence,
InE} (f = g)| < nllf' — g'lluillénllcos < e
Therefore, by 4.3) and the special case above,

0 < limsupnEl(f) <e¢;
sinces > ( is arbitrary, we get thatl(16) holds.
We can prove 1.17) in essentially the same way, beginning by rewriting
(2.8) as

K= [ (a—t)f'(t) di+ / (t—ai) /(1) di+ / (bi—t)'(t) di+ / (t—b) f'(8) dt,

1} I I I

k3 (3 (3
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E5,(f) =

where the intervald;, 1 < j < 4, are defined as in2(7). Alternatively, it
follows from the identity 2.11), the triangle inequality, and.(16):
Su(h) = [ 10
Tzn / f(t dt’ / f(t dt‘
4ET (F)+ 5 EL ().
37 3
To see that1.16) is sharp, fixa > 1; without loss of generality we may
assumer =1+7r,0<r <1.
We define a functiorf on [0, 1] as follows: forj > 1 define the intervals
I; = (279,277+1. Define the function
— Z 2(1—T)jXI
j=1
It follows immediately thay € L?[0,1]if 1 <p < 1/(1 —r). Now definef by
t
16 = [ o) ds
0
thenf € W?[0, 1] for p in the same range.
Fix & > 1 and letn = 2*. Then, sincef is linear on each interval;,
f(0) = 0, and since the trapezoidal rule is exact on linear functions,
/ ]

(4.5) EL(f) =271
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Again sincef is linear on eacH;,

f(t)dt = Z /I f(t)dt = Z 27771 f@27) + f(2771h)

0 j=k+14 j=k+1

2776

Furthermore, for all,

2—J 00 i
, , or , 9-Tj
277) = t)dt = 27 = R
e = [ ata= Y = o >
i=j+1
Hence,
o—k-1 (9K} _ n*
S 2 = e
et 2(2r —1)(2¢ — 1)
f: Q—j—lf(2—j+1) _ 2'n™" .
? 2(2r —1)(2¢ — 1)

If we combine these three identities with ) we get that

n
Eg(f)ZZ(Q’“—l)‘l_Qa—l '

The quantity in absolute values is positivd ik r < 1; hencen®EL( f) cannot
converge to zero as — co.
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This example also shows thdt.{7) is sharp. Fix» = 2* and fixa > 1 as
before. Then

22 f(27k 1) 4 2R f(2 / f(t)de|,

B5(f) = :

and the computation proceeds exactly as it did aftes) ( Alternatively, we can
again argue using2(11):

Sharp Error Bounds for the

4 a a . : )
naEQSn(f) > ;l Qn(f) . %Eg(f>, Trapezoidal Rull_fu'aend Simpson’s
and if1 < a < 2 the limit of the righthand side as — oo is positive. O D. Cruz-Uribe, C.J. Neugebauer
Proof of Theoreni.6. We begin by recalling two definitions. For more infor- _
mation, see Stein and Weiss/. Given a functionf on an intervall, define Title Page
A, the distribution function off, by Contents
Ar(y) =Kz el [f(z)] >y}, « >
and definef*, the non-increasing rearrangementfobn [0, |/|] by < >
fr(t) =inf{y : A\s(y) <t} Go Back
We can now prove thatl(18 holds. Fixn and definep, as in @.4). It Close
follows at once that Quit
0, y > m Page 36 of 49
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which in turn implies that)’ (t) = (|| — t)/(2n). Hence, by an inequality of
Hardy and Littlewood (see, for example Bennett and Sharplep.[44]) and

Holder’s inequality,

B, (f) =

05w dt\
1]

< [ o) (#) dt

0

1]
= [y g o) ai
0

ul 1/51/
< ||f/||pq,1 (/ 75(1/61—1/13)61 ¢7*1(t)q dt)
0

1/q'
1 ‘Il s ’
— Hf/Hqu (W/ 1a'/p 1(|I‘ —t)q dt)
0

J|+1/0") / 1d
:||f,||pq,f| | B(}%’q/‘Fl) .

2n

By the observation in Sectidh 2, (1.18 now follows at once.
The proof of (L.19 is similar and we sketch the details. Define

n

Galt) = 37 (= a)xy () + (¢ = b)xgs (1),

i=1
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Then

1
1] — dny Oéyéu
n
A (y) =
1,
— n — _’
3 6n — 7 7 3n
and /
M_t gl
. 3n n
U (t) =
I 1
L
dn  4dn 3
We now argue as above:
S d /
Ey(f) < [ on(O)(f)(t)dt

0

|1] 1/q
<1 lpa.r ( / t Py ()7 dt) :
0

The last integral naturally divides into two integralsjon /| /3] and[||/3, |1|],
and by a change of variables we get that it equals

I|9/P+d /
[l —C q—,q’ +1].
n4 P

Inequality (L.19 then follows at once.
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We now consider the question of when equality holdslin®. Examining
the proof above, we see that if the first and last terms are equal, then equality
must hold in Holder’s inequality and in the inequality of Hardy and Littlewood.
In particular, we must have that for some R,

A (0) = (1] = )"

or equivalently,
Sharp Error Bounds for the

(4.6) (f/)*(t) _ th//le(u’ _ t)q/fl, Trapezoidal Rull_fmaend Simpson’s
and D. Cruz-Uribe, C.J. Neugebauer
11| /
(@.7) Jooraa = [" ooy Tite Page
0
. . Contents
Note that whenl < ¢ < ptheng’ > p/, so @.6) implies that(f")*(0) = 0.
Hence/’ is identically zero sgf must be constant. For a discussion of when 4 44
equality @.7) holds, see Bennett and Sharpléy. [ < >
Wheng > p, these two conditions are sufficient for equality to holdlirl.
Given a functionf with these properties, we have that Go Back
. 1| , Close
BL) = o [ = = e (L) Qui

imi P f4
Similarly, we have that age 39 of 49
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1AL, = coj7|0+107 (p,,q +1)

Hence, since’/q + 1 = ¢/,
1/¢ T+ /
q c q N(ol
B <];,q’ + 1> ! | 1 llpgr = 5B (H’q/ + 1) |7y

= E,(f)-

A similar argument shows that equality holds in19) if and only if

[ntt dt\ OI' GO (@) dt

and for some: € R,

a5 () = (60 Py ()
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Proof of Theoreni.7. We first prove inequalityl(.20. Whenl < p < oo we
apply Holder’s inequality to4.4) to get

1 | 3|2 s\
6D LI (/ (M5 - a) dt) .
Ji
Sharp Error Bounds for the

We evaluate the integral on the righthand side. By translation and a change of frapezoidal Rule and Simpson's
variables, ift = |I|/n, we have that Rl

) e [ ) o
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x Title Page
- /0 (wt —£°)" dt Contents
1
_ i / (1= s)7 ds < 33
0 < 4
/ PN
=B(p' +1,p +1)W' Go Back
If we combine this with $.1) and apply Hélder’s inequality for series we get Close
n Quit
EL(f) <) |L Page 41 of 49
=1

n /
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|I‘2 +1/p’

< B +1,p + )Y ———| "l

and this is inequalityX.20).
Whenp = 1 andp’ = oo, a nearly identical argument again yieldsZ0).
The proof of (L.2]) is very similar to that of 1.20. We begin by applying
Holder’s inequality to 2.9):
% 1/p
dt)

/ 1/p’
1 |[ |2 P
+ §||f"\|p,1¢+ (/ 36 dt ’

we estimate each integral in turn. If we let= |I|/n, then by translation and a
change of variables we have that

/ 1 ﬂﬁ_/w
- | 36 !
op/+1  [3/2
(g) " / sP' |1 — s|P'ds

|I 2p+1
(3—) p+1p+1)

|1;]?

—(t — Z.2

1
|K;| < §||f”’|p,1; <
I

— (t—b;)*

p/

dt

x? T\ 2
___t__)
36 ( 6

dt

(t — GZ')Q
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A similar argument shows that

/I.+

Therefore, by Holder’s inequality for series, we have that

14l*

|1
t
36

4 2p'+1
—b;)?| dt = <%> D +1,p +1).

i=1

<D(’ 1.0 + 1)/7 ‘[’24-1/11’ - " 1"

<D+ 10 + D" g5 s 2 (1 e +171)
=1

|]|2+1/p’

<D +1,p + 1)V WW"HN-

If we now apply the observation in Secti@2 we get (L.21).

The proofs thatX.20 holds if and only if (.22 holds, and thatl(.22) holds
if and only if (1.23 holds, are essentially the same as the proof of sharpness in
Theoreml.4and we omit the details, except to note thatlir?@ we define the
intervalsff, 1 < k <4, as follows. Let

-Gt To B — bi + o1
@G =5 U=

2
and define
(5.2) fil = [w9;—2, ], I? = [ai, Tai1], —fzg = [l'Qi—laBi]a —ff = [Bz‘,lhi]-
]
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Proof of Theoreni.8. We first prove that.24) holds if f € C?(I). Define
M; = max{f"(i) : t € J;} andm; = min{ f"(t) : t € J;}. Since

|Jif? o\ o, PP
/1(4 (=) de= Lo,

it follows from (2.4) that

|11° |11

<L; <

2
1203 1213

If we sum overi we get that

s 0, ey Iy,
=1 %

Sincef” is continuous, the left and righthand sides converge to

‘]|2 /f//
and (L.24) follows at once.
We will now show that {.24) holds in general. Sinc®?2 (1) c W, (1) if
p > 1, we may assume without loss of generality that 1. Fixe > 0 and
choosey € C*(I) such that

4e

" "
— < =
1f" = g" |l ek
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In particular, this implies that

2
|]| /f/l /g//(t) dt’ < E’
I 3

By inequality (L.20 this also implies that

n2E(f —g) < <.

3 Sharp Error Bounds for the
Trapezoidal Rule and Simpson’s
Further, by the special case above, if we chaosefficiently large, Rule

D. Cruz-Uribe, C.J. Neugebauer

2 T |I|2 "
nE,(9) = |75 [ 9 (t)dt
1

12
Title Page
Therefore, since Contents
n’Ey (9) =By (f — 9) < 0B, (f) < 0By (9) +n*E, (f — 9), «“ b
it follows that ) < 4
n’E,T(f m /f” t)dt Go Back
. . . Close
Sincee > 0 is arbitrary, we have showrl(24) holds in general. _
Finally, to show (.25 we first note that the above argument proves the Quit
slightly stronger result that Page 45 of 49
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Then by the identity4.11),

w5 = |0 (370 - 3 [ 10 ) a2 (300 - § [0 ar)].

and (.25 follows immediately.
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