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Abstract

Two classes of univalent harmonic functions on unit disc satisfying the condi-
tions )7 o (n—a)(|an|+ba]) < (1—a)(1—|br]) and Y 07 o n(n—a)(|an|+|bn|) <
(1 —a)(1 - |by|) are given. That the ranges of the functions belonging to these
two classes are starlike and convex, respectively. Sharp coefficient relations
and distortion theorems are given for these functions. Furthermore results con-
cerning the convolutions of functions satisfying above inequalities with univa-
lent, harmonic and convex functions in the unit disk and with harmonic functions

having positive real part.

2000 Mathematics Subject Classification: 30C45, 31A05.
Key words: Convex harmonic functions, Starlike harmonic functions, Extremal prob-
lems.
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Let U denote the open unit disc arft}; denote the class of all complex val-
ued, harmonic, orientation-preserving, univalent functigria U normalized
by f(0) = f£.(0) — 1 = 0. Eachf € Sy can be expressed gs= h + g where

h andg belong to the linear spadé(U) of all analytic functions ord/.

Firstly, Clunie and Sheil-SmalF] studiedSy together with some geometric
subclasses of;. They proved that althoughy is not compact, it is normal
with respect to the topology of uniform convergence on compact subsets of P
U. Meanwhile the subclass?, of Sy consisting of the functions having the Functions
property fz(0) = 0 is compact.

In this article we concentrate on two specific subclasses of univalent har-
monic mappings. These classes have corresponding meaning in the class of
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LetU, ={z:|z| <r, 0 <r < 1}andU; = U. Harmonic, complex-valued,
orientation-preserving, univalent mappinfjgefined on/ can be written as

(2.1) f(2) = h(z) + g(2),
where
(2.2) h(z)=z+ Z anz" and  g(z) = Z b, 2"

are analytic inJ.
Denote byH S(«) the class of all functions of the forn2 (1) that satisfy the
condition

oo

(2.3) > (n—a)(a| + [ba]) < (1 —a)(1 —[ba])

n=2

and by HC'(«) the subclass off S(«) that consists of all functions subject to
the condition

S " n(n — a)([an] + [ba]) < (1= a)(1 = [bu]),

where0 < a < 1 and0 < |b;| < 1. The corresponding subclassesrof («)
andHC'(«) with b; = 0 will be denoted by 5°(«) and HC(«), respectively.
Whena = 0, these classes are denotediy and HC' and have been studied
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by Y. Avci and E. Zlotkiewicz f]. If |b,| = 1 and @.3) is satisfied, then the
mappings: + by z are not univalent it/ and of no interest.
If h,g, H, G are of the form2.2) and if

f(z2) = h(z) +9(z) and F(z)=H(z)+G(z)

then the convolution of and F' is defined to be the function

z)=z+ i an, A, 2" + i b, B, 2™
n=2 n=1

while the integral convolution is defined by
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0o 44 44
n=2
(see [], [5]). In this case, let us define the generalizeeheighborhood of to Co e
be the set Close
N(f) Quit
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First, let us give the interrelations between the clagéféa) andH S, HC(«)
andHC.

Theorem 3.1. HS(a) € HS and HC(«) € HC. Consequently?S®(a) C
HS®and HC®(«) € HCP. In particular if 0 < oy < ap < 1thenHS(ay) C
HS(ap) and HC (o) € HC(ay).

Proof. Since
o0 [e.e] n—
3.1 (lan| + |bn]) (lan] + |ba]) <1 —|b
(3.1) ;I\H;l (lan] + 1bal) b1
and . .
n(n
Yo (anl +1ba) <Y ——— 1= Ianlﬂb ) < 1—1b]
n=2 n=2
we have the proof of theorem. O

Corollary 3.2. (i) Each member of/ S°(«) mapsU onto a domain starlike
with respect to the origin.

(i) Functions of the clas& C°(«) mapsU, onto convex domains.

Theorem 3.3.The class{ S(«) consist of univalent sense preserving harmonic
mappings.
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Proof. From [2, Theorem 1] forf in HS(«) and forzy, 2z, € U with z; # 25

we have
|h(z1) = h(z2)] = [21 — 22 (1 — | 2] Zn|an|>
n=2
and
19(21) — g(22)] < [21 — 22 <|b1| + |z Zn|bn|) :
n=2
When we consider the relatiofi.(), it follows that On Univalent Harmonic
Functions
n=2
© Title Page
= |z —z 1— 16| — |2 n — a)(|a,| + by
2 2|( il = 22l 3 (= 0)faal + ) S
- <« >
—alzs| > (lan| + [bal)
n=2 4 >
>z = 21— |br] = [22](1 = @)(1 = [b1]) — e|22|(1 — |ba])] Go Back
= |21 = 22|(1 = [ba])(1 = [22]) > 0. ——
So f is univalent. Since Quit
Ji(2) = [ ()] = 1g' () Page 7 of 18
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> (I () + 19" ()DL = [ba])(1 = [2]) > 0
f is sense preserving. m

Remark 3.1. (i) The functionsf,,(z) = z + Z—;} ez are in HS(«) and the

sequence converges uniformly ot ¢*z. Thus the clas$7S(«) is not
compact.

(i) If f € HS(a),thenforeach, 0 <r < 1,77 f(rz) € HS(a).

(i) If f e HS(a)and fo(z) = (f(2)—bif(2))/(1—|b1|*) thenfy € HS(a),
but f(z) = fo(2) + b1 fo(2) may not be i .S(«).

(iv) If f = h+g e HS°() then the function

)I/O1 f(zz> z/oz%u)dww

satisfies 2.3) with b; = 0, henceF'(z) is a convex harmonic mapping.

Convexity ofF'(z) however, does not imply starlikenessfdt) (or even
univalence) in general situation.

Theorem 3.4. Each function in the clas8 S°(«) maps diské/,, r < =% onto
convex domains. The const@t_ﬂg is best possible.

Proof. If f € HS%(«) andr, 0 < r < 1 be fixed, then~' f(rz) € HS%(a).
We must find an upper bound fersuch that

o
o

n=2

Ian|+|b rot <L
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Sincef € HS° we have
“n(n —a) = (n —a)r"!
a2} ~ 7 <
> T el 10D = Y]+ o) <1
provided(n — a)r"~!/(1 — a) < 1 whichistrueifr < (1 —a)/(2 —«a). O
Theorem 3.5.1f f € HS(«), then
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|f(2)| = (1 —|b1]) (|Z| - (1- oﬂ%) )

Equalities are attained by the functions Title Page
; b by Contents
=z+|b]e"Z 1—a*)z
fofz) = 2+ ez + =1 - o) —
for properly chosen red. < >
Proof. We have Go Back
5 Close
[F()] < 201+ b)) + (217> (lan] + [ba])- _
_ Quit
Since Page 9 of 18
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_ %Z(n —a = 2)(Jan| + [ba])

< S1=a)(1= b))+ S(1 = a)(1 = [bi])

(1—a?)(1— b))

NSRS N R

it follows that
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Al e

1
N1+ )y +
Metin Oztiirk and Sibel Yalgin

for zin U.
Similarly we get Title Page
o Contents
FEL = (== (o)) = 22 ) (Jan| + [ba])
n=2 44 44
(1 —a?)(1—|bi])
> |21~ [ba]) ~ s aP ‘ >
) |z!2 Go Back
= = (- -t e
The classe$/ S(«) and HC(«) are uniformly bounded, hence they are normal. Quit
] Page 10 of 18
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Theorem 3.6.1f f € HC(«), then

3—a—2a?
2a

3—a—2a?
o |z|2> .

3—a—2a?
a—20"_,

2x

[F )] < [=[(1+ [ba]) + (1= [ba])]=*

and
ICEE IR
Equalities are attained by the functions
fo(2) =z + |bi]e”z +

for properly chosen red.

Theorem 3.7.The extreme points @f S°(«) are only the functions of the form:

Z 4+ a,z" or z + b,,z™ with

l—« 11—«

|lan| = ) bm| = )
n—«o m —

0<a<l.

Proof. Suppose that

f(z)=z+ Z(anz” + bp2")

n=2

is such that

ai > 0.

> T (laal + Ibul) <
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Then, if A > 0 is small enough we can replaeg by a, — A, a;, + X and we

obtain two functionsf;(z), f2(z) that satisfy the same condition and for which

one getsf(z) = 1[fi(z) + f2(2)]. Hencef is not a possible extreme point of

HS ().
Let now f € HS%(«) be such that
n — CY
(3.2) Z |an| + |bal) = ar # 0,0, #0

n=2
If A > 0is small enough and ifi, ¢ with |u| = |(| = 1 are properly chosen

complex numbers, then leaving all bt b, coefficients off (z) unchanged and
replacinga;, b, by

_ 1_
a A2 =A%
k—a« | —«
1— 1—
an - A2 a2
kE—a |l —«

we obtain functionsfi(z), fa(z) that satisfy(3.2) and such thatf(z) =
2[f1(2) + f2(2)]. In this casef can not be an extreme point. Thus foy,| =
(1-a)/(n—a), [bn| = (1—a)/(m—a), f(2) = z+anz" OF f(2) = 2+bp2™
are extreme points aff S°(«). O

Similarly we can obtain that the following result is true.

Theorem 3.8.The extreme points é¢f C°(«) are only the functions of the form:
z + a,z" or z + b,,z™ with

l—« B l—«

|lan| = : | = 0<a<l.

n(n — «a)
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Let K, denote the class of harmonic univalent functions of the fotrf) (
with b, = 0 that mapU onto convex domains. It is knowrs,[ Theorem 5.10]
that the sharp inequalities

2|4, <n+1, 2|B,| <n-—1
are true.
Theorem 3.9. Suppose that
F(z) =2+ (Auz" + Bo2")

n=2

belongs takK,. Then

(i) If f € HC (a) thenf = F is starlike univalent and ¢ F' is convex.

(i) If f(z) satisfies the condition

Y nP(n—a)(lan| + b)) <1-a
n=2

then f x F'is convex univalent.

Proof. We justify the case (i). Since

[ee] o

A, B,
30— a)(Janda] + B Bal) = 3 n(n — ) (ranr —] Tl | B )
n=2 n=2
< n(n — a)(lan| + [ba]) <1 —a
n=2
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it follows that f * F'is in HS(«). Namely f * F is starlike univalent.

Furthermore, the transformation

/1f*F(tZ>dt
0 t

now shows thaf o F' € HC(«).

— foF(2)
O

Let S denote the class of analytic univalent functions of the fdr(z) =

z 4 > A,z". Itis well known that the sharp inequality,,| < n is true.

n=2

Theorem 3.10.If f € HC (o) and F € Sthenfor|e| < 1, f * (F +¢F) is
starlike univalent.

Proof. Since

[e.9]

> (0= a)(|anAn| + [baBal) <

n=2

it follows that f

Z n(n —a)(|la,| + |bn]) <1 -«
n=2

(F + ¢F) is starlike univalent.
Let P denote the class of functiodscomplex and harmonic ifi, f = h+g
such thafRe f(z) > 0, z € U and

z) =1+ iAnz”,
n=1

o0
= E B, z".
n=2

It is known [4, Theorem 3] that the sharp inequalities

are true.

A, <n+1,

B, <n-—1
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Theorem 3.11. Suppose that

FE) =143 (A2 1 B

n=1
belongs toP};. Then

(i) If f € HC(«) thenford < |4,| < 2, Ail « F'is starlike univalent and
4 f o F'is convex.

(i) If f(=) satisfies the condition
> n*(n—a)(lan] + [ba]) <1 -0
n=2

then-f * I is convex univalent.

Proof. We justify the case (ii). Since

n=2

< ZTLQ(TL —a)(lan| + [ba]) €1 -«

n=2

4 f * Fis convex univalent. L
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Remark 3.3. If f € HS(«) and F' € KY, thenf x F need not be univalent.
For example, iff (z) = z + 1=2 2" and F'(z) = Re (% )+zlm(( >then

fxF(z) =2+ %z is not univalent inU. But f o F' is unlvalent and
starlike.

Theorem 3.12.Let

f(z) = z+bl_z+2(anz”—l—bn7)

n=2

is a member of/C(a). If § < 3=2(1 — |by]), thenN (f) C HS(«).

Proof. Let f € HC(a) andF(z) = 2+ Byz + > oo ,(A,2" + B,2") belong to
N(f). We have

(1 —a)|Bi| + Z(” —a)(|A,| + [Bn])
< (1= a)|By = bi| + (1 — a)[bi]

+) (n—a)

Ap = an| + | By = by|) + Z(n — a)(|an| + [bn)
n=2

<(1I—a)d+ (1 —a)lbr] + ﬁZn(n — a)(|an| + |bnl)
< (1= )5+ (1-a)lbn] + (1~ [bn])

<1-oqa.
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Hence, for
1l—«
d <

(1~ [in])

F(z) € HS(«). m
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