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ABSTRACT. In this paper we present an inequality concerning the regularity of the solution of
the Klein-Gordon equation with a time-varying parameter. In particular, we present an inequality
comparing the norm of the initial state and the norm of the solution on some part of the boundary.
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1. INTRODUCTION

Let2 = (0, 1) anda be a smooth function. We consider the following initial value problem

(1.1) Vg — Vg + (t)v =0in Q x (0,7),
(1.2) v(0,t) =0 =wv(1,1),
(1.3) v(x,0) = vo(x) € Hy(Q), and wv(z,0) =uv(z) € L*(Q).

The smoothness af guarantees the existence of the above system. In this paper we are
interested with the following function

(1.4) 2(t) = va(1,1).

In particular, we establish some conditions@that guarantee the existencelofind positive
constantsr, Kr that depend only of" > 0 such that the?(0, T')-norm of z and theH} () x

ISSN (electronic): 1443-5756

(© 2002 Victoria University. All rights reserved.

This work is partially supported by the World Bank under the QUE Project.
081-01


http://jipam.vu.edu.au/
mailto:pranoto@dns.math.itb.ac.id
http://www.ams.org/msc/

2 IWAN PRANOTO

L?(9Q)-norm of the initial statgv,, v,) are equivalent, i.e.

T
(1.5) k|l (vo, vi) 2 < / 2(t) dt < Kr|(vo, v1) |51
0

for every (vy,v1) € Hy x L% The upper estimate means thabelongs toL?(0,7T'), and the
lower one means that the topology induced by fi¥€0, T')-norm of 2 is stronger than the
H} x L*-norm.

We establish the inequality by the multiplier method, described by Komdrhik [3].

The particular inequality above is crucial in studying the exact controllability of distributed
parameter systems. One can observe that by the inequality, one may regatdtt¥e)-norm
of v,(z,t) evaluated only at = 1 as the equivalent norm of the initial condition. This fact is
fully utilized in solving the exact controllablity of the systems. For detailed explanations on the
exact controllability concepts and properties, readers should consult Lions [4].

In the higher dimensional case, it is proved in Pranpto [6] that the inequality is true. In the
casex = 0, one can obtain the inequality and it is sharp in the sense that th&@timest be> 2
and cannot be smaller. For example, one can consult Bardos et @l. in [2] for this result. They
use micro local analysis to obtain the inequality. In the case 1, we are able to compute
numerically the exact control. Please consult Prarigto [5] for its numerical scheme. It uses the
Galerkin method. A more recent result on a different type of system is given in Avalos et al.

[1].
2. MAIN RESULTS

LetS = Hj(Q) x L*(Q2) and| - | be theL?-norm. InS, we define

(2.1) [ (vo, v1)lls = v/ |0zv0]? + |v1]?

for every(vg,v1) € S. Here,d, denotes the partial derivative on variableWith this norm, we
defineenergyE of the solution at time, that is(v(-,t), v,(-, 1)), as

2.2) B(t) = 5 (10, w)l3 + )P

Proposition 2.1. If « satisfies the following conditions:

Al: Thereis are € (0,1), such thafa(t)| < (1 — ¢)n? for everyt;
A2: Var(a) < oo, whereVar(«) denotes the variation of the functianon (0, co),

then there exist” > 0 andkr, K+ > 0 such that

T
(2.3) kT||(onvl)H§IOIXL2 < /o 2(t) dt < KTH(U07UI)||121101><L2

for every(vy,vy) € H} x L2

Proof. By the assumptiorj (A1), the energj(t) is non-negative. If we differentiate it, we obtain

, o/ (t
(2.4) E'(t) = #W.
One can show thdb|* < 2 [1 + 5] E(t), by (Al). It then implies that
, , 1—e€
B0] <200 |1+ 5] B0,
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Thus, we obtain

(2.5) % < E(t) < M(T) E(0),

whereM (T)) = exp (2 [1+ L] T |0/(s)|ds>.
Because we assunje (A2), the following inequality holds for every0

(2.6) %O) < B(t) < u E(0),

wherep = exp (2 [1 4+ 5¢] Var(a)). If a is constantE(t) = E(0) for everyt > 0. It means
the energy is conserved.
After multiplying both sides of (1]1) byv, and integrating it ovef2 x (0, T’), we obtain

2.7) /O ' /Q (Vs — Vs + (t)0) 20, dz dt = 0.

Thus we have the following identity

T T T
(2.8) / / vy TV, dx dt — / / Uy TV, dx dt + / / a(t)v zv, de dt = 0.
0o Jo 0 Ja 0 Ja

Next, we evaluate the first term on the left hand side, and we obtain

T
(2.9) /0 /Qvtt xv, da dt = p(T) — p(0)

) (/OTg(vt(ﬂi,t))QL:O dt — %/OT/Q‘WP dx dt,).

By the boundary condition, the above equation becomes

T 1 (T
(2.10) / / vy xv, dx dt = p(T) — p(0) + —/ / lvg|? dx dt,
0o Jo 2Jo Ja

wherep(t) = fol v (z,t) x v, (x,t) de. Next, we evaluate the second term on the left hand side
of (2.8) and obtain

T 1 [T 17
(2.11) —/ /vm TU, dr dt:—/ /|vx|2 dx dt——/ lvg(1,1)|? dt.
o Jo 2Jo Ja 2.Jo

After that, we evaluate the last term on the left hand sidé of (2.8). By the boundary condition,
we obtain

T 1 T
(2.12) / / a(t)v zv, de dt = —= / / a(t)|v]? dx dt.
0 Q 2 0 Q
If one adds the equatiorjs (2][L0-2.12) altogether, one obtains

T T
(2.13) 0= p(T) — p(0) + %/0 /Q (]Ut|2 + v |* — a(t)\v\Q) dx dt — %/0 lv.(1,1)]? dt.

The value of the functiop can be estimated by
1 3 1 3
2.14) o0l < ([ uteopar) ([ opa)
0 0
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Thus, we have
1 1

(2.15) ) < [ e O dot [ oo do < D EG)
0 0

whereD = =
Next, we estimate the term

T
//(\vt]2+ vz = a(t)|v]?) da dt
0 0

T
(2.16) 2// (Joe* + (1 = O)|vg|* + €|va]* = (1 — )7 |v|?) dx dt
0
T
(2.17) 26//(\%\2—1-]%\2) d dt
0 Q
T
(2.18) = %//(!vtﬁﬂvzy%w?yvy?) dx dt
0 Q
T
(2.19) > %//(’Ut|2—|—]vx|2—|—a(t)|1;’2) dx dt.
0 Q

We then apply the above estimates irito (P.13), and we obtain

(2.20) %/OT lv,(1,8)2 dt > —D(E(T) + E(0)) + g /OTE(t) dt.

T
FE
/ﬂdt
0 1%
17T

(2.21) = ( Dip+1)+ ﬁ) E(0).

By the estimate on the energy growjth (2.5), this implies

%/OT |02 (1,8)|* dt > —D(p + 1) E(0) +

NN e

We then choose arly > u(u + 1)D?. So, (—D(u +1)+ 5 ;) > 0. In order to simplify the
notation, we write the samniB to denote this particuldf. We then let

(2.22) cr = (—D(u +1)+ % %) .

Next, we know that
1 a(0
50) = 3l o)l + 22 [ (o)l ar
Q
Moreover, by[(Al), we have

(2.23) /Q (|va(z, )* + a(t)|v(z, t)|?) dz > e/ |vg (2, 1) |* da.

Q
Thus, we obtain

T
(2.24) / ()2 dt > kel (v, v1)]%
0
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wherekr = 2ecr = —4(pn+ 1) + 62%.
Next, we need to prove the upper estimate[of|(2.3). In order to do this, we start from the
identity (2.13). Using[(A]L), one then obtains the following inequality

%AhﬂuWﬁSMﬂHM@

|
o / ) / (ol + [l — a(@®)loP) do dt]
1)E(0)

< D(p+
1 T
(225) +§ / / (|Ut|2+ ’Um|2+06(t)‘1}|2_|_271'2|1}|2) dx dt‘
0 Q
T
(2.26) ng+mmm+o/mwﬁ
0
(2.27) < (D(p+1)+CuT)E(0),
whereC' = 1 + 2. The inequalitieq (2.25) anfl (2]26) are obtained by the fact that
(2.28) [v2l72: — a@)[[vll7: < llvallzz + 27 [v]|72 + a(t)|v]|7a

< C ([lall72 + at)lvllZ:) -
SinceE(0) < 25¢||(vo, v1)||%, we then obtain

T
(2.29) /|wwwSKﬂmwm§
0

where the constart equals®=“(u + 1) + (2 — ¢)  T'. This completes the proof. O

The above proposition implies that the nofifvy, v;)||s Of the initial state is equivalent to
the L2(0, T')-norm of the functiore. It is interesting to note that(t) which is equal ta,(1,t)
is evaluated at = 1 only. Roughly speaking, it means that one can observe the dynamic of
the system via the information afonly. Thus, if we have two initial conditions that give the
samez’s, then those two initial conditions are equal. This property is related to the Holmgren
Unigueness Theorem in the study of PDE’s.
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