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ABSTRACT. We give error bounds for the trapezoidal rule and Simpson’s rule for “rough” con-

tinuous functions—for instance, functions which are Holder continuous, of bounded variation, or

which are absolutely continuous and whose derivative &FinThese differ considerably from

the classical results, which require the functions to have continuous higher derivatives. Further,

we show that our results are sharp, and in many cases precisely characterize the functions for
which equality holds. One consequence of these results is that for rough functions, the error esti-
mates for the trapezoidal rule are better (that is, have smaller constants) than those for Simpson’s

rule.
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1. INTRODUCTION

1.1. Overview of the Problem. Given a finite intervall = [a,b] and a continuous function

f: I — R, there are two elementary methods for approximating the integral

/I /(@) de,

the trapezoidal rule and Simpson’s rule. Partition the intefvato n intervals of equal length
with endpointse; = a +i|I|/n, 0 < i < n. Then the trapezoidal rule approximates the integral
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2 D. CRuUz-URIBE AND C.J. NEUGEBAUER

with the sum

@) L) = S (a0 +2f(n) + -+ 2 (rat) + f ).

Similarly, if we partition/ into 2n intervals, Simpson’s rule approximates the integral with the
sum

1
(1.2) Son(f) = lﬁ—l(f(ﬂfo) +Af(x1) + 2f (w2) + 4f (x3) -+ 4f (2n-1) + [(220)).
Both approximation methods have well-known error bounds in terms of higher derivatives:
T < HPI
Ea(f) /f = 1202
< PP ||f oo

(See, for example, Ralston [13].)

Typically, these estimates are derived using polynomial approximation, which leads natu-
rally to the higher derivatives on the righthand sides. However, the assumptiofi i aiot
only continuous but has continuous higher order derivatives means that we cannot use them to
estimate directly the error when approximating the integral of such a well-behaved function as
f(z) = vz on[0,1]. (Itis possible to use them indirectly by approximatifigvith a smooth
function; see, for example, Davis and Rabinowitz [3].)

In this paper we consider the problem of approximating the efibff) and E5 (f) for
continuous functions which are much rougher. We prove estimates of the form

(1.3) Eq (f), E5(f) < el £1;

where the constants, are independent of, ¢, — 0 asn — oo, and|| - || denotes the norm
in one of several Banach function spaces which are embedd€&d/in In particular, in order
(roughly) of increasing smoothness, we consider functions in the following spaces:

e A,(I),0 < a < 1: Holder continuous functions with norm

1l = sup L& =TW
C ggel =yl

e C'BV(I): continuous functions of bounded variation, with norm

[ fllBv.r = Sgpz [f (i) = f (i)l

wherea = z¢ < 71 < - -+ < x,, = b, and the supremum is taken over all such partitions

e WP (I),1 < p < oo: absolutely continuous functions such tifate LP(7), with norm
1 £l
e WP(I),1 < p < oo: absolutely continuous functions such thfatis in the Lorentz

spacequ(I), with norm

11hws = ([ i) " (2 [ arwrmaee) "

(For precise definitions, see the proof of Theofem|1.15 in Secfion 4 below, or see Stein
and Weiss/[17].)

o WP(I), 1< p < occ: differentiable functions such thgt is absolutely continuous and
" € LP(I), with norm|| f”||.1-
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TRAPEZOIDAL RULE AND SIMPSON'S RULE 3

(Properly speaking, some of these norms are in fact semi-norms. For our purposes we will
ignore this distinction.)

In order to prove inequalities liké (1.3), it is necessary to make some kind of smoothness
assumption, since the supremum nornt) is not adequate to produce this kind of estimate.
For example, consider the family of functiofig, } defined on0, 1] as follows: on[0, 1/n] let
the graph off,, be the trapezoid with vertice®, 1), (1/n2,0), (1/n — 1/n?0), (1/n,1), and
extend periodically with periodl/n. ThenE, (f,) =1 — 1/n but||f,||.r = 1.

Our proofs generally rely on two simple techniques, albeit applied in a sometimes clever
fashion: integration by parts and elementary inequalities. The idea of applying integration by
parts to this problem is not new, and seems to date back to von Mises [19] and before him
to Peanol[11]. (This is described in the introduction to Ghizzetti and Ossicini [7].) But our
results themselves are either new or long-forgotten. After searching the literature, we found
the following papers which contain related results, though often with more difficult proofs and
weaker bounds: Pdlya and Sze@dl/[12], Stroud [18], Rozéma [15], Rahman and Schmeisser
[14], Buttgenbactet al. [2], and Dragomir[[5]. Also, as the final draft of this paper was being
prepared we learned that Dragondt,al. [4] had independently discovered some of the same
results with similar proofs. (We would like to thank A. Fiorenza for calling our attention to this

paper.)

1.2. Statement of Results.Here we state our main results and make some comments on their
relationship to known results and on their proofs. Hereafter, given a fungftidefinef, (x) =

f(z) —rz,r € R,andfs(x) = f(z) — s(x), wheres is any polynomial of degree at most three
such thats(0) = 0. Also, in the statements of the results, the intervhland the points:;,

1 <i < n, are defined in terms of the partition for the trapezoidal rule, and the intef\vaitsl
pointsa; andb; are defined in terms of the partition for Simpson’s rule. Precise definitions are
given in Sectiofn 2 below.

Theorem 1.1.Letf € A,(I),0 < o < 1. Then forn > 1,

|I|1+a

(1.4) EL(f) < inf [ £,

(14 «a)2on2
and

2(1 + 2a+1)|[’1+a

(1.5) Ealf) €~ ayoirans

inf | ...

Further, inequality(1.4)is sharp, in the sense that for eagtthere exists a functioi such that
equality holds.

Remark 1.2. We conjecture that inequality (1.5) is sharp, but we have been unable to construct
an example which shows this.

Remark 1.3. Inequality [1.4) should be compared to the examples of increasing functions in
A, 0 < a < 1, constructed by Dubuc and Topor [6], for whiéH (f) = O(1/n).

In the special case of Lipschitz functions (i.e., functiona jj Theorenj 1.]1 can be improved.
Corollary 1.4. Letf € A;. Then forn > 1,

16) 20 < S (a1 — ),
3|1
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4 D. CRuUz-URIBE AND C.J. NEUGEBAUER

whereM = sup; f’, m = inf; f’. Furthermore, equality holds iLL.§) if and only if f is such
that its derivative is given by

(1.8) fl(t) ==+ (Z (MXJj (t) + mx;- (ﬂ)) :

i=1

Similarly, equality holds if1.7)if and only if

(1.9) flt)==* (Z (mxg () + M2 (t) +mxgs(t) + Mx (t))) :

=1
Remark 1.5. Inequality [1.6) was first proved by Kim and Neugebauér [9] as a corollary to a
theorem on integral means.

Theorem 1.6.Let f € CBV(I). Then forn > 1,

I].
(1.10) GRS TA T
and

I].
1.11) B5,(0) < int |, v

Both inequalities are sharp, in the sense that for eadhere exists a sequence of functions
which show that the given constant is the best possible. Further, in each equality holds if and
only if both sides are equal to zero.

Remark 1.7. Polya and Szegd [12] proved an inequality analogou$ t0(1.10) for rectangular
approximations. However, they do not show that their result is sharp.

Theorem 1.8.Let f € W{(I),1 < p < oo. Then for alln > 1,

|I|1+1/p’

(1.12) EL(f) < Wﬂ}f £ llpots
and
21/p'(1 + 2p'+1)1/p’|]|1+1/p'
s :
(1.13) E3(f) < CEETT inf || fllp.r-

Inequality(1.12)is sharp, and when < p < oo, equality holds if and only if

n

(1.14) fi(t)=d Z ((t— Cz‘)p/_lxjj (t) = (ci — t)pl_IXJ;(t)) + da,

=1
whered;, d» € R. Similarly, inequality(1.13)is sharp, and when < p < oo, equality holds if
and only if

n

(1.15) f'(t) =du Z ((t— ai)leXIf () + (¢t — bz‘)leXI;* (t)

=1
— (ai — )" g () — (b — t)p/_IXIZ?’ (1)) + dat® + dst + dy,
whered; e R, 1 <1 < 4.

Remark 1.9. Whenp = 1,p' = oo, and we interpretl+p')'/* and(1+27*1)/*" in the limiting
sense as equalingand?2 respectively. In this case Theor¢m]|1.8 is a special case of Theorem
since iff is absolutely continuous it is of bounded variation, drft|, ; = || f|lzv.r-
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Remark 1.10. When1 < p < oo we can restate Theorgm [1.8 in a form analogous to Theorem
[1.6. We define the spadgV/, of functions of boundeg-variation by

HfHBVp,I = S%pz |f($z) — f(xi—1)|p < .
i=1

|y — g [P

where the supremum is taken over all partitibhs- {z;} of I. Thenf € BV, if and only if it
is absolutely continuous and € L?(I), and||f|/sv,,r = ||f||,.z- This characterization is due
to F. Riesz; see, for example, Natanson [10].

Remark 1.11. Whenp = oo, Theoreni 1.8 is equivalent to Theorém|1.1 with= 1, since
fewe)ifandonly if f € Ay(1), and||f'||ccr = || flla,.1- (See, for example, Natanson
[10].)

Remark 1.12. Inequality [1.12), with- = 0 andp > 1 was independently proved by Dragomir

[5] as a corollary to a rather lengthy general theorem. Very recently, we learned that Dragomir
et al. [4] gave a direct proof similar to ours fdr (1]12) for allbut still with » = 0. Neither
paper considers the question of sharpness.

While inequalities[(1.7]2) andl (1..3) are sharp in the sense that for a giegoality holds
for a given function ET(f) and £ (f) go to zero more quickly thah/n.

Theorem 1.13.Let f € WF(I),1 < p < oo. Then
(1.16) lim n-ET(f) =0

n—oo

(1.17) lim n - E5 (f) = 0.

n—oo

Further, these limits are sharp in the sense that the factor cdnnot be replaced by* for any

a> 1.

Remark 1.14. Unlike most of our proofs, the proof of Theor¢m 1.13 requires that we approxi-
mate f by smooth functions. It would be of interest to find a proof of this result which avoided
this.

Theorem 1.15.Let f € W{(I),1 < p,q < oo. Then forn > 1,

1.18 () < B+ )" I e g
(1.18) n(f) = BW/p', ¢ + 1) =k || fillpq.r,

whereB is the Beta function,
1
B(u,v) = / N1 —2)" Vdr, w,v>0.
0

Similarly,

T 1+1/p’
(1.19) ES.(f) < C(d o d + 1)V )

inf £l

1/3 1\ L A
C(u,v) = / et (— — —) dt+/ et (— — —) dt.

Remark 1.16. Whenp = ¢ then Theorern 1.15 reduces to Theofen 1.8.

Remark 1.17. Theorem[(1.15) is sharp; when< ¢ < p the condition for equality to hold
is straightforward f is constant), but when > p it is more technical, and so we defer the
statement until after the proof, when we have made the requisite definitions.

where
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6 D. CRuUz-URIBE AND C.J. NEUGEBAUER

Remark 1.18. The constant i (1.19) is considerably more complicated than thatin (1.18); the
functionC'(u, v) can be rewritten in terms of the Beta function and the hypergeometric function

o F, but the resulting expression is no simpler. (Details are left to the reader.) However it is easy
to show thatC(¢'/p',p' + 1) < B(q'/p',p’ + 1)/37, so that we have the weaker but somewhat
more tractable estimate

7]

I
E5 (f) < B(q /v, ¢ + )7 —

Theorem 1.19.Let f € W3 (I),1 < p < oo. Then forn > 1,

inf |l

2 1 /
(1.20) B1(5) < B + 1+ 0 I
and
S / / 1/p’ |I‘2+1/p/ 1"
(1.21) Ey (f) <D +1,p+1) inf £ lp.1s

21/p32+1/p' 12

where
3/2
D(u,v):/ L — ¢ at.
0

Inequality(1.20)is sharp, and whem < p < oo equality holds if and only if

(.22) o =ay (ME-e-a2) o,

whered € R. Similarly, inequality(1.21)is sharp, and when < p < co equality holds if and
only if

(123) 1) Z ((” i >) (0 = (¢ - - ’éi(|j2>p/1in2(t)

/

. (% . by)p )

3

B e LR 7 ]
(t —b) 36 X[;l(t) + dot + ds,

whered; € R, 1 < i < 3, and the intervald?, 1 < j < 4, defined in(5.2) below, are such that
the corresponding functions are positive.

Remark 1.20. Whenp = 1, p = oo, and we interpreB(p’ + 1,7’ + 1)1/ as the limiting
valuel/4. This follows immediately from the identiti(u, v) = I'(u)['(v) /T (v + v) and from
Stirling’s formula. (See, for instance, Whittaker and Watson [20].)

Remark 1.21. Whenp = oo, (1.20) reduces to the classical estimate given above.

Remark 1.22. Like the functionC'(u, v) in Theorenj 1.15, the functioR(u, v) can be rewritten
in terms of the Beta function and the hypergeometric functibn However, the resulting
expression does not seem significantly better, and details are left to the reader.

Prior to Theorenj 1.19, each of our results shows that for rough functions, the trapezoidal
rule is better than Simpson’s rule. More precisely, the constants in the sharp error bounds for
ET (f) are less than or equal to the constants in the sharp error bounds fof). (We use
EI (f) instead of EL(f) since we want to compare numerical approximations with the same
number of data points.)
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TRAPEZOIDAL RULE AND SIMPSON'S RULE 7

This is no longer the case for twice differentiable functions. Numerical calculations show
that, for instance, whep = 10/9, the constant in (1.20) is smaller, but wher= 10, (1.21)
has the smaller constant. Furthermore, the following analogue of Thgoren 1.13 shows that
though the constants in Theor¢m 1.19 are sharp, Simpson’s rule is asymptotically better than

the trapezoidal rule.
Theorem 1.23.Givenf € W2(I),1 < p < o0,
e / £ dt
12 J;
but
(1.25) lim n*Es5 (f) = 0.

Remark 1.24. (Added in prooj. Given Theorem$ 1.13 and 1|23, it would be interesting to
compare the asymptotic behavior &f (f) and E3, (f) for extremely rough functions, say
those inA, (/) andC BV (I). We suspect that in these cases their behavior is the same, but we
have no evidence for this. (We want to thank the referee for raising this question with us.)

(1.24) lim n?EL(f) =

n—oo

Y

1.3. Organization of the Paper. The remainder of this paper is organized as follows. In Sec-
tion[4 we make some preliminary observations and define notation that will be used in all of our
proofs. In Section|3 we prove Theorems|1.1 1.6 and Cor¢llary 1.4. In Section 4 we prove
Theorem$ 118, 1.13 and 1]15. In Secfipn 5 we prove Thedremis 1.19 apd 1.23.

Throughout this paper all notation is standard or will be defined when needed. Given an
interval 7, |I| will denote its length. Givemp, 1 < p < oo, p’ will denote the conjugate
exponent:l/p +1/p' = 1.

2. PRELIMINARY REMARKS

In this section we establish notation and make some observations which will be used in the
subsequent proofs.

2.1. Estimating the Error. Given an interval = [a, b], for the trapezoidal rule we will always
have an equally spaced partitionsoft- 1 points,z; = a + i|I|/n. Define the intervals; =
[.Z'ifl,l’i], 1< <n; then|J1] = \I]/n
For each, 1 <i < n, define
J;
|2|(f($z‘—1)+f($z‘)) _/ f(t)dt.
Ji

If we divide eachJ; into two intervals/;” andJ;" of equal length, theri (2.1) can be rewritten as

(2.1) Li=

(2.2) .uzl'gmﬁwwv»m+Ljﬂm—fwwt

Alternatively, if f is absolutely continuous, then we can apply integration by parfs tp (2.1) to
get that

(2.3) th@-@ﬂWﬁ

wherec; = (z;_1+x;)/2 is the midpoint ofJ;. If f’ is absolutely continuous, then we can apply
integration by parts again to get

(2.4) L; = %/J ("Z'Q —(t — ci)Z) f"(t) dt.
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From the definition of the trapezoidal rufe (IL.1) it follows immediately that

n

i=1

(2.5) Eq(f) =

and our principal problem will be to estimatg;|.

We make similar definitions for Simpson’s rule. Givénwe form a partition witlen + 1
points,z; = a+ j|I|/2n,0 < j < 2n, and form the intervalg;, = [z3;_2, %], 1 < i <n. Then
L] = [1/n. |

For each, 1 < i < n, define

(2.6) K; = o ‘( F(@oi2) +4f(w25-1) + f(22)) /f

To get an identity analogous tp (R.2), we need to partitipimto four intervals of different

lengths. Define
_ 2x9i 9+ T2 _ 2x9i+ 21

i = bi=——F—
¢ 3 3
and let

[1 [29i—2, ail, 12 @i, w2 1], 1.1-3 = [w2i-1, b4, [4 [bi, T2;].
Then|I}| = |I| = |I|/6n and|I?| = |I?| = |I|/3n, and we can rewrit¢ (2.6) as
27) Ki= | (f(xa2)— f(t)dt+ / (f(zaia) = f(1)) dt

1! 2
1) — d i) — dt.
+f (Floan) = 50) di+ / (Ftea) = s)
If fis absolutely continuous we can apply integration by parts td (2.6) to get
It

I
If /" is absolutely continuous we can integrate by parts again to get

2.9 K _2/1- <|é6|2 (t—ai)2>f()dt+2/i ('g(f (t—bi)2> £(8) dt.

Whichever expression we use, it follows from the definition of Simpson’s (1.2) that

ZKi < Z | Kl
=1 =1

Finally, we want to note that there is a connection between Simpson’s rule and the trapezoidal
rule: it follows from the definitiond (1]1) and (1.2) that

(2.11) Sl f) = .

=To,(f) — =T,(f).
3 Ten(f) = 5Tu()
2.2. Modifying the Norm. In all of our results, we estimate the error in the trapezoidal rule
with an expression of the form

(2.10) E5.(f) =

inf | £,

where the infimum is taken over alle R. It will be enough to prove the various inequalities
with || f]| on the righthand side: since the trapezoidal rule is exact on linear functigiig,) =
ET(f) forall f andr. Further, we note that for eagh there exists, € R such that

ool = i0f |17
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This follows since the norm is continuousrirand tends to infinity ag:| — oo.

Similarly, in our estimates foEy, (f), it will suffice to prove the inequalities withf || on the
righthand side instead ofif; || f5||: because Simpson'’s rule is exact for polynomials of degree
3orless,ES(f) = EI(f,), for s(x) = ax® + bx? + cx. Again the infimum is attained, since
the norm is continuous in the coefficientssoéind tends to infinity aki| + |b] + |¢| — oo.

(The exactness of the Trapezoidal rule and Simpson’s rule is well-known; see, for example,
Ralston[13].)

3. FUNCTIONS IN A, (1), 0 <« < 1,AND CBV (1)
Proof of Theorerfl.1 We first prove inequality (1]4). By (2.2), for eachl < i < n,

MAS[;VwFﬁ—ﬂmﬁ+/;V@0—ﬂmﬁ

<l [ o=t 1, [ ol
JT Jo

k3

by translation and reflection,

=2fl. [ (=0 a

|J'—|1+Oz

—9 Ml
I, 2
1] f |

(1+ a)2ontte

Therefore, by[(Z]5)

1) f
(14 a)2one’
and by the observation in Sectipn]2.2 we get|(1.4).

The proof of inequality (115) is almost identical to the proofof|1.4): we begin with inequality
(2.7) and argue as before to get

(3.1) By (f) <

201+ 2* D f |

K;| < )

which in turn implies[(1.b).
To see that inequality (1.4) is sharp, fix > 1 and define the functiorf as follows: on
[0,1/n] let

1
o << —
£ _x_Qn

o

1
x__
n

IN

r <

S|

1
2
Now extendf to the interval[0, 1] as a periodic function with periodl/n. It is clear that
| flla, = 1, and it is immediate from the definition tha}(f) = 0. Therefore,

1 1/2n N 1
E;{(f):/o f(x)dszn/O T dx:m,

which is precisely the righthand side pf (B.1). O
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Proof of Corollaryl1.4 Inequalities [(1.6) and (1.7) follow immediately frofin (1.4) apd|(1.5).
Recall thatiff € A;(I), thenf is differentiable almost everywher#, € L>(I) and|| f||x, =
1]~ (See, for example, Natansdn [10].) ket (M + m)/2; then

M—m
1f=rzlla, = 1 =7l = 5

We now show tha{ (1]6) is sharp and that equality holds exactly when (1.8) holds. First note
that if (1.8) holds, then by (2.3),

Jir -

and it follows at once fronj (2]5) that equality holds[in {1.6).
To prove that[(1,8) is necessary fpr (1.6) to hold, we consider two cases.

R
W(M_m)v

Case 1.M > 0 andm = —M. In this case,

51y =L
Again by [2.3),
t—c¢
<3| -erwa || c-oroa
< 2 W e+ 1)
Ly,

and since the first and last terms are equal, equality must hold throughout. Therefore, we must
have that

@2 L=l [ (@=0dt L =1 s [ =i
and

I I I
@3 o 1 e = 5 D17 =

Hence, by[(3.2), oW,

fi(t) = QX F (t) — ﬁiXJi_ (t),
with eithera;, 3; > 0 for all 4, or o, 5; < 0 for all 2. Without loss of generality we assume that
Q;, ﬁz > 0.

Further, we must have that = sup{«; : 1 < i < n}, so it follows from [3.8) thaty, = M
for all i. Similarly, we must have that; = M, 1 <1 < n. This completes the proof of Cdse 1.

Case 2.The general casen < M. Letr = (M + m)/2; then

() = L

(M = m) = EL(f,).
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TRAPEZOIDAL RULE AND SIMPSON'S RULE 11

Since Casg|1 applies ¥, we have that
M -—m

£7(®)

This completes the proof singé = f/ + r.

The proof that[(1]7) is sharp and equality holds if and only if|(1.9) holds is essentially the
same as the above argument, and we omit the detalils. O

Proof of Theorerfl.8 We first prove[(1.10). By (2]2) and the definition of the normiBV (1),
foreachi, 1 <7 <n,

L;| < i-1) — d i) — d
L / f (i) — F(0) t+/ﬁ|f(9f) Fe)at
< I lpvs 1 [+ 1 gy | ]
= o1 Fllsv.s.

If we sum overi, we get

] — 1
ET(f) < — = .
1)< g 2o o= g W s

inequality [1.1ID) now follows from the remark in Sect[on|2.2.

To show that inequality (1.10) is sharp, fix> 1 and fork > 1 definea;, = 4= /n. We now
define the functiorf, onI = [0, 1] as follows: on[0, 1/n]| let
T

(1 = 0<z<a,
an

1 1

\ an, n n

Extend f;, to [0, 1] periodically with periodl/n. It follows at once from the definition that
| fxll Bv:jo.1] = 2n. Furthermore,

1
Eg;(fk) = Tn(fk:) — / fk(t) dt‘ =1- apn = 1— 4_k.
0

Thus the constant/2n in (1.10) is the best possible.

We now consider when equality can hold[in (1.10)f(t) = mt + b, then we have equality
since both sides are zero.

For the converse implication we first show thaf it C' BV (I) is not constant od, then

1

(34) Er(f) < o I llsver
By the above argument, it will suffice to show that for soine
1]
I1Lil < Sl fllsvs,

Since f is non-constant, choosesuch thatf is not constant or;. Sincef is continuous, the
function|f(x;—1) + f(x;) — 2f(t)| achieves its maximum at some= J;, and, again because
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http://jipam.vu.edu.au/

12 D. GRUZ-URIBE AND C.J. NEUGEBAUER

f is non-constant, it must be strictly smaller than its maximum on a set of positive measure.
Hence on a set of positive measuréx;_1) + f(x;) — 2f(t)| < || fllsv.s;, and so[(3.4) follows
from (2.1), since we can rewrite this as

1
L, = 5/ (f(@i1) + f(2s) — 2f(t)) dt.
Ji
To finish the proof, note that as we observed in Se¢tion 2.2, there exitsh that| /., || sv,s =
inf, || f,||sv.z- Hence, we would have that

1
E2(F) = B () < )11 v

If f(t) were not of the formnt + b, so thatf,, could not be a constant function, then py [3.4),
the inequality would be strict. Hence equality can only hold i§ linear.

The proof that inequality (1.11) holds is almost identical to the progf of [1.10): we begin with
inequality [2.7) and argue exactly as we did above.

The proof that inequality (1.11) is sharp requires a small modification to the example given
above. Fixn > 1 and, as before, let, = 47%/n. Define the functionf, on I = [0,1] as
follows: on|0, 1/n] let

an, 2n - 2n
fi(z) =
1+(%_$) L o<l
— <rx<—+4a,
an, 2n = T 2n
1
0 —ta, <zx<-—
\ 2n n

Extendf; to [0, 1] periodically with periodl/n. Then we again havgf|| sv,0,1] = 2n; further-
more,

2

1
Eégn(fk) = SQn(fk:) - / f].;;(t) dt‘ = § —an = - — 4_k.
0

Thus the constant/3n in (I.1]) is the best possible.
The proof that equality holds if (1..1) only when both sides are zero is again very similar to
the above argument, replaciiig by K; and using[(2J6) instead df (2.1). O

3

4. FUNCTIONS IN W (I) AND WTH(I),1 <p, ¢ < 0

Proof of Theorerfl.8 As we noted in RemarKs 1.9 apd 1.11, it suffices to consider the case
1 <p<oo.
We first prove inequality[(1.12). If we apply Holder’s inequality fo {2.3), then foriall

1< <n,
. 1/p
L < 1 o ( [ dt) .
J;

An elementary calculation shows that

/ | Ji P
/ =l dt = 2
J; (p +1)2r

J. Inequal. Pure and Appl. Math3(4) Art. 49, 2002 http://jipam.vu.edu.au/
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Hence, by[(2.5) and by Holder’s inequality for series,

, i i)
AR I ) (/u MQ

|I|1+1/p )P 1/p

|]’1+1/p

o !
2+ 1)1/P’an Iy.r

Inequality [1.12) now follows from the observation in Secfiorj 2.2.
The proof of inequality[(1.13) is essentially the same as the proof of inequality (1.12), begin-
ning instead with[(2]8) and using the fact that

: : 2(1 4 20+ [P+
/]t—ai]pdtJr/ it byl g = 2L 2 I
: I

(p + 1)6r Hinpp'+t
We will now show that inequality (1.12) is sharp. We write= L + L;, where

(4.1) = [ w-arwd - [ -
st

Also note that

, / ||+
t— i p dt == i t P dt == I .
/J;( “ / = (P +1)(2n)P

We first assume that’ has the desired form. A pair of calculations shows that
I[P *1n . |I|P+D/p(2p) /P

T _ — =
E, (f) = 2|di] (p/ + 1)(2n)P'+1 1F7 = dallp,r = [di] (p/ + 1)1/p(2n)@'+1)/p’
and since / )
p+1 , 1 n 1
=p —— and =
p p p,7 (2n)pl <2n>p1_17

we have the desired equality.
To show the converse, we first consider when equality holdswith). Observe that by the
above argument,

Eg(f): ZLi

= i(LHLi)‘

i=1

<DL+ ILT
i=1 i=1

Dl ~ ,
= (p/ + 1)V/P' (2n)1+1/7 ; (Hf ”pvJ? +If HP»JZ)
’[|1+p’
~(p+ )Y (2n)
|I|1+p’

= m”flﬂp,f-

1+1/p || f/ ||p71(2n)1/p
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Since the first and last terms are equal, each inequality must be an equality. Hehteaad
L; have the same sign; without loss of generality we may assume they are all positive. By the
criterion for equality in Holder’s inequality o#; (see, for example, Rudin [16, p. 63]),

f(t) = ailt - Ci)p/_IXJj (t) = Bile;i — t)p,_IXJ;(t)7

wherea;, 5; > 0. (Here we used the assumption thgt L; > 0.)

Next we claim thaty; = 5, = - - - = «,, = 3,,. To see this, first note that
£$q>—§j</gv—@f@mwy/<q—wf@wQ
=1 J; i
mp +1

_Z%“% )@

and this equals

’]”14—1/}7 ‘[‘1+1/p

mp 41 /p
- ' P
(p + )7 17l = (' +1)/¥2n o+ ) (p' +1)(2n)r+!

:< a—i—ﬂp

Sincel +1/p + (p +1)/p = p/ + 1 and2n(2n) P +D/P = (2n)P"+1-1/7' it follows that

Z(ai + 6i) = (Z(O‘i —|—ﬁf)) (2n)7',

i=1 i=1

‘]’1+1/p’+(p +1)/p

p +1 2n>1+(p+1)/

This is equality in Holder’s inequality for series, which occurs precisely when atkvflseand
G;'s are equal. (See, for example, Hardy, Littlewood and Pdlya [8, p. 22].) This establishes
when equality holds when= 0.

Finally, as we observed in Section Riaf, || f/|l,r = | f;,|l,,r for somer, € R. Since
E.(f) = E,.(f.,) we conclude thaf (1.12) holds if and only|[if (1]14) holds.

The proof that[(1.113) is sharp and that equality holds if and on|y if (1.15) holds is essentially
the same as the above argument and we omit the details. O

Proof of TheorerfL.13 We first prove the limit[(1.16) fof € C'(I). DefineL; andL; as in
@), and define the four valuéd* = max{f'(t) : t € J=}, m¥ = min{f'(t) : t € J*}.

Then, since
1|1]?
t—c)dt = ——— = C— 1)dt
/Jj( 2 8 n? /Z,(CZ )t

we have that

2 2 2 2
.+| | <L+ M*u| M*u| <L; < f|]—|
i 8n2 — b 8n?’ " 8n2 — K 8n?’
Hence,
|I|2 + | |2 + —
8_(mi_M)< L<8 (Mi_mz‘)E
n n
this in turn implies that
LRVl S enSo < M1 .
(4.2) Sgnm Z>_n; _S;nm m;)
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Sincef’ € C(1),

tim Sl ars <) = i [ o=

Similarly, the left side of[(4]2) converges to Oras— co. This yields [T.1p) iff € C'(I).

We will now show that[(1.116) holds in general. If< p < oo, WF(I) ¢ W}(I), so we
may assume without loss of generality that 1. Fix ¢ > 0 and choosg € C'(I) such that
I/ = ¢'llr.c < 2¢/|1]. Then

(4.3) Ey(f) < EN(g)+EN(f—9).
If we let
then
ENf—g) = — g (t)dt|.
Hence,

InEL(f — )l <nllf' = dlliilldnlles < e
Therefore, by[(4]3) and the special case above,

0 < limsupnEl(f) <e;

n—oo

sinces > 0 is arbitrary, we get thaf (1.16) holds.
We can prove[(1.17) in essentially the same way, beginning by rewijiting (2.8) as

Ki= | (a-0f()dt+ /I (t—ap) f'(t) dt + /I (b= f (@) de+ /I [(E= b)) dt,

where the intervalg;, 1 < j < 4, are defined as irj (2.7). Alternatively, it follows from the
identity (2.11), the triangle inequality, arffd (1].16):

= |Son(f /f dt‘
i [

SET(f) + SET(f).

p- [ re
E 3"

To see thaf (1.16) is sharp, fix> 1; without loss of generality we may assume- 1 + r,
0<r<l.

We define a functiorf on [0, 1] as follows: forj > 1 define the intervalg, = (277,277+1].
Define the function

E3,(f)

3

|

thenf € W}[0, 1] for p in the same range.
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16 D. GRUZ-URIBE AND C.J. NEUGEBAUER

Fix £ > 1 and letn = 2*. Then, sincef is linear on each intervdl;, f(0) = 0, and since the
trapezoidal rule is exact on linear functions,

27k

2y~ [ pd.

0

(4.5) E,(f) =

Again sincef is linear on eacH;,

/0 _ f(t> dt = Z /[f(t) dt = Z 2_j_1<f<2—j) +f(2—j+1))

j=k+1v4J j=k+1

Furthermore, for allj,

j =S 2 Gy _ 27"
2_ - t t = - — . 2_T —
e = [ gt PR e
Hence,
2—k—1 2—k — n_a
b . . n-e
d 2R = :
re? 2(2r —1)(20 — 1)
i 2*j71f<2*j+1) _ 2'n~¢ .
o 2(2r —1)(20 — 1)

If we combine these three identities wifh (4.5) we get that
n-¢ 1+2"
2(2r — 1)

BI(f) = .

The quantity in absolute values is positivedif< r < 1; hencen®ET( f) cannot converge to
zero asy — oo.
This example also shows that (1].17) is sharp.sFix 2* and fixa > 1 as before. Then

2‘k+2f(2"“‘1§ +27 k2 F() dt|,
0

and the computation proceeds exactly as it did aftef (4.5). Alternatively, we can again argue

using [2.11):

4n n®
n“Ey,(f) > TEgn(f) - gEg(fL
and if1 < a < 2 the limit of the righthand side as — oo is positive. O

Proof of Theorerfl.15 We begin by recalling two definitions. For more information, see Stein
and Weiss[[17]. Given a functiofion an interval/, define), the distribution function of’, by

Aly) =Rz e L:f(@)] >y},

and definef*, the non-increasing rearrangementfobn [0, |1|] by

fr(t) = inf{y : A\p(y) <t}
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http://jipam.vu.edu.au/

TRAPEZOIDAL RULE AND SIMPSON'S RULE 17

We can now prove thaft (1.1L8) holds. Fixand definey,, as in [4.4). It follows at once that

7]

0 >

’ y_2n
A, (y) = ;
|| — 2ny, 0<y<u,
2n

which in turn implies thaw (¢) = (|I| — t)/(2n). Hence, by an inequality of Hardy and
Littlewood (see, for example Bennett and Sharpley [1, p. 44]) and Hdlder’s inequality,
Jourira

I

1]

< o) (#) dt

0

1]
= [y @i 1) d
0

|]‘ 1/ql
<1 ( / (001100 g () dt)
0

, Lo A\
Pl | g [ 00 =0
|T|(+1/P) q 1q
s B (Lo +1)

By the observation in Secti¢n 2.2, (1118) now follows at once.
The proof of (1.1IP) is similar and we sketch the details. Define

n

Galt) = 37 (0 a)x (6) + (= b)xg (1),

E,(f) =

=1
Then
1]
| —4ny 0<y< —
n
Ay (Y) =
M—Zny ﬂ<y<|—1’
3 n =" " 3n’
and
1l 1]
——— <t —
. 3n  2n - =
Pn(t) ; ;
t
I_t Meicp
dn  4n 3

We now argue as above:
1]

Ey(f)< [ en(f) () dt

0

|1] 1/q'
<N Mpg.1 ( / 9P =L (1) dt) ,
0
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18 D. GRUZ-URIBE AND C.J. NEUGEBAUER

The last integral naturally divides into two integrals[on /| /3] and|
of variables we get that it equals

I/ +d /
i , C(}%,q/-i-l).

nd

|, and by a change

Inequality (1.19) then follows at once.

We now consider the question of when equality hold$ in (1.18). Examining the proof above,
we see that if the first and last terms are equal, then equality must hold in Holder’s inequality
and in the inequality of Hardy and Littlewood. In particular, we must have that for samg,

V() = e(e (1] = 1)
or equivalently,
(4.6) () () = (1) = )7

and

1]
@.7) Jautor m\ ey
Note that whenl < ¢ < pthenqg > p/, so [4.6) implies thaf/")*(0) = 0. Hencef’
is identically zero sof must be constant. For a discussion of when equality (4.7) holds, see
Bennett and Sharpleyl[1].
Wheng > p, these two conditions are sufficient for equality to hold[in (1.18). Given a
function f with these properties, we have that

1] q
ET(f) %/ 14 /p’—1(|]| _ t)q/ dt = |]|(1+1/p qB (p q + 1)

Similarly, we have that

1]
nfszﬁ/ /=144 B Va7 )7 gy,
0

/ 1 | /
g—1+(q—,—1)q=q<——1)—1+qq u—lzq—l—l,
p p p % p P

we get

Since

|UMI—ﬂHHWMBQ,q+Q

Hence, since’/q + 1 = ¢,

14" ri+1/p /
q/ I q IN( A
Y (]7’(1, + 1) | | 1 lpgs = B (17’(/ + 1) 7| et = BT (f).

A similar argument shows that equallty holds.19) if and only if
]

d4 61 (0(F) (0) dt,

0

and for some: € R,

(I 1) = (e g )T
Again, whenl < ¢ < p this implies thatf’ is identically zero, so equality holds only whéns
constant. 0J
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5. FUNCTIONS IN W2 (I),1 <p < 0

Proof of Theorerfl.19 We first prove inequality (1.20). Whehn< p < oo we apply Holder's
inequality to [(2.4) to get

1 7 |JZ|2 2 7
51 PR (/ (5 -ar) dt)

We evaluate the integral on the righthand side. By translation and a change of variables, if
x = |I|/n, we have that

|Ji|2 , P’ /z 22 N 2 P’
—(t—c)?) dt= = (t-= dt
/( g ) o \ 4 ( 2)
= / (xt — t2)? dt
0
1
a:2p+1/ P (1 —s)P ds
0

| |2” -

1/p'

o /

If we combine this with[(5]1) and apply Holder’s inequality for series we get

Tf)SZILiI
| |2 +1/p’

< ZB P L+ D 1

=1

|]|2 +1/p’

< B + 1,0 + DY (| "l

and this is inequality] (1.20).
Whenp = 1 andp’ = oo, a nearly identical argument again yielfls (1.20).
The proof of (1.2]1) is very similar to that gf (1J20). We begin by applying Holder’s inequality

to @3):
' 1/p
1 |I|2 p
K| < =", - U (= q)?
K< 515 (/ o]
1/p'
1 // ’[‘2 P’
= t—0b; dt
51 (/ (b by ,

we estimate each integral in turn. If we let= |I|/n, then by translation and a change of
2

variables we have that
P’ x/2 T T\ 2
dt = ro_ <t _ _)
/0 36 6

||
/I 36— ()
x/2 ’
:/ |2 4" ar
0 3
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20 D. GRUZ-URIBE AND C.J. NEUGEBAUER

e+ (32 /
= <—> / sP|1 —s|Pds
3 0

LN
— <3_n> D +1,p +1).

A similar argument shows that

J. 15

Therefore, by Holder’s inequality for series, we have that

on(f) <D IKi
i=1

p’ ’| 2p'+1
— (t —b;)?| dt = ( ) D +1,p +1).

3n

36

<D +1,p + 1)V ’[|2+1/p_/ En Vi |
= p P + ) 2(3n)2+1/p/ (| f ||p,[; + | f ||p,I,L-+)
=1
|]|2+1/p

<D +1,p + 1) WW”HM

If we now apply the observation in Sectipn[2.2 we get ([L.21).

The proofs that{(1.20) holds if and only [@22) holds, and that (1.22) holds if and only if
(1.23) holds, are essentially the same as the proof of sharpness in Thedrem 1.8 and we omit the
details, except to note that in (I]23) we define the interals < k < 4, as follows. Let

_a;t Tz bt T

a;=——F>—, b 5

2
and define

(5.2) I = [T2i9, @], I? = [ai, 72 1], jz?’ = [$2z‘—171~3i]7 I = [Bi7x2i]~

(2 (2 7

O

Proof of Theorerff.23 We first prove tha{(1.24) holds ff € C?(I). DefineM; = max{f” (i) :
t € J;} andm; = min{f"(¢t) : t € J;}. Since

il 2\ 4 P
/J( 1 (t—c) dt—6n3,

|11

it follows from (2.4) that

3
m<L<|I|

i M;.
12n3 - — 12n3

If we sum overi we get that
el . 1] — ]
— L; < — M,
- Z Z <5 Z -

Sincef” is continuous, the left and righthand sides converge to

III2 /f,,

and [1.24) follows at once.
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We will now show that[(T.24) holds in general. Sindg' (1) c W) (I) if p > 1, we may

assume without loss of generality that 1. Fix e > 0 and choosg € C?(I) such that
4e
" 1
— <
17 ="l < 317

In particular, this implies that

I? I?
I [ =12 [ pal <

By inequality [1.20) this also implies that

nEL(f—g) < 5.

Further, by the special case above, if we chaosefficiently large,

2 T ’I|2 "
n“E,(9) — |45 [ ¢"(t)dt
12 J;

<<
Therefore, since
n’El(g) —n’EL (f —g) <n’E(f) < n’E; (9) +nEL(f — g),

it follows that "
2E T | | /f/l dt'

Sincee > 0 is arbitrary, we have show(i@]24) holds in general.
Finally, to show [(1.25) we first note that the above argument proves the slightly stronger

result that 12
lim n? (Tn(f)—/f(t)dt) | | /f”
n—oo I

Then by the identity[ (2.11),

n*Es (f) = ‘(%)2( Ton(f /f dt) —n ( /f dt)

and [1.25) follows immediately. O

< E.
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