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ABSTRACT. Some estimations and inequalities are given for the higher order central moments of
a random variable taking values on a finite interval. An application is considered for estimating
the moments of a truncated exponential distribution.
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1. INTRODUCTION

Distribution functions and density functions provide complete descriptions of the distribution
of probability for a given random variable. However they do not allow us to easily make com-
parisons between two different distributions. The set of moments that uniquely characterizes
the distribution under reasonable conditions are useful in making comparisons. Knowing the
probability function, we can determine the moments, if they exist. There are, however, applica-
tions wherein the exact forms of probability distributions are not known or are mathematically
intractable so that the moments can not be calculated. As an example, an application in insur-
ance in connection with the insurer’s payout on a given contract or group of contracts follows
a mixture or compound probability distribution that may not be known explicitly. It is this
problem that motivates to find alternative estimations for the moments of a probability distribu-
tion. Based on the mathematical inequalities, we develop some estimations of the moments of
a random variable taking its values on a finite interval.

SetX to denote a random variable whose probability functiofi i§a, b C R — R, and its
associated distribution functiaf : [a, b] — [0, 1].
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2 PRANESHKUMAR

Denote byM, ther® central moment of the random variabtedefined as
b
(1.2) MT:/ (t—p)dF, r=0,1,2,...,

wherey is the mean of the random variab}é. It may be noted thad/, = 1, M; = 0 and
M, = o2, the variance of the random variab\e

When reference is made to th# moment of a particular distribution, we assume that the
appropriate integral (1.1) converges for that distribution.

2. RESULTS INVOLVING HIGHER MOMENTS

We first prove the following theorem for the higher central moments of the random variable
X.

Theorem 2.1. For the random variableX with distribution function" : [a, b] — [0, 1],
b
(2.1) / (b—t)(t —a)"dF

i( ) )" 1(b— )My, — My_ia], m=1,2,3,... .

k=
Proof. Expressing the left hand side ¢f (2.1) as

/ (b—1)(t - ay"dF = / (6= ) — (¢ — [t - ) + (u — )]"dF,

and using the binomial expansion

[(t—p) + i( ) et — )™ F,

we get -
/a b= 1)t — aydF
= [1o-m--w [i ()= e -y
- f (7)== [ 6= uy-tar
=3 (7)o [ - wma,
and hence the theorer?:0 O

In practice numerical moments of order higher than the fourth are rarely considered, there-
fore, we now derive the results for the first four central moments of the random vaiable
based on Theorem 2.1.

Corollary 2.2. Form =1,k =0, 1in (2.1), we have

(2.2) / (b—t)(t — a)dF = (b— p)(ju — a) — Mo,

This is a result in Theorem 1 by Barnett and Dragomir [1].
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Corollary 2.3. Form =2,k =0,1,21in (2.7),

b
(2.3) / (b—1)(t — a)’dF = (b — 1) (4 — a)* + [(b — 1) — 2( — @)} My — M.

Corollary 2.4. Form = 3,k =0, 1, 2, 3, we have from(2]1)

(2.4) / (b= 1)(t — )*dF = (b— 1) (st — 0)* + 3 — @) (b — ) — (1 — )] My
+[(b—p) = 3(p — a)] M5 — M.

3. SOME ESTIMATIONS FOR THE CENTRAL M OMENTS

We apply Holder’s inequality [4] and results of Barnett and Dragomir [1] to derive the bounds
for the central moments of the random variafle

Theorem 3.1. For the random variableX with distribution functionF' : [a,b] — [0, 1], we

have

Cir+1)I(s+1)
Cir+s+2)

(b— a)r st

[ f oo
(3.1) / b(b—t)’”(t —a)*dF <

(b—a)* 1 [B(rg+1,5q+ )] -||f],,

1,1
forp > 1, 5+§—1,T,820.

Proof. Lett = a(1 — u) + bu. Then

/b(b — )" (t —a)*dt = (b —a) T /1(1 —u)"u’du.

r4s+l Ir+1)I(s+1)
L(r+s+2)

b

/ (b—1t)"(t —a)’dt = (b—a)

Using the property of definite integral,
b
(3.2) / (b—1)'(t — a)'dF >0, forr,s >0,
we get,
b
/ (b—1)'(t — a)"dF

<11l / (b—1)*(t — aydt,

rs+l I(r+1I(s+1)
I'(r+s+2)

=({b-a)

the first inequality in[(3]1).

|| flleo fOr r, s > 0,
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Now applying the Hélder’s integral inequality,

/b(b —4)*(t — a)"dF

U (1) dt] Uab(b—t)sw )”fdt;

(b— ) a[Blrg+ 1,50+ )] - | £y,
the second inequality ir[@.l). O
Theorem 3.2. For the random variableX with distribution function" : [a, b] — [0, 1],
Q)L Cir+1DI'(s+1)
I'(r+s+2)

b
< / (b—1)(t — a) dF
a)r et Iir+1)(s+1)
L(r+s+2)
Proof. Noting that ifm < f < M, a.e. ona, b], then
mb—1t)°(t—a) <(b—1t)°(t—a)"f < Mb-—1)°*t—a),

a.e. onfa, b| and by integrating ove, b|, we prove the theorem. O

3.1. Bounds for the Second Central Moment)M, (Variance). It is seen from[(Z]2) and (3.2)
that the upper bound fav/,, variance of the random variahle, is

(3.3) m(b —

< M(b—

,ry8 > 0.

(3.4) My < (b= p)(p— a).

Consideringe = (b — i) andy = (¢ — a) in the elementary result
ry < (xzy)2, z,y €R,

we have

(3.5) < @ _4@)2,

and thus,

(3.6) 0< My < (b—p)(u—a) < 2=

From (2.2) and[(3]1), we get
b—a)
bomu-a - < L Ly

1 1 1
(b= =a) =My < |Ifl(b— ) 5[Bla+1a+ 1)) p>1, +_ =1
Other estimations foi/, from (2.2) and[(3]1) are

e (I A VU P V)

resulting in

(37) My < (b— 1) (5 —a) —m

, m< f< M.
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3.2. Bounds for the Third Central Moment ;. From [2.3) and[(3]2), the upper bound for
Ms

My < (b— ) (1 — a)* +[(b— ) — 2(p — a)]| M.
Further we obtain fronj (2]3) and (3.4),

(3.8) Mz < (b—p)(p—a)(a+b—2p),

from (2.3) and|[(3.p),

(3.9) My < 110 ) + (b ) — ) 2 — )",

and from [2.8) and (3]7),

(3.10) My < (b— ) — a)(a+ b — 2p0) — =V 0 =20)

6

3.3. Bounds for the Fourth Central Moment ). The upper bounds fat/, from (2.4) and
()

My < (b—p)(p—a)* +3(u = a)[(b — p) — (n — )] Mz + [(b — 1) — 3( — @) M.
Using (2.4),[(3.#) and (3]8), we have
(3.11) My < (b— ) — a)[(b— a)* = 3(b— ) (u — )],
from (2.4), [3.5) and (3]9),
B12) M, < i [(0—w)* + 46— ) (n — a)* =40 — p) (1 — @)’ + 3(u — a)] ,
and from [2.4),[(3]7) andl (3.110),
(8.13) My < (b—p)(p—a)[(n—a)® + (a+b—2u)(a+b—4p)

m(b—a)*(a+b—2u)(b—2a— p)
G :

4. RESULTS BASED ON THE GRUSSTYPE INEQUALITY

+3(b—p)(a+b—2u)] -

We prove the following theorem based on the pre-Griiss inequality:
Theorem 4.1. For the random variableX with distribution functionF : [a, b] — [0, 1],

C(r+1I(s+1) '

(4.1) I'(r+s+2)

/ (b—1)"(t —a)*f(t)dt — (b—a)" -

N

1
S §<M - m)(b - a)r+s+1

T@2r+)M2s+1) (F(r +1)I(s + 1))2
I'(2r+2s+2) I'(r+s+2)

wherem < f < M a.e. ona,b] andr, s > 0.

Proof. We apply the following pre-Griss inequality [4]:

/abh(t)g(t)dt— bia/abh(t) dt-ﬁ/abg(t)dt‘
< 56— [b% [ - =7 bg<t>dt)2] ,

provided the mappings, g : [a,b] — R are measurable, all integrals involved exist and are
finite andy < h < ¢ a.e. ona, b].

(4.2)

N
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Leth(t) = f(t), g(t) = (b—t)"(t — a)® in (4.2). Then

1

(4.3) /ab(b (= a) ()t — ﬁ /abf(t)dt- . /ab(b - a)sdt‘

<50r-m)- |52 [0 0e-aa

1t ?
_(b_a/ (b—t)r(t—a)sdt> ] ,
wherem < f < M a.e. onfa.b].

On substituting from[(3]2) intg (4.3), we prove the theorem. O
Corollary 4.2. Forr = s = 1in (4.9),

/ (b— t)(t — a) f(£)dt

aresult (2.7) in Theorem 1 by Barnett and Dragoifdi}.
We have the following lemma based on the pre-Gruss inequality:
Lemma 4.3. For the random variableX with distribution functionF : [a, b] — [0, 1],

=

(b—a)? < (M —m)(b—a)?

124/5 ’

(4.4)

/ (b— 1) (t — a)* F()dt — (b— a)"**

L(r+1)C(s+1) ’
L(r+s+2)

1

ot =m [6-a) [ oa-1],

<

N | —

wherem < f < M a.e. on[a,b] andr, s > 0.

Proof. We chooséi(t) = (b —t)"(t — a)*, g(t) = f(t) in the pre-Gruss inequality (4.2) to
prove this lemma. O

We now prove the following theorems based on Leima 4.3:
Theorem 4.4. For the random variableX with distribution functionF" : [a, b] — [0, 1],

/ (b — t)r(t — a)sf(t)dt _ (b _ a)r—i—sr(r + 1)F(S -+ 1) 1

4. < —(b—a)(M —m)?
wherem < f < M a.e. on[a,b] andr, s > 0.

Proof. Barnett and Dragomir [3] established the following identity:

wo i [rwsa=ps () [ [

where ]
Ip| < Z(F—v)@—aﬁ), and ' < f<7,® <g<¢.

By takingg = f in (4.6), we get
4.7) L/be(t)alt— + L 2 where | |<1(M— )y, M<f<
' b—a J, - P b—a) ’ PI=7q e -

Thus, [4.4) and (4]7) prove the theorem. O
Another inequality based on a result from Barnett and Dragorir [3] follows:
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Theorem 4.5. For the random variableX with distribution functionF' : [a, b] — [0, 1],

Fr+1)I'(s+1)] 1
T(r+s+2) ‘ < g MM =m)(b —a),

(4.8)

b
/ (b—t)(t—a)f(t)dt — (b—a) - <7

wherem < f < M a.e. ona, b] andr, s > 0.

Proof. Barnett and Dragomir [3] have established the following inequality:

I 1 \" I =t (b—a' -1
(4.9) ]m/af@df—(m) §4(b—a)”2{ T (b—a)—1 ]

wherey < f < T.
From (4.9), we get

Jote o (522)

and substituting irf (4]4) proves the theorem. O

] <Tom<f<M

5. RESULTS BASED ON THE HOLDER’S INTEGRAL INEQUALITY

We consider the Holder’s integral inequality [4] and fof [a, b], }D + % =1, p>1,

(5.1) / (t —u)™ £ (u)du

< (/t yf<n+1><u)ydu>’l’ - (/at(t - u)"qdu);

1
ng+17 4
< ||F@D] - (t=a)"™ v
- P ng+1

On applying|[(5.1L),we have the theorem:

Theorem 5.1.For the random variableX with distribution functionF” : [a, b] — [0, 1], suppose
that the density functiorf : [a,b] is n— times differentiable ang™ (n > 0) is absolutely
continuous ora, b]. Then,

n

b
I(s+ D00 +k+1)
5.2 t—a)"(b—1t)f(t)dt — b—q) etk
62) | [ (t=are=0s) >6-0 Sy s
( (nt1) r+s+n rTn i n
%-(b—a)**”-%, if fO+Y ¢ Lo[a,b],
1 (n+1) rdsintl C(r4n+i4+D)T(s+1) . n
= nl ‘(lvjjq-&-l)l‘/ls (b —a) At F(r+sin+§+2) , i f e Lyla, 0], p> 1,
PO (b = gyt SRt i S € Lo, b,

where|.||, (1 < p < o0) are the Lebesgue norms gn b}, i.e.,

b 7
|19]]oc := ess sup [g(t), and ||g]l, := (/ Ig(t)lpdt) , (p=1).

tela,b]
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Proof. Using the Taylor’s expansion gfabouta :

10 =3 S+ o [ = w1 b

k=0
we have

n

(5.3) /t—a b1 :kz[/: _ Hk(b_t)sdt,%]

0

+[ni/b(t—a) (b— 1y </at(t—u)"f”“( )du)dt}.

Applying the transformation = (1 — x)a + xb, we have

s+ )I'(r+k+1)
T(r+s+k+2)

b
(5.4) /(t—@”ﬂb—@%t:@—ayﬂH*L
Fort € [a, b],it may be seen that

(5.5) / (t — )" F D (w)du| < / (¢ — )| £ ()| du

< sup |f"Y(u \/t—u"du

u€la,b]
(t — a)™+!
n+1 ~

IN

1/ oo -

Further, fort € [a, b],

(5.6) /t(t—U)"f("“)(U)du < /t( )" £ (u) | du
< (t—a) /|f"Jrl )|du
< DI (=)
Let
b t
(5.7) M(a,b) = ;, / (t—a)(b—1)" ( / (t—u)"f<n+1>(u)du> dt.
Then [5.1) and (5]5) t¢ (5.7) result in
(5.8) M(a,b)
(WO e (g — a) (b — t)dt, i FOD € Loga, ],
<o MOl - @yt - e, F € L), p> 1

PO - [ = ay (=t if f0D € Lyfa,b).
Using (5.3),[(5.%4) and (5/8), we prove the theorem.
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Corollary 5.2. Considering- = s = 1, the inequality[(5.8) leads to

M (a,b)
(
1f" oo (b —a)"t i
: f fot) e L
(n+1)  (n+3)n+4) P bl
(n+1) — n+é+3
Si, A"l (b—a) i fr) e Lab], p> 1,
n:

(ng + 1) <n+§+2> <n+§+3)

b—a n+3

[/ Gk iy
(n+2)(n+3)

which is Theorem 3 of Barnett and Dragonij.

if fO+Y ¢ Li[a,b],

6. APPLICATION TO THE TRUNCATED EXPONENTIAL DISTRIBUTION

The truncated exponential distribution arises frequently in applications particularly in insur-
ance contracts with caps and deductible and in the field of life-testing. A random vakiable
with distribution function

l—e™ for0<z<c,
F(x) =
1 for =z > ¢,

is a truncated exponential distribution with parameteandc.
The density function foX :

e ™ for0<z<c
f(z) = + e (),
0 forxz > ¢

whered, is the delta function at = c¢. This distribution is therefore mixed with a continuous
distribution f(x) = Ae=** on the interval0 < z < c and a point mass of size* atz = c.
The moment generating function for the random variable

Mx(t) = / e Ne Mdx + €' e
0

A\ — te—c(A—1)

fort # A
. A—t ) Or %7

Ac+ 1, fort = \.

For further calculations in what follows, we assuing \. From the moment generating func-
tion M (t), we have:

B(X) = %
Exy = =0 ;)\c)e—)‘c]’
B(X?) = 32— (2+ 2);\034_ )\262)6—,\0]7
E(XY) = 416 — (6 + 6Ac + 302 + A3c?)e ] |

>\4
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The higher order central moments are:

k
k ) )
M=) (,)E(X’)'u’”, fork =2,3,4,...,

1

i=0
in particular,
1 —2X\ce ¢ — g2
M2 - /\2 5
M 16 — 3e72(10 + 4Ac + A\2c?) + 6e722(3 + A¢) — de 3%
3 = )
\3
65 — 4e (32 + 15 ¢ + 6A2c2 + \3¢?)
M, = -
+36*2AC(30 + 16Ac + 4X\%c?) — 4e32¢(8 + 3\¢) + He4A¢
Al '

Using the moment-estimation inequalify (3.6), the upper boundfgrin terms of the param-
eters)\ andc of the distribution:

(=) Ae—1+e)
The upper bounds far/; using [3-8)

~(2=3Xc+ A%?) — e72(6 — 6Ac + N2?) + 3e7¢(2 — Ae) — 273N

and using[(39)
AL < (=3 +4Xc — 322 + X3¢3) + e72¢(9 — 8Ac + 3N2?) — e72¢(9 — 4)\e) + 373N
3 < .
4\3

The upper bounds fa¥/, using [3.11)
(=3 4+ 6Ac — 422 + A3¢) + e72¢(12 — 18Xc + 8A2c? — \3¢P)

My < N
26729 4+ 9N + 2M%%) — 67322 — Ae) + 37
_ v 7
and from [3.1R),
XL < (12 — 16Ac + 10302c% — 4X3¢3 + Net) — de2¢(12 — 12Xc + 5AZc? — N\3¢3)
= AN
2e722¢(36 + 24X c + 5A?c?) — 16e73M(3 — A¢) + 1271
-+ .
4\
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